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Detection Problem

Consider a simple Poisson model

nB|(λB, r , τB) ∼ Poisson(rτBλB)

n|(λS, λB, τS) ∼ Poisson
(
τS(λS + λB)

)
where λB is known.

We use a standard hypothesis testing framework:

H0 There is no source: λS = 0
HA There is a source: λS > 0.
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Detection Threshold

The detection threshold n? is the smallest value such that

Pr(n > n?|λS = 0, λB, τS, τB, r) ≤ α,

If n ≤ n? we conclude there is insufficient evidence to
declare a source detection.

If n > n? we conclude there is sufficient evidence to
declare a source detection.
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Detection Threshold
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Power

The power of the test to detect a source as a function of its
intensity is

β(λS) = Pr(n > n?|λS, λB, τS, τB, r) .

Note β(λS = 0) ≤ α.

David A. van Dyk Setting Upper Limits



uci

Detection, Intervals, and Upper Limits
Addressing Concerns (Forgive my Soap Box!)

A More Coherent Approach?

A Simple Poisson Model
Detection
Upper Limits, Upper Bounds, and Sensativity

Power
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Typical Detection Prodedure

When there is a detection astronomers often
1 Report a detection
2 Report a confidence interval for λS

When there is not a detection astronomers often
1 Report no detection
2 Report an “Upper Limit” for λS

What is the difference?
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Upper Limits

What is an “upper limit”?

In astronomy upper limits are inextricably bound to source
detection: by an upper limit, an astronomer means

The maximum intensity that a source can have without
having at least a probability of βmin of being detected
under an α-level detection threshold.

or conversely,

The smallest intensity that a source can have with at
least a probability of βmin of being detected under an
α-level detection threshold.

Requires two probability calculations.

David A. van Dyk Setting Upper Limits



uci

Detection, Intervals, and Upper Limits
Addressing Concerns (Forgive my Soap Box!)

A More Coherent Approach?

A Simple Poisson Model
Detection
Upper Limits, Upper Bounds, and Sensativity

Upper Limits

Upper Limits are analogous to sample sizes as follows:

If you don’t have a detection, the sample size
indicates how much you should worry.

The Upper Limit aims to directly calibrate this.

Physicists generally refer to this as the
“sensitivity” of the detection.
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Illustrating Upper Limits/Sensativity
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Effect of Detection Threshold on UL/Sensativity
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Effect of UL probability on UL/Sensativity
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Upper Limits/Sensativity and Power

In a typical power calculation, we would find the minimum
τS so

β(λS) = Pr(n > n?|λS, λB, τS, τB, r)

achieves a given value for a given λS. Say 90% for λS = 2.
For an upper limit we solve the same equation, but fixing
τS and solving for λS.

Like power, an upper limit does not depend on
the data and can be computed in advance.
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Upper Bounds

The upper end point of the (one-sided) interval:

The largest plausible value of the source intensity
consistent with the observed data.

This quantity is referred to as the

Upper Limit by physicists and the
Upper Bound by astronomers.
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The Typical Procedure

In the typical astronomy procedure, the confidence interval
is only reported if a source is detected.
With Power-Constrained Limits, UL is only reported if data
is above a threshold. Otherwise the sensitivity is reported.
But deciding whether to report the interval or UL based on
the data alters the frequency properties.

Unfortunately, frequency properties depend on
what you would have done, had you had a

different data set.
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Proposed Procedure

Always report
1 Whether the source was detected.
2 A Confidence Interval for the source intensity.

This may be a one-sided interval taking the form of an
upper limit.

3 The sensitivity, in order to quantify the strength of the
experiment.
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Advantage of Proposed Procedure in HEP

Corrections to standard UL
PCL mixes a standard UL with the sensitivity.
CLS alters the UL for a smoothed version of PCL.

Both
sacrifice frequency properties and
are rather difficult to interpret.

By reporting both the UL and the Sensitivity.
We report the largest value consistent with the data (UL)
and the smallest value we have sensitivity to detect.
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UL < Sensitivity

Question:

What does it mean when UL is less than sensitivity?

Answer:

Something other than data is constraining the intensity.

Assumption that µ ≥ 0.
Assumption about λB.

In any case, knowing UL and Sensitivity is more
informative than knowing max(UL, sensitivity).
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Concerns with Existing Intervals / Limits

Frequentist methods can give empty intervals for λS.
Frequentist methods can give very short intervals that
seem to imply a very sensitive experiment.
The upper limit may increase as n decreases.
“Goldilocks effect": Frequency coverage should be above a
minimum, but no more than the minimum.
Apprehension about Bayesian methods and their priors.
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Frequency Intervals

Confidence Interval:

{λS : n ∈ I(λS)},

where λB = 2.9 and

Pr(n ∈ I(λS)|λS) ≥ 95%.

Values of λS with given
propensity to generate data.

Sampling Dist’n of 95% CI
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Short or Empty Intervals

What do they mean?

There are few plausible values of λS given the data.

What they do not mean?

Experimental uncertainty is small. (SE or Risk of λ̂S??)

What if intervals are repeatedly short or empty?

Short intervals should be uncommon. If they are not,
blame the model, not the interval— regardless of the

strength of the subjective prior belief in the model.
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Pre-Data and Post-Data Probabilities

Frequency Interval has 95% chance of covering true λS.
What is the chance that ∅ contains λS?

There is a 95% chance that Confidence Intervals
computed in this way contain the true value of λS.

Frequency-based probability says nothing about a
particular interval.
Bayesian methods can quantify this type of probability.
Precise probability statements may not be relevant
statements.

Our intuition leads us to condition on the observed data.
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Some thoughts on 5σ

Are we really worried about making one Type-1
error in 1.7 million results??

No. We are worried about:
The look elsewhere effect.
Calibration and systematic errors.
Statistical error rates that are not well calibrated due to
general model misspecification. (E.g., David Cox)

Model misspecification
is the same problem that leads to ubiquitous
short or empty intervals and UL < sensitivity.
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Problems with 5σ

Using 5σ is really not the answer:
We don’t know the actual effect of Systematics and LEE.
“No distribution is valid to the 5σ tail!”
Sampling distributions are only asymptotic approximations.
Must calculate extreme-tail probabilities.

We have no idea what the actual level is.

5σ simply sweeps the problem under the rug.
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What Should We Do?

Real solutions require real work:
Deal with systematics, LEE, and general model
misspecification directly.
Model diagnostics and model improvement will improve
statistical properties of detection, intervals, and limits.
Hiding assumptions and ad hoc fixes do not eliminate
assumptions—but makes evaluating their effect difficult.
Bayesian methods lay their assumptions out for all to see.
Model specification is more fundamental than the choice of
Bayesian/Frequency/Other procedure.

Goal: Honest frequency error rates or a
calibrated Bayesian procedure.
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Standard Hypothesis Testing

Consider again the standard hypothesis testing framework:

H0 There is no source: λS = 0
HA There is a source: λS = k > 0.

The typical (Neyman-Person) strategy:
1 Set the detection threshold to limit the probability of a false

positive (Type-I error).
2 Compute power via prob of false negative (Type-II error).
3 Compute interval, e.g., by inverting the test.
4 Compute Limits from interval or via a power calculation.
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Hypothesis Testing in HEP

Along with standard test, conduct test interchanging H0 and HA:

H0 There is a source: λS = k > 0.
HA There is no source: λS = 0

H0 HA

exclusion either discovery

n
0

*
n

A

*
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Hypothesis testing in HEP

This results in 4 possible outcomes: exclusion, discovery,
no decision (either is possible), or excluding both hypotheses.

H0 HA

exclusion neither discovery

n
0

*
n

A

*
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Hypothesis testing in HEP

2 or 3 are possible depending on the order of n∗
0 and n∗

A.

H0 HA

exclusion discovery

n
0

*
= n

A

*

Louis wondered if there is anything like this in the statistics literature.
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HEP in Statistics Literature

It is unusual to treat the hypotheses in a symmetric fashion.
Typically the alternative parameter space contains the null
parameter space.
Using various values of λS in the null to compute the UL
corresponds to inverting a test.
This is standard, except that in HEP a different test is
inverted than the test used for discovery.
Other tail is used with 2σ rather than 5σ.
But the formal symmetric testing seems unusual if not
unique to HEP.
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Ultimate Goals

Recall concerns about standard methods:
1 Intervals may be short or empty.
2 Detailed observations about the character of procedures

under certain circumstances.
3 Desire for precise frequency coverage.
4 Apprehension about Bayesian priors.

When compared with the ultimate goals:
1 Detection if and only if source exists.
2 Intervals that contain actual intensities.
3 Upper Limits that bound the actual intensities.

concerns appear superficial.
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Costs of Errors in HEP Detection

The “Loss” Function:

Decision
Truth H0 HA either neither
H0 0 C01 C0e C0n
HA C10 0 C1e C1n

C01 is the cost of a false positive.
The other costs are likely significantly smaller than C01.
We might add another row for "Truth = Neither".
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A Simplified Cost Structure

The “Loss” Function:

Decision
Truth H0 HA either neither
H0 0 C c c
HA c 0 c c

Here we assume
1 The costs of all errors except a false positive are

more-or-less equal.
2 C � c > 0
3 C + c = 1 (This is just a choice of scale.)
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Minimize Expected Loss

H0 HA

exclusion either discovery

n
0

*
n

A

*

Risk(n∗
0,n

∗
A|H0) = E(Loss|H0)

= C Pr[n > max(n∗
0,n

∗
A)|H0]

+ c
{

Pr[n∗
0 < n < n∗

A|H0] + Pr[n∗
A < n < n∗

0|H0]
}

Risk(n∗
0,n

∗
A|H1) = E(Loss|H1)

= c Pr[n > min(n∗
0,n

∗
A)|H1]

+ c
{

Pr[n∗
0 < n < n∗

A|H1] + Pr[n∗
A < n < n∗

0|H1]
}

We want to find thresholds that minimize Risk.
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Bayes Risk: Averaging Over the Truth

Bayes Risk(n∗
0,n

∗
A|π) = (1−π) Risk(n∗

0,n
∗
A|H0)+π Risk(n∗

0,n
∗
A|HA)

Here π is the prior probability of HA.
Bayes Risk in minimized either when

C =
(1− π)f0(n∗

0) + πfA(n∗
0)

2(1− π)f0(n∗
0) + πfA(n∗

0)
=

(1− π)f0(n∗
A) + πfA(n∗

A)

2(1− π)f0(n∗
A) + πfA(n∗

A)

or at a point Bayes Risk is not differentiable: n∗
0 = n∗

A
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Back to Basics

We minimize the Bayes Risk, by setting n∗0 = n∗A.

H0 HA

exclusion discovery

n
0

*
= n

A

*

1 This corresponds to the standard hypothesis setting.
2 The optimal value of n∗

0 = n∗
A is determined by C and c.
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But.... with more complicated Losses...

The situation may be different with more complicated loss.

E.g., the losses associated with false exclusion, either, and
neither may be different for H0 and/or HA.

The “Loss” Function:

Decision
Truth H0 HA either neither
H0 0 C c c
HA c 0 c c
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Understanding the Result

H0 HA

exclusion either discovery

n
0

*
n

A

*

Holding n∗
0 fixed, increasing n∗

A decreases the expected loss.
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Empirical Results

Consider a Normal Model:
Under H0: n ∼ N(0,1)
Under HA: n ∼ N(5,1)

1 We reject H0 if n > n∗
0.

2 We reject HA if n < n∗
A.

Bayes Risk is computed with
π = 0.25 and
C = 0.95.
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Frequency Properties

Hypothesis Testing
Decision theoretic tests do not aim at control the
probability of Type I error.
Instead they aim to control the overall expected loss.
C � c → Type I errors far less frequent that Type II errors.

Intervals can be constructed by inverting a test
Set of values of λ0 such that we cannot reject H0 : λS = λ0.
Pr(Type I error) ≤ α→ coverage ≥ 1− α.
If we don’t control Type I error, coverage may fluxuate.
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A Better Strategy

Derive Loss functions that quantify desired properties of
interval and limits.

Intervals: Loss = b × length(interval)− Iinterval(θ).
Limits: Loss = b × limit− I{θ < limit}.

Compute Risk & Bayes Risk and minimize over interval or limit.

These are just examples. Some high-energy physicists
find intervals that are too short undesirable.
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Summary

Parting Words
Focus on model diagnostics and model improvement.
View prior distributions as a way to illuminate assumptions,
not as a source of assumptions.
Focus on ultimate scientific goals, not superficial properties
of procedures.
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