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Automate, Formulate, and Evaluate

Three Goals for Low-Count Image Analysis

Automate: We would like to automate

1. model fitting to avoid subjective stopping rules used to control

reconstruction quality, and

2. the search for structure to avoid choosing smoothing parameters to

enhance supposed structure in the reconstruction.

Formulate: We would like to formulate low-count image analysis in the terms

of well understood statistical theory in order to better understand the

characteristics and properties of image analysis methods and results.

Evaluate: We would like to evaluate

1. the statistical error in the fitted reconstruction under the assumed model,

2. the likelihood that supposed or proposed structures exist in the

astronomical source, and

3. the plausibility of the model assumptions.
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A Statistical Model for the Data Generation Process

with PSF and
 Exposure Map

Observed Data

Other Source
 Components??

Point Sources

Smooth Extended
 Source

Total Source Model

Smooth Extended Source

• Requires a flexible non-parametric

model, e.g., MRF or Multi-Scale

“Point” Sources

• Model the location, intensity, and

perhaps extent and shape.
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Bayesian Deconvolution

Blurring Matrix
* known from 
   calibration

Expected
Photon 
Count

Source 
Model

   

  

Stochastic 
Censoring
* known from 
   calibration

Background 
Contamination
* often fit using
   background 
   observation

Non−Homogeneous

• The counts are modeled as indep. Poisson variables with means given by λ.

• µ may be the sum of several components.

• We focus on idealized counts from one of these components:

Zi ∼ Poisson(µi)
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A Smoothing Muliscale Prior for an Extended Source

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

z·· −→

z1· z2·

z3· z4·

−→

z11 z12 z21 z22

z13 z14 z23 z24

z31 z32 z41 z42

z33 z34 z43 z44

z
··
∼ Poisson(µ) z,·|z··

∼ Multinomial(p
1
) zi,|zi· ∼ Multinomial(p

2i)

µ ∼ Gamma{(α0, β1)} p
1
∼ Dirich.{(α1, α1, α1, α1)} p

2i ∼ Dirich.{(α2, α2, α2, α2)}

• We use a multi-level model to fit the smoothing parameter α.

• Cycle-Spinning eliminates the effect of the choice of coordinates.

Wavelet like model in a fully Bayesian analysis.
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A Smoothing Markov Random Field Prior Distribution
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µ
53

µ
54
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log(µ43) ∼ N
(

mean of log neighbors, smoothing parameter
)

Explicitly quantifies smoothness of the image.
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The Advantages of A Model-Based Statistical Formulation

1. The use of well defined statistical estimates such as ML estimates, MAP

estimates, or posterior means, eliminates the need for ad-hoc stopping rules

(Esch et al., ApJ, 2004).

2. Statistical theory lends insight into the computation of statistical errors with

Bayesian and/or frequency properties (Esch et al., ApJ, 2004).

3. Allow us incorporate knowledge from other data sources (Slides 8 - 12).

4. Principled methods for comparing and/or evaluating models (Alanna

Connors’s talk).

5. Quantify evidence for supposed structure under flexible model (Slides 13 &

14).
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Incorporating Outside Information

Outside information can be critical with low-count data. Lucky, such information

is often forthcoming in the form of high-count high-resolution data from a

different energy band (e.g., Optical or Radio).

Incorporating Information Through Model Components

Setting Model Parameters

• The number of and location of point sources.

• Smoothing parameters for extended source. I’ll focus on this.

• A characterization of how smoothing parameters vary across source.

Incorporating Information Through Bayesian Prior Distributions

A More Flexible Approach

• Include a region where a point source is likely to exist.

• Encourage parameters to be similar to those obtained from better data.
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Example: Cygnus Region Simulation
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• The image on the left is based on a theoretical model of the Galactic Diffuse

Emission along with several point sources.

• The image on the right is from a Glast simulator under this model.
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Varying the MRF Smoothing Parameter Across an Image
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• Let Υ be the log of the high quality image and ωij = κ/(Υi − Υj).

• We use the MRF prior on υ = log(µ)

υi ∼ N

(
∑

j∈J (i) ωijυj
∑

j∈J (i) ωij

,
1

∑

j∈J (i) ωij

)
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Results: Smoother at the Poles
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Specifying Prior with High−Quality Data

• We under smooth to highlight effect.

• Similar smoothness near the poles.

• MRF alone is much smoother near the center.
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Results: A Closer Look
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• Notice thie similar smoothness in the first two plots.

• But the MRF is much smoother in the second two plots.
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Looking for Structure

Once we have settled on a model, we can use statistical tools to

investigate structure in the image.

Is the apparent local maximum in R1 real? Is the P1 brighter than P2?
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Some Posterior Probabilities

Monte Carlo Evaluation of Some Posterior Probabilities.
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Challenges

Model Identifiability

• Point source vs. glob in extended source

• Requires outside information for smoothing parameters

Prior Specification

• Results can depend on choices

• Requires external evaluation of prior and/or results

Statistical Computation

• Subtle methods are required

• Expensive in CPU time

Complex scientific questions require sophisticated statistical solutions

Model-based methods offer much promise,

But many challenges remain.
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Comparing/Evaluating Models I

Alanna’s Question: Does one model component suffice, or are two necessary?

The difficult task of fitting the number of components in a finite mixture model.

with PSF and
 Exposure Map

Observed Data

Other Source
 Components??

Point Sources

Smooth Extended
 Source

Total Source Model

Some Statistical Strategies

Confidence Intervals: Fit the full

model, and, compute confidence in-

tervals, e.g., for the total expected

count from second component.

Residuals: Fit the smaller model, and,

compute residuals around the fitted

reconstruction along with their pre-

diction intervals. Is there evidence

that the residuals are too big or vary

in an unexpected systematic way?

Significance Tests: Likelihood ratio

and other tests can be used to com-

pare one and two component mod-

els. Although the standard χ2 dis-

tribution is not appropriate, the test

can be calibrated using Monte Carlo

(e.g., Protassov et al., 2002).
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Comparing/Evaluating Models II

Using a Bayesian prior distribution to formulate a frequentist significance test.

A procedure:

1. Construct a prior distribution

that favors a null hypothesis

H0: object is a point source

2. Compute the posterior distribu-

tion and evaluate the propensity

of the alternative hypothesis

HA: object is an extended source

3. Using a test statistic, prior pa-

rameters can be used to set the

level (and power) of the test.

data

and

PSF

result w/

prior I

prior II

Simulation Results
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