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of t = logP(x(t)) is given by

. X s
logP) =) —=1—n) xjx;—1 . (12.9)
(log P) ;xi FZI %)

For n = 2 and n = 3, this function is positive and vanishes only at m.

Exercise 12.1.1 Show that for n = 4, the function P /P is still nonnegative,
and vanishes on the set {x € S; : x1 + x3 = x2 + x4}, which contains only
one invariant set, consisting of m only.

The following theorem is an immediate consequence.

Theorem 12.1.2 For short hypercycles (i.e. n = 2,3,4) the inner rest point is
globally stable.

For n > 5, however, the interior rest point is unstable, and one is left
with the question whether a permanent coexistence of the different types
of polynucleotides is possible. This question will be addressed in the next
section.

Exercise 12.1.3 An alternative way of proving the global stability of m
for n = 3 would be to use other Lyapunov functions than (12.8). Try e.g

X+ x, 7+ x5
Exercise 12.1.4 Write down a global Lyapunov function for (12.1) if n < 4.

Exercise 12.1.5 Consider the hypercycle equation (12.1) with n = 3. For
which values of k; is the unique interior rest point evolutionarily stable?
Show that for n = 4, the interior rest point (which, as we know, is globally
stable) is never an ESS.

12.2 Permanence

As we have just seen, hypercycles do not reach a stable rest point for
n > 5. They may nevertheless serve their purpose, which is to allow the
coexistence of several types of self-reproducing macromoiecules: whether
the concentrations converge or oscillate in a regular or irregular way is of
secondary importance. The main thing is that they do not vanish: more
precisely, that there exists a threshold value & > 0 such that every solution of
(12.6) in int S, satisfies x;(t) > & for i = 1,...,n whenever ¢t is large enough.
This implies that if initially all species are present, even if only in very
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small quantities, then after some time some sizeable amount of each will be
present. No perturbation which is smaller than é could wipe out a molecular
species.

This property, which is important in many other contexts, deserves a name.
A dynamical system defined on S, is said to be permanent if there exists a
0 > 0 such that x;(0) > 0 for i = 1,...,n implies

liminf x;(t) > & (12.10)
=40

fori=1,...,n

Let us stress that & does not depend on the initial values x;(0). Permanence
means more than just that no component will vanish. If every state is a
rest point, for example, the system is not permanent. Even if initially the
concentrations were abundant, a sequence of tiny perturbations could lead
to the extinction of a species. For a permanent system, on the other hand,
perturbations which are sufficiently small and rare cannot lead to extinction.
The boundary of the state space S, acts as a repellor.

The proof that the hypercycle is permanent is not obvious. We shall start
with a more general theorem giving conditions for permanence which will
also be useful in many other situations.

Theorem 12.2.1 Let us consider a dynamical system on S, leaving the boundary
invariant. Let P : S, — R be a differentiable function vanishing on bd S, and
strictly positive in intS,. If there exists a continuous function ¥ on S, such
that the following two conditions hold:

. b(x)
for x €int Sy, Pix) Y(x) (12.11)
T
for x € bd §,, /‘P(x(t))dt > 0 for some T >0, (12.12)
0

then the dynamical system is permanent.

The value P(x) measures the distance from x to the boundary. If one had
¥ > 0 on bd S, — a condition implying (12.12) — then P(x) > 0 for any
X € int S, near the boundary, and so P would increase, 1.e. the orbit would
be repelled from bd S,,. In that case, P would act like a Lyapunov function.
Quite often, however, one cannot find a function P of this type. The weaker
version defined above is said to be an average Lyapunov function: its time
average acts like a Lyapunov function.
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Proof The T > 0in (12.12) can obviously be chosen as a locally continuous
function T(x). Its infimum 7 is positive, since bd S, is compact. For h > 0,
we define

T
Uy, = {x € S, : thereis a T > 1 such that %/‘P(x(t))dt > h} :
0

For x € Uy we set

T
Ty(x) = inf {T > T %/‘P(x(t))dt > h} .
0

We show first that Uy, is open and T}, upper semicontinuous: in other words,
if x € Up and a > 0 are given, then for y € S, sufficiently close to x, one has

ye Uy, and Tp(y) < Th(x)+a. (12.13)

Indeed, for « and x there is a T € [1, Th(x) + «[ such that
: T
g = T/‘P(x(t))dt—h>0.
0

Since the solutions of ordinary differential equations depend continuously on
the initial values, x(¢) and y(t) are near each other, forallt € [0, T], if x and y
are sufficiently close. The uniform continuity of ¥ implies |W(x(t))—¥(y(?))| <
¢ for all times t € [0, T'], and hence

T T
% Of W(y(0)dt > % 0] W(x())dt — ¢ = h

from which (12.13) follows.

By (12.12) the family of nested sets Up (with h > 0) is an open covering of
the compact set bd S,. There exists one h > 0, then, such that U}, is an open
neighbourhood of bd S, (in S,). Since S,\Uj is also compact, P attains its
minimum on this set. If we choose p > 0 smaller than this minimum, then
the set

I(p)={x€S,:0<P(x) <p}
is contained in Up. I(p) is a ‘boundary layer’ which is very thin if p is small.

We shall show that if x € I(p), then there exists a ¢ > 0 such that x(¢) & I(p).
Indeed, otherwise x(t) would have to be in Uy for all ¢t > 0. In this case,
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there exists a T > t such that
T4t

% / Y(x(s))ds > h .

But since ¥ = (log P)" holds in int S,, this implies

T+t
h < % '/(logP)’(x(s))ds = %[logP(x(T +t)) — log P(x(1))] ,

that is,
P(x(T + 1)) > P(x(2))e"T = P(x(1))e" .

Hence there would exist a sequence ¢, for which P(x(t,)) tends to +oo, in
contradiction to the boundedness of P.

Let us denote by I(p) the union of I(p) with bd S,. All that remains to be
shown is that there exists a g € 10, p[ such that x(0) ¢ I(p) implies x(¢) & I(q)
for all t > 0.

The upper semicontinuous function T, admits an upper bound T on the

compact set I(p). Let tg be the first time when x(t) reaches I(p), i.e.
to = min {t > 0 : x(t) € I(p)},

and let x(t9) = y. Obviously P(y) = p. Let m be the minimum of ¥ on
Sp. For m > 0, all is clear, since P never decreases. In case m < 0 we set
q=pe". Fortc]0,T],

1!Tmmm2m

and hence, just as above

P(y(1)) = P(y)e™ > pe™ =gq..

Hence the solution does not reach I(q) for t € |0, T|. Furthermore, since
y € I(p), there is a time T € [1, T[ such that

P(y(T)=pe™>p.

At time ¢t + T, thus, the orbit of x has left I(p) without having reached I(q).
Repeating this argument, one sees that the orbit can never reach I(g). O

Theorem 12.2.2 It is sufficient to verify (12.12) for all x in the w-limits of
orbits on the boundary of S.
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Proof There exists, as before, an h > 0 such that U is an open neighbour-
hood of w(x) (in S,) for all x € bd S,.. Since x(t) converges to w(x), there is
a t1 such that x(¢) € Uy, for all £ > t;. There is a t» > t; + 7 such that

1
Ir—h

/ W(x(0)dt > k
3]

similarly a t3 > t3 + 7 such that

1
I3 —12

[ W(x(0)dt > h,

etc. We obtain a sequence ti, ¢y, t3,... satisfying

1
ty — 11

/ W(x(t)dt > h .

If k is sufficiently large, the time average

1 f
. 0/ W(x(2))dt

is close to the previous expression and hence positive. O

Exercise 12.2.3 Show that theorems 12.2.1 and 12.2.2 are vahd if ¥ is
only assumed to be lower semicontinuous. This can always be achieved by
defining, for x € bd §,,,

p
— liminf -
¥(x) l“yn_blxl p)

where y belongs to int S,,.

12.3 The permanence of the hypercycle

Theorem 12.3.1 The hypercycle (12.1) is permanent.

Proof We shall use theorem 12.2.1. As the average Lyapunov function
P(x) we choose the product x;x;...x, which has already stood us in good
stead in section 12.1. We have P = P¥ with ¥ = Y k;x;_; — nf, where
f =Y k;x;x;_1. In order to show that P is an average Lyapunov function,
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it remains to verify condition (12.12). Thus we have to show that for every
X € bd §,, there exists a T > 0 such that

T n
1 / S (kixi 1 — nf)dt > 0 (12.14)
T 0 i=1
i.e. such that
i 7 1/
= Of fox(oyde < Of S kixiydt . (12.13)

Since k := mink; > 0 and Y kix;—1 = k for all x € S, the right hand side of
(12.15) is not smaller than k/n. It is enough, therefore, to show that there is
no x € bd S, such that for all T > 0

(12.16)

=|?~“

T
1
— (x(t))dt =
T !

Let us proceed indirectly and assume that there is such an x € §,. We shall
show by induction that
tginoo xi(t) =0 (12.17)
for i =1,...,n. Since x € bd S, there exists an index iy such that x; (t) = 0.
Now if x;(t) converges to 0, then so does x;,1; indeed, if x;41(¢) > 0, one
obtains from
L Xy _
(logxiy1) = =5 =kiaxi— f
Xit+1

by integrating from O to T and dividing by T

| =

T
log x;4+1(T) — log x;11(0
0

1

T
T Kiy1x:(t)dt — / x(t))dt .
0

I
°\-a

From x;(t) — 0 it follows that

T
1 k
T!ki+1xi(t)dt <2
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for all sufficiently large T. Together with (12.16) this implies

kT
log xi41(T) — log x;41(0) < T,
n
or
kT
x,'+1(T) < xH_](O) €Xp (—'E) . (1218)

Hence x;41(t) — 0 and (12.17) must hold. This contradicts the relation
y.x; = 1. Hence P is an average Lyapunov function and (12.1) is permanent.
O

Let us mention that the same proof shows that the considerably more
general equation obtained by replacing the constants k; > 0 in (12.1) by pos-
itive functions Fj(x) is also permanent. Such equations describe the reaction
kinetics for more realistic hypercycle models.

Exercise 12.3.2 Analyse the discrete time dynamics (7.23) for the hypercycle.
Prove permanence for C > 0. Analyse the local stability for the interior fixed
point p. Prove that p is globally stable if n < 3 and C > 0. Analyse the
asymptotic behaviour for C = 0.

12.4 The competition of disjoint hypercycles

Let us assume now that the ‘primordial soup’ contains n types of RNA
molecules organized into several disjoint hypercycles. This can be described
by a permutation n of the set {1,...,n}. Every permutation can be decom-
posed into elementary cycles I'y,...Ts: these correspond to hypercycles. The
dynamics is given by

Xi = X; (k,-x,t(,-) — Z ijjxn(j)) (12.19)

withk; >0 fori=1,...,n

If © consists of a unique cycle, we obtain — up to a reordering of the

indices — the familiar hypercycle equation (12.1). If the elementary cycle

I'; consists of a unique element i (a fixed point of the permutation =), then

M; is an autocatalytic molecular type. As in section 12.1 we may perform a
transformation

k()X
Yi= &=
225 Katiy X

(with © = n~!) and get rid of the k;. Again there is a unique rest point in
int Sy, namely the centre m = 11.

(12.20)
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with respect to U (or with respect to intS,), which is (—1)"~!. For (13.6)
this implies that the interior fixed point exists and is unique and therefore
regular. Hence its index is (—1)""1. O

Exercise 13.4.9 Prove a similar result for robustly persistent systems (13.2)
with uniformly bounded orbits.

13.5 Necessary conditions for permanence

Theorem 13.5.1 If (13.6) or (13.7) is permanent, then there exists a unique
interior rest point X and, for each x in the interior of the state space,

T
1 )
Jim f x(t)dt = %.
0

Proof Theorem 13.3.1 implies that there exists at least one interior rest
point. If there were two of them, the line | joining them would consist only
of rest points, and intersect the boundary of the state space. But since the
boundary is a repellor, there cannot be fixed points arbitrarily close by, The
convergence of the time averages, finally, follows from theorems 5.2.3 and
7.6.4, and the fact that by permanence, if x is in the interior of the state
space, then so is w(x). O

Theorem 13.5.2 Let (13.7) be permanent and denote the Jacobian at the unique
interior rest point X by D. Then

(—1)"detD > 0 , (13.19)
trD < 0 , (13.20)
(—1)"detA > 0 . (13.21)

Proof The conditions on the signs of the determinants are simple conse-
quences of the index theorem 13.3.1. Indeed, since X is the unique solution
of —r = Ax, the matrix A is nonsingular. Also, theorem 13.3.1 implies that
i(X) = (—1)". Now

dij = X;ai; (13.22)
and so D is also nonsingular. Thus i(X) is just the sign of detD. This

establishes (13.19) and via (13.22) also (13.21).
In order to prove the trace condition (13.20), we shall have to use the
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such that ¢ -y is positive for all y € K. (Here, x-y = }_ x;y; is the usual inner
product in R",) Setting

V(x)= Z c;log x; , (5.3)

we see that V is defined on intR%}. If x(t) is a solution of (5.1) in intR%}, then
the time derivative of t — V(x(t)) satisfies

V=Zci%=2c,-y,-=c-y>0. (5.4)

Thus V is increasing along each orbit. But then no point z € int R}, may
belong to its w-limit: indeed, by Lyapunov’s theorem 2.6.1, the derivative V
would have to vanish there. This contradiction completes the proof. O

As a consequence, we see that if (5.1) admits no interior rest point, then it
is gradient-like in IntRY} .

In general, (5.2) will admit at most one solution in intR”. It is only in the
degenerate case det 4 = ( that (5.2) can have more than one solution: these
will form a continuum of rest points.

Exercise 5.2.2 Construct an invariant of motion in the case of a continuum
of fixed points. (Hint: try (5.3) for suitable c.)

If there exists a unique interior rest point p, and if the solution x(t)
converges neither to the boundary nor to infinity, then its time average
converges to p.

Theorem 5.2.3 If there exist positive constants a and A such that a < xi{(t) < A
for all i and all t > 0, and p is the unique rest point in intR", then
T

fim %/xi(t)dt = p; i=1,...,n. (5.5)

T—ow
0

Proof Let us write (5.1) in the form
(log x,-)' =1+ Z aijXj (5.6)
J

and integrate it from O to T. After division by T, we obtain

1 i T —1 i
og x;( )T og x:(0) =7+ Y ayz)(T) (5.7)
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where
1 T
7(T) = = / x;(t)dt . (5.8)
0

Clearly a < zj(T) < A for all j and all T > 0. Now constder any sequence
Ty converging to +co0. The bounded sequence z;(Tyx) admits a convergent
subsequence. By diagonalization we obtain a subsequence — which we are
going to denote by T} again — such that z;( T;) converges for every j towards
some limit which we shall denote by z;. The sequences log x;(Tk) — log xi(0)
are also bounded. Passage to the limit in (5.7) thus leads to

0= r; +Zaijfj .
The point Z = (Zy,..., Z,) is therefore a rest point. Since Z; > a > 0, it belongs
to int R} . Hence it coincides with p. This implies (5.5). O

Exercise 5.2.4 Give another proof of theorem 5.2.1, using a similar time-
average argument. (This will work at least in the generic case.)

Exercise 5.2.5 Show that a similar averaging principle holds for the difference
equation x — x’' with

x; = x;exp(r; + Z aijX;).
J

Exercise 5.2.6 What happens with theorem 5.2.3 if the assumption concerning
the uniqueness of the rest point is dropped?

5.3 The Lotka—Volterra equations for food chains

Let us investigate food chains with n members (chains with up to six members
are found in nature). The first population is the prey for the second, which
is the prey for the third, and so on up to the n-th, which is at the top of
the food pyramid. Taking competition within each species into account, and
assuming constant interaction terms, we obtain

X1 = x1(r1 — a1 xy — a12x2)
5Cj = xj(—rj + ajj—1Xj~1 — AjjXj — aj,j+1xj+1) ] = 2,...,n —1 (5.9)
Xp = xn(—'rn + anpn—1Xn-1 — annxn)

with all rj,a;; > 0. The case n = 2 is just (2.15). We shall presently see that
the general case leads to nothing new:
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Exercise 7.6.2 Prove this exclusion principle directly: (a) show that there
exists a ¢ € R" such that ¢z > c'y for all z € W and all y € D, where
W = A@ntS,) and D = {y € R" : yy = -+ = y,} (W and D are convex);
(b) show that " ¢; = 0; (c) show that V(x) =} ¢;log x; is strictly increasing
along the orbits in int S,,.

Exercise 7.6.3 Show that the game with payoff matrix A admits a Nash
equilibrium in intS, if and only if there is no strategy u dominating a
strategy v in the sense that u-4x > v-Ax for all x € int §,,. (Hint: the vector
¢ from the previous exercise can be written as the difference u — v of two
strategies.)

Theorem 7.6.4 If (7.3) admits a unique rest point p in int S, and if the w-limit
of the orbit of x(t) is in int Sy, then

T
lim%/xi(t}dt=pi i=1...n. (7.31)

[—oC
0

This does not follow immediately from the corresponding theorem 5.2.3
for Lotka—Volterra equations, since a coordinate transformation or a change
in velocity could affect the time average. Hence, we have the following:

Exercise 7.6.5 Prove the previous theorem. (Hint: proceed along the same
hnes as in the Lotka—Volterra case.)

Exercise 7.6.6 Show that the solutions of the discrete time version

e(Ax)i

e e (7.32)

Xi — X;

also have this averaging property.

7.7 The rock—scissors—paper game

We shall now analyse the general rock—scissors—paper game, which is char-
acterized by having three pure strategies such that R, is beaten by R, which
is beaten by Ri, which is beaten by R;. Since we can normalize the payoff
matrix such that the diagonal terms are 0, we obtain

0 —a by
A=| b 0 —a (7.33)
—dy bz 0



