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We discuss a rather new phenomenon in chaotic dynamics connected with the fact that
some three-dimensional diffeomorphisms can possess wild Lorenz-type strange attractors. These
attractors persist for open domains in the parameter space. In particular, we report on the
existence of such domains for a three-dimensional Hénon map (a simple quadratic map with
a constant Jacobian which occurs in a natural way in unfoldings of several types of homo-
clinic bifurcations). Among other observations, we have evidence that there are different types
of Lorenz-like attractor domains in the parameter space of the 3D Hénon map. In all cases
the maximal Lyapunov exponent, Λ1, is positive. Concerning the next Lyapunov exponent, Λ2,
there are open domains where it is definitely positive, others where it is definitely negative and,
finally, domains where it cannot be distinguished numerically from zero (i.e. |Λ2| < ρ, where ρ is
some tolerance ranging between 10−5 and 10−6). Furthermore, several other types of interesting
attractors have been found in this family of 3D Hénon maps.

Keywords : Strange attractor; bifurcation; Lorenz attractor; Lyapunov exponent.

1. Introduction

Lorenz attractor plays a very special role in dynam-
ical systems. The reason is that it is a genuine
strange attractor, while most other attractors seen
in various models with chaotic behavior are not.
Indeed, it is well-known that even though the

observed trajectory behavior may look quite chaotic
for some parameter values, it happens very often
that small changes in the parameters of the sys-
tem change the behavior to a periodic one. One
speaks about stability windows in this case, and the
observed number of stability windows in the
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parameter space has a tendency to grow with
the increase of the accuracy of measurements/
simulations. It is true, however, that some of the
windows can be very tiny and the total relative mea-
sure can be relatively small in some domains, but it
can happen (as in the case of the logistic map) that
the set of windows is dense. For given values of the
parameters, it can be a very difficult task to decide
if the ω-limit set contains a strange attractor.

Attractors either containing stable periodic
orbits of long periods, or acquiring such orbits by a
small perturbation of the system, were called quasi-
attractors in [Afraimovich & Shilnikov, 1983b]. It
is, in fact, one of the most challenging problems in
dynamics: most types of chaotic attractors we see
in applications are definitely quasi-attractors, and
it is absolutely unclear in which exact sense they are
chaotic, or how to define and measure the “proba-
bility” for a quasi-attractor to be chaotic.

Lorenz attractor is free of these problems. It
contains no stable periodic orbits, every orbit in
it has positive maximal Lyapunov exponent, and
these properties are robust with respect to changes
in the parameters of the system [Afraimovich et al.,
1977, 1983; Guckenheimer & Williams, 1979]. The
reason for that is Lorenz attractor possesses a
pseudo-hyperbolic structure in terms of Turaev and
Shilnikov [1998] which means two things:

(i) there is a direction in which the flow is strongly
contracting (“strongly” means that any pos-
sible contraction in transverse directions is
always strictly weaker), and

(ii) transverse to this direction the flow expands
areas.

The expansion of areas immediately implies the pos-
itiveness of the maximal Lyapunov exponent for
every orbit in the attractor, so the robustness of the
pseudo-hyperbolicity property ensures the robust-
ness of the chaotic behavior of orbits in the Lorenz
attractor (although this attractor is not structurally
stable [Guckenheimer, 1976; Afraimovich et al.,
1983]).

The pseudo-hyperbolicity is a weaker version
of uniform hyperbolicity. In fact, it occurs to be
weak enough to allow pseudo-hyperbolic attrac-
tors, like the Lorenz one, to exist in simple models
of natural origin (contrary to hyperbolic attrac-
tors which, so far, have been relevant for specially
prepared examples only). One of the reasons why
Lorenz-like attractors are guaranteed to be present
in models from natural applications is that systems

which are known to possess the Lorenz attrac-
tor (Lorenz model [Lorenz, 1963], Shimizu–Morioka
model [Shimizu & Morioka, 1980]) occur to be
asymptotic normal forms for bifurcations of equilib-
rium states of a certain class [Shilnikov et al., 1993;
Pisarevsky et al., 1998]. Namely, let a stable equi-
librium lose its stability in such a way that three of
its characteristic exponents vanish simultaneously.
The fact that the triple instability of equilibria
can lead to chaos has been known since [Arneodo
et al., 1985a, 1985b]. According to Shilnikov et al.
[1993], in presence of certain discrete symmetries
the behavior of the system passing through the
triple instability is, looking at the dominant terms,
described by one of the two models mentioned
above. This implies that a small Lorenz attractor
is indeed born when such equilibrium bifurcates.

It was also shown in [Shilnikov et al., 1993]
that a similar phenomenon occurs at certain bifur-
cations of periodic orbits. Namely, an asymptotic
normal form for the bifurcations of a periodic
orbit having the triplet of multipliers (−1,−1, 1) is,
under some conditions, the Shimizu–Morioka model
with an exponentially small periodic forcing. There-
fore, such bifurcation can also produce Lorenz-like
attractors. Moreover, the presence of forcing (whose
amplitude grows as we move away from the bifur-
cation point) changes the nature of the attrac-
tor. While it keeps a pseudo-hyperbolicity property,
hence being a real strange attractor (see more expla-
nations below), it no longer contains equilibrium
states, contrary to the original Lorenz attractor.

Clearly, we have the same picture when we
consider bifurcations of periodic orbits in discrete
dynamical systems: in maps of dimension three (and
more), bifurcations of periodic points with multipli-
ers (−1,−1, 1) can lead to Lorenz-like attractors. In
this paper, we investigate this effect on the example
of the following quadratic map:

HB,M1,M2 : (x, y, z) �→ (x, y, z),
x = y, y = z, z = M1 + Bx + M2y − z2,

(1)

where (x, y, z) ∈ R
3 and (M1,M2, B) ∈ R

3 are
parameters. It is one of the possible generalizations
of the famous two-dimensional Hénon map: map (1)
is quadratic and it has constant Jacobian J ≡ B.
Therefore, we can call it the “3D Hénon map”.

A numerically obtained 3D picture of itera-
tions of a single point by (1) for M1 = 0,M2 =
0.85, B = 0.7 is shown in Fig. 1(a). The resemblance
to the traditional picture of the Lorenz attractor
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3D Hénon Maps and Lorenz Attractors 3495

(a) (b)

Fig. 1. Plots of attractors observed numerically for M1 = 0, B = 0.7 and (a) M2 = 0.85 or (b) M2 = 0.815. The projections
on the (x, y) variables (in green) and slices near planes of constant z (in blue) are also displayed.

is astonishing. Recall that this is a discrete trajec-
tory of just one point. Still it mimics very well a
motion along a continuous trajectory of the classi-
cal Lorenz attractor. In the figure, the projection on
the x, y variables is also shown, as well as “slices”
of the attractor to grasp its shape. The slices have
half width 10−5 around planes with values of z from
−0.1 to 0.8 with step 0.1. The right part contains
a similar picture for M1 = 0, M2 = 0.815, B = 0.7,
where one can better observe the role of the unsta-
ble manifold of the fixed point. Note that the attrac-
tor in the latter figure is very similar to the Lorenz
attractor with a lacuna from Shimizu–Morioka sys-
tem [Shilnikov, 1986, 1993].

In fact, there is an interesting quantitative
aspect in the similarity between the behavior of
discrete trajectories of map (1) and continuous
trajectories of the Lorenz attractor. Indeed, we
observe that the numerically computed spectrum
of Lyapunov exponents of the Lorenz-like attractors
of the 3D Hénon map under consideration, beyond
a maximal exponent Λ1 which is positive, contains
a second exponent, Λ2, which is close to zero, as
one can expect because the orbits of the map follow
orbits of a continuous flow. This exponent seems to
be definitely positive, say 10−3, or definitely neg-
ative, say −10−3, for open sets of parameter val-
ues, while in other open sets (the red regions in
Figs. 5 and 6) it cannot be distinguished numeri-
cally from zero (the observed value of Λ2 oscillates
near zero within the range, say, 10−6, and its sign
does not stabilize with the increase of the length of
the trajectory). However, the attractors observed

for nearby values of the parameters look visually
quite similar, independently of the sign of Λ2. A
standing problem is to clarify the source of these
small differences in values and sign of Λ2 and the
details of the geometry of the attractors which give
rise to them. For more discussion see Sec. 3.1.

We remark that domains in the parameter
space where two Lyapunov exponents are definitely
positive (like in the present blue regions) occur in a
quite different context: perturbations of a 2D Hénon
map driven by the Arnold map of the circle, for
values of the parameters of the latter map cor-
responding to quasi-periodic dynamics, see [Broer
et al., 2005]. While in the skew-product case (the
2D Hénon map driven by Arnold map) the domi-
nant Lyapunov exponent is positive and second one
is obviously zero, in the fully coupled case the sec-
ond Lyapunov exponent can be either definitively
positive or negative (in domains of the parameter
space which do not seem to mix) despite remaining
close to zero. This is in striking contrast with the
behavior of present 3D Hénon model.

The importance of the 3D Hénon map goes
beyond the circle of problems related to Lorenz
attractors. First of all, at B = 0, this map has
an invariant two-dimensional surface z = M1 +
M2x − y2 (every point jumps into this surface
after just one iteration for B = 0). On this sur-
face the map is indeed the two-dimensional Hénon
map with Jacobian −M2. When M2 �= 0, every
compact piece of this surface is strongly exponen-
tially attracting (normally hyperbolic in terms of
Fenichel [1971]) for all sufficiently small B. The

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

5.
15

:3
49

3-
35

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
E

T
SW

IS
E

 o
n 

11
/1

4/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 4, 2006 13:56 01418

3496 S. V. Gonchenko et al.

(a) (b)

Fig. 2. (a) An attractor similar to attractors found for the 2D Hénon map for M1 = 1.4, M2 = 0.2, B = 0.1. The projections
on the (x, y) and on the (x, z) variables are also shown. (b) An attractor for M1 = 1.77, M2 = −0.925, B = −0.95 is displayed,
as well as the projection on the (x, y) plane. Fixed point P1 and periodic points Q1, Q2 are also shown, together with their
projections. Slices (in blue) give an idea of the shape. Furthermore 100 iterates of some initial point under H4

B,M1,M2
are

shown in black. See Sec. 3 for more information on this attractor.

normal hyperbolicity implies that map (1) continues
to have a two-dimensional attracting invariant man-
ifold for small B, and the dynamics on it is quite
close to the one seen in the 2D Hénon map [see
Fig. 2(a)]. As B grows, this picture is destroyed,
so our 3D Hénon map can serve as a paradigm
for the study of the unfolding of two-dimensional
maps to maps of higher dimension. In Fig. 2(b) an
attractor for B = −0.95 is displayed. See Sec. 1
for information about fixed and periodic points
and Sec. 3 for further comments on those kind of
attractors.

Another important issue is that the 3D Hénon
map is the limit of a rescaled first return map near a
homoclinic tangency to a saddle-focus periodic orbit
in the case of codimension 2, which corresponds
to the boundary between volume-contracting and
volume-expanding maps [Gonchenko et al., 2006].
It means that every dynamical phenomenon typ-
ical for the 3D Hénon map can be encountered at
the bifurcations of any such tangency. Hence, every-
thing we can learn about the dynamics of the 3D
Hénon map is relevant for the general problem of
the behavior of attractors of three-dimensional non-
hyperbolic maps without the volume-contracting
property.

One more possible 3D generalization of the 2D
Hénon map is written as

(x, y, z) �→ (x, y, z),
z = y, y = x, x = M1 + M2x + Bz + By2.

(2)

This map is the inverse of the map
HB−1,−BM1,−BM2

[see (1)], so its attractors are
repellers of map (1), and, as a preliminary study
shows, they are quite different from the attractors
of map (1). Map (2), although not considered in the
present paper, is equally interesting for the theory
of homoclinic bifurcations, as it is also a limit of
a rescaled first return map near certain homoclinic
tangencies [Gonchenko et al., 1993, 2003]. We plan
to consider map (2) in a forthcoming paper.

In Sec. 2 we present some key points of the
dynamics of the family (1). Then, in Sec. 3, flows
which approximate the family of diffeomorphisms
for suitable values of the parameters, are con-
structed and the arguments to prove the existence
of Lorenz-like attractors are given. Finally, Sec. 4
is devoted to illustrate, by a numerical study, that
the predicted behavior is indeed found in the fam-
ily (1), it has a rather large range of validity and
several other interesting phenomena are also found.

2. Some Elements of the Dynamics
of the 3D Hénon Map

Map (1) has, at most, two fixed points, their coor-
dinates being given by

x = y = z = x∗,

x∗ =
B + M2 − 1

2
±
√

(B + M2 − 1)2

4
+ M1.

(3)

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

5.
15

:3
49

3-
35

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
E

T
SW

IS
E

 o
n 

11
/1

4/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 4, 2006 13:56 01418
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These points are born at a saddle-node bifurcation
(that corresponds to a multiplier equal to 1) on the
surface

L+ : M1 = −(M2 + B − 1)2

4

in the parameter space. We denote the fixed points
as P1 and P2, where P1 corresponds to the sign “+”
in (3), and P2 to the sign “−”.

The surface

L−
1 : M1 =

1 − M2 + B

4
(3 − 3M2 − B), M2 ≤ 1

corresponds to the period-doubling bifurcation (a
multiplier equal to −1) of the fixed point P1; the
surface

L−
2 : M1 =

1 − M2 + B

4
(3 − 3M2 − B), M2 ≥ 1

corresponds to the period-doubling of P2. Transi-
tion across the surface L−

1 or L−
2 leads to the birth

of a period two orbit (Q1, Q2) where Q1 = (t1, t2, t1)
and Q2 = (t2, t1, t2),

t1,2 =
B − M2 + 1

2

±
√

(B − M2 + 1)(B − 3 + 3M2)
4

+ M1.

This is the only period two orbit of map (1), its
domain of existence being the region

M1 >
1 − M2 + B

4
(3 − 3M2 − B).

The surface

Lϕ : M1 = (1 − B)2
(

1 +
M2 + 1

2B

)2

− (B + M2 − 1)2

4
, |M2 + 1| < 2|B|,

corresponds to the case where the fixed point P1

(when B ≤ 1), or the fixed point P2 (when B ≥ 1)
has a pair of multipliers e±iϕ, 0 < ϕ < π with
2 cos ϕ = −(M2 + 1)/B. This bifurcation is respon-
sible for the birth of an invariant curve from the
corresponding fixed point. One can check that both
subcritical and supercritical bifurcations are pos-
sible here. The supercritical bifurcation of a stable
fixed point leads to the birth of an attracting invari-
ant curve. In fact, zones with attracting invariant
curves are present in abundance in the parameter
space. One can observe resonant phenomena and,
in the spirit of Afraimovich and Shilnikov [1974,
1983a], Broer et al. [1998], Shilnikov et al. [2004],
the breakdown of invariant curves, with the further
transition to chaos (see Fig. 4 and the correspond-
ing discussion).

It is not hard to see that the fixed point P2 is
never stable, while the stability region of the fixed
point P1 is the region bounded by the surfaces L+,
L−

1 , Lϕ and |B| = 1. Namely, for each B∗ ∈ (−1, 1),
the intersection of the stability region of P1 with
the plane B = B∗ is a curvilinear triangle bounded
by the curve Lϕ ∩ {B = B∗}, the arc of the curve
L+ ∩ {B = B∗} between M2 = −2B∗ − 1 and
M2 = 1 (at M2 = −2B − 1 the surface Lϕ adjoins
L+, and at M2 = 1 the surface L−

1 adjoins L+),
and the arc of the curve L−

1 ∩ {B = B∗} between
M2 = +2B∗ − 1 and M2 = 1 (at M2 = 2B − 1
the surface Lϕ adjoins L−). As an example, see the
bifurcation diagrams on the plane (M1,M2) for dif-
ferent values of B in Fig. 3.

When leaving the stability region across the
surface L−

1 , the point P1 becomes a saddle with a
one-dimensional unstable manifold which is divided
by P1 into two components, the separatrices (each
separatrix is the image of the other one by the map).
The separatrices tend to the points Q1 and Q2 of the
newly born stable orbit of period two. This orbit can
also undergo bifurcations: it has a pair of multipliers

-2

-1

 0

 1

-2 -1  0  1  2  3

-2

-1

 0

 1

-2 -1  0  1  2  3

-2

-1

 0

 1

-2 -1  0  1  2  3

-2

-1

 0

 1

-2 -1  0  1  2  3

Fig. 3. Bifurcation diagrams on the (M1, M2) plane for B = 0.8, 0.6, 0.4, 0.2 (from left to right). The color codes for the
curves are: L+: red; L−

1 : green; Lϕ: blue; multipliers on the unit circle of period two orbit: magenta; multiplier (−1) for the
period two orbit: yellow.
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e±iϕ on the unit circle at

M1 = −1
2

cos ϕ +
M2

2
− B2

4

+ (1 − M2 + B)(1 − M2),

cos ϕ = 1 +
(1 − M2)(2B − M2 − 1)

2B2
,

and it has a multiplier equal to (−1) at

M1 =
3
4
(B + 1 − M2)2 +

1 + M2
2

2
.

Even prior to these bifurcations, the separatri-
ces of the fixed point can detach from the period
two orbit. As shown in the next section, a Lorenz-
like strange attractor that contains the saddle fixed
point P1 and its separatrices can be formed in
this way.

3. The Birth of a Small Lorenz-like
Attractor from a Fixed Point
of the 3D Hénon Map

We will now prove that a small Lorenz-like attrac-
tor indeed exists at parameter values near (M1 =
−1/4,M2 = 1, B = 1). At these exact values, the
fixed point of the map has the following triplet of
multipliers: (1,−1,−1). As mentioned, it was shown
in [Shilnikov et al., 1993] that bifurcation of points
with such multipliers can lead to the birth of a
Lorenz-like attractor under certain conditions. We
shall show now that these conditions are indeed ful-
filled by the 3D Hénon map under consideration.

Since we are interested in attractors, we will
focus on the behavior in the parameter region which
adjoins the point (M1 = −1/4,M2 = 1, B = 1) from
the side B < 1. This guarantees the contraction of
volumes which is a necessary condition for a map
with a constant Jacobian to have attractors. We also
restrict our attention to the analysis of the behavior
in a small neighborhood of the fixed point P1.

Shifting the coordinates x → x − x∗, y →
y − x∗, z → z − x∗ where x∗ was given in (3)
brings the point P1 into the origin. The map (1)
takes the form

x = y, y = z, z = Bx + M2y − 2x∗z − z2. (4)

We introduce new parameters ε1, ε2, ε3:

ε1 = 1 − B, ε2 = 1 − M2, ε3 = 2x∗ − 1.

Using B < 1 and (3) we obtain

ε1 > 0, ε1 + ε2 + ε3 > 0.

Note also the following relation

4M1 = (ε1 + ε2 + ε3)2 − (ε1 + ε2 − 1)2

between the new parameters and M1.
Let γ be the multiplier of the zero fixed point

of map (4) which is close to 1:

γ = 1 − ε1 + ε2 + ε3

4
+ O(‖ε‖2).

Let us make the following linear coordinate trans-
formation:

v1 = −γx + y, v2 = γx + (γ − 1)y − z,

v3 = γ(1 − ε1)x + (1 − ε1 + γ(1 − ε2))y + γ2z.

Map (4) takes the following form

v1 = −v1 − v2,

v2 = −α1v1 + (−1 + α2)v2 +
(2v1 + 3v2 − v3)2

16
+ O(‖v‖3 + ‖v‖2‖ε‖),

v3 = (1 − α3)v3 − (2v1 + 3v2 − v3)2

16

+ O(‖v‖3 + ‖v‖2‖ε‖),
(5)

where

α1 = γ + ε3 − 1 − ε1

γ
=

ε1 − ε2 + ε3

2
+ O(‖ε‖2),

α2 = 1 − γ − ε3 =
ε1 + ε2 − 3ε3

4
+ O(‖ε‖2),

α3 = 1 − γ =
ε1 + ε2 + ε3

4
+ O(‖ε‖2).

Note that the linear part of (6) is in Jordan form
at ε = 0.

Some quadratic terms can be cancelled by an
additional normalizing transformation:

u1 = v1 +
4v2

1 + 4v1v2 − v2
2 + v2

3

64
,

u2 = v2 − 4v2
1 + 4v1v2 − v2

2 + v2
3

64

− 4v2
1 + 4v1v2 − v2

2 + v2
3

64
,

v3 = v3 +
v3(v2 + v1)

8
.
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The map takes then the form

u1 = −u1 − u2,

u2 = −α1u1 + (−1 + α2)u2 − (2u1 + 3u2)u3

8

+ O(‖u‖2‖ε‖ + ‖u‖3),

u3 = (1 − α3)u3 − (2u1 + 3u2)2 + u2
3

16

+ O(‖u‖2‖ε‖ + ‖u‖3).

(6)

One checks that the composition of map (6)
with the involution

σ : (u1, u2, u3) ↔ (−u1,−u2, u3) (7)

gives a map whose linear part at the origin has

Jordan form

0
@

1 1 0
0 1 0
0 0 1

1
A at ε = 0 and coincides,

up to terms of order O(‖u‖2‖ε‖ + ‖u‖3), with the
time 1 shift by the flow

u̇1 = β̂1u1 + (1 + β̂2)u2 − 1
8
u1u3 − 5

48
u2u3,

u̇2 = β1u1 − β2u2 +
1
4
u1u3 +

1
4
u2u3,

u̇3 = −β3u3 − 1
4
u2

1 −
1
2
u1u2 − 11

48
u2

2 −
1
16

u2
3,

(8)

where

β3 = −ln(1 − α3) =
ε1 + ε2 + ε3

4
+ O(‖ε‖2),(

β̂1 1 + β̂2

β1 −β2

)
= ln

(
1 1
α1 1 − α2

)
.

The latter implies

β̂1 = −ε1 − ε2 + ε3

4
+ O(‖ε‖2),

β̂2 =
7ε1 − ε2 − 5ε3

24
+ O(‖ε‖2),

β1 =
ε1 − ε2 + ε3

2
+ O(‖ε‖2),

β2 =
ε1 − ε3

2
+ O(‖ε‖2).

Let us now scale the coordinates (u1, u2, u3),
the time t, and the parameters as follows:

t =
τ

s
, u1 = 4s3/2X, u2 = 4s5/2Y,

u3 = −4s2Z, β2 = sλ, β3 = sα,

(9)

where the small scaling factor s is

s =
√

β1. (10)

We are interested in values of (α, λ) in a bounded
domain of the positive quadrant. This implies that
we consider our system in the region of parameters
ε where the value β1 is positive and of the order
O(‖β2‖2 +‖β3‖2). Since s becomes arbitrarily small
as we approach the bifurcation point ε = 0 in the
initial parameter space, it follows that the rescaled
coordinates (X,Y,Z) and new parameters λ and α
can take arbitrarily finite values.

After the scaling, the system (8) becomes O(s)-
close to the Shimizu–Morioka system

Ẋ = Y,

Ẏ = X(1 − Z) − λY, (11)
Ż = −αZ + X2,

where the dot denotes d/dτ . An extensive analysis
of this model was undertaken in [Shilnikov, 1986,
1993]. It was shown there that the system has a
Lorenz attractor for a certain open domain of posi-
tive values of the parameters α and λ. See Fig. 4 in
Sec. 3 for illustrations on that domain and other
properties of the Shimizu–Morioka system. The
existence of a Lorenz attractor is a robust property
[Afraimovich et al., 1983], i.e. every system close
enough to (11) has to have a Lorenz attractor in a
nearby region of the (α, λ)-values. Since, as we have
shown, the flow map of (11) is a close approximation
of map (1) near the bifurcation point, the existence
of a Lorenz-like attractor for the 3D Hénon map will
follow.

Indeed, since the fixed point at zero of map (6)
has multipliers (−1,−1, 1) at ε = 0, the standard
normal form theory (for details see, for example,
[Shilnikov et al., 1998]) gives us that in appropri-
ately chosen coordinates the composition of the map
with the involution (7) can be approximated up to
terms of any arbitrarily high order by the time 1
map of an autonomous flow which commutes with
the above involution. In other words, one can choose
new coordinates w = (w1, w2, w3), obtained from
(u1, u2, u3) by a close to the identity transformation,
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C, in such a way that the map (6) will coincide with
the composition of the involution (7) and the time 1
map of a flow

ẇ = W1(w) + W2(w) + W3(w, t), (12)

where W1(w) is the right-hand side of (8), W2(w) =
O(‖w‖2‖ε‖ + ‖w‖3) is a function of w and ε such
that W2(σw) = σW2(w), where σ denotes the
involution (7) and W3(w, t) is one-periodic in t.
Furthermore, for any arbitrarily large N , one can
choose a transformation C = CN such that ‖W3‖ =
o(‖w, ε‖N ) for w in a fixed compact and all t.

If the initial diffeomorphism is analytic (as it
happens in our case) and we recall that the original
time has been scaled by the small parameter s, then
the transformation C can be chosen to be analytic
in (w, ε) on a fixed compact and the vector fields
Wj , j = 1, 2, 3 are also analytic in (w, ε) on a com-
pact. Furthermore, the bound ‖W3‖ < exp(−c/s)
holds for some c > 0. This follows from averaging
theory as in [Neishtadt, 1984]. See, e.g. [Broer et al.,
1996] for details in a similar case.

After the rescaling (9), (10) system (12) takes
the form

d

dτ




X

Y

Z


 = V1(X,Y,Z, α, λ) + V2(X,Y,Z, α, λ)

+ V3

(
X,Y,Z, α, λ,

τ

s

)
(13)

where V2 = O(s) is independent of τ and it is
symmetric with respect to the involution σ: (X,Y,
Z) ↔ (−X,−Y,Z), the nonautonomous part is
exponentially small in s, and V1 is the right-hand
side of the Shimizu–Morioka system (11).

The existence of the Lorenz attractor in the
Shimizu–Morioka system implies that, for all s
sufficiently small, the time-independent part V of
system (13):

d

dτ




X

Y

Z


 = V1(X,Y,Z, α, λ) + V2(X,Y,Z, α, λ)

=: V , (14)

has a Lorenz attractor in an appropriate region of
(α, λ).

Furthermore, the time s map has also a strange
attractor which is a discrete version of the attrac-
tor found for V . The difference between the time

s map of V and the composition of the involu-
tion σ with the 3D Hénon map (in w variables) is
only due to the contribution of the nonautonomous
term V3 in (13). Because of the smallness of V3

we can, finally, conclude that in an appropriate
region of parameters adjoining the bifurcation point
(M1 = −1/4,M2 = 1, B = 1) (that corresponds to
ε = 0) the orbits of the map (1) near the fixed point
P1 follow very closely and for a long time orbits in
the Lorenz attractor of system (14) (while the even
iterations follow a certain orbit of (14), the odd iter-
ations follow the image of this orbit under the sym-
metry σ). This explains the striking similarity of
the numerically obtained pictures of iterations of
map (1) with the well-known pictures of the Lorenz
model, which are also found in the Shimizu–Morioka
system.

3.1. On the wild character of the
attractors

In fact, there is more than a simple similarity of
the pictures here. Based on the theory developed
in [Turaev & Shilnikov, 1998, 2005] one can show
that the Lorenz-like attractor we obtain at suffi-
ciently small ε is indeed a strange attractor, and
we can also describe its nontrivial properties. As
mentioned, when speaking about a classical Lorenz
attractor we mean that the system under consid-
eration has an absorbing domain where the flow
has a pseudo-hyperbolic structure: it has a strongly-
stable invariant foliation of codimension two and it
uniformly expands in area in directions transverse
to the foliation. Moreover, one assumes that there
is a saddle equilibrium in the absorbing domain and
that all orbits, except for the equilibrium, inter-
sect a certain cross-section. Based on this, one
can prove that the system has a unique attrac-
tor, which is defined [Turaev & Shilnikov, 1998] as
the only Lyapunov stable chain-recurrent set (for
a more traditional view on the Lorenz attractor
see [Afraimovich et al., 1993]), and the attractor
is strange in the sense that every orbit in it has
a positive maximal Lyapunov exponent. It is obvi-
ous that applying a small periodic forcing to such
a system (this is the situation at which we arrive
when analyzing the bifurcations of the fixed point
with the multipliers (−1,−1, 1) in map (1), see
(13)) does not destroy the strongly stable invari-
ant foliation while the property of the transverse
area expansion transforms to the uniform expan-
sion of volumes in the directions transverse to the

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

5.
15

:3
49

3-
35

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
E

T
SW

IS
E

 o
n 

11
/1

4/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 4, 2006 13:56 01418
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foliation (adding the periodic forcing increases the
dimension of the phase space by adding a cyclic
time variable; in this direction, the flow is neither
contracting, nor expanding, so the area-expanding
flow becomes volume-expanding). The expansion of
transverse volumes implies the existence of a pos-
itive maximal Lyapunov exponent for every orbit
immediately (there is a similar result in [Sataev,
in preparation]). Moreover, one can show [Turaev
& Shilnikov, 2005] that if the forcing is small, the
system still has a unique stable chain-recurrent
invariant set (the attractor) and that this attrac-
tor is wild in the sense that it contains a Newhouse
wild hyperbolic set for an open set of parame-
ter values, and it contains arbitrarily degenerate
periodic and homoclinic orbits for a dense set of
parameter values. Thus, although the attractor we
see in map (1) looks very much Lorenz-like, sub-
tle details of the orbit behavior are here much
more complicated than for the standard Lorenz
attractors.

It is known [Afraimovich et al., 1983] that sad-
dle periodic orbits are dense within the transitive
component of the Lorenz attractor. When a small
s-periodic forcing is applied, the periodic orbits are
transformed into saddle invariant tori (closed invari-
ant curves for the time-s map). The tori should
no longer form a dense set. Nevertheless, accord-
ing to Shilnikov [1969], Afraimovich and Shilnikov
[1982], there is an infinite set coded by arbitrary
sequences of two symbols. Such sets of tori exist for
open regions in the parameter space of systems with
a periodically perturbed Lorenz attractor, hence in
the parameter space of the 3D Hénon map. One
can deduce from [Gorodetskij & Ilyashenko, 1999,
2000], that in the closure of such a set of invari-
ant circles there exists at least one orbit of our
map with one zero Lyapunov exponent (moreover,
there exists an ergodic invariant measure with a
zero Lyapunov exponent [Gorodetskij et al., 2005]),
and this property holds true for an open set of
parameter values. Surprisingly, as seen in Figs. 5
and 6, this “nonhyperbolicity” property is quite vis-
ible: for all tested values from the red regions in
these figures, a numerically computed spectrum of
Lyapunov exponents of a randomly chosen orbit of
the 3D Hénon map includes a value quite close to
zero exponent indeed. Whether this numerical effect
is really related to the above mentioned results of
Gorodetskij et al. [1999, 2000, 2005], or is it a man-
ifestation of exponential smallness of the effective
forcing, this is not clear so far.

4. Numerical Observation of
Lorenz-type Attractors in
the 3D Hénon Maps

Before presenting the results of some numerical
experiments for the 3D Hénon map we shall dis-
play some results for the Shimizu–Morioka system
(11). A detailed exposition of the plethora of bifur-
cational phenomena in that system can be found
in [Shilnikov, 1986, 1993]. Based on numerical evi-
dence and the theory of Afraimovich et al. [1993],
it was concluded in [Shilnikov, 1986, 1993] that
Lorenz-like attractors exist in the Shimizu–Morioka
system in a persistent way, i.e. for open domains in
(α, λ). For concrete values of the parameters a com-
puter assisted proof, like the one given in [Tucker,
1999] for Lorenz system, has to be performed. Alter-
natively, one may try to prove formally the existence
of Lorenz attractor domains in the parameter space
of the Shimizu–Morioka system with the use of the
criteria from Shilnikov [1981] and the technique of
proving the existence of homoclinic loops due to
Belykh [1984], or Robinson [1989, 1992], or Rychlic
[1990], see more discussion in [Shilnikov et al., 1993].

The numerical tool we have used is the compu-
tation of the Lyapunov exponents, scanning for the
(α, λ) parameters. It is clearly enough to compute
the two dominant ones Λ1 ≥ Λ2 as Λ1 + Λ2 + Λ3 =
−λ. This is easily achieved by integration of the
variational equations and successive orthonormal-
ization. The initial point has been always taken
close to the origin on the unstable manifold of the
fixed point.

The results are presented in Fig. 4(a) and show
several possibilities: it is attracted by one of the
equilibrium states located at (±√

α, 0, 1), by a sta-
ble periodic orbit, which can normally be of focus or
node type, or by what looks like a strange attractor.
Finally, it can also escape. The types of attractors
are detected, from Λ1,Λ2 by the conditions

0 > Λ1 ≥ Λ2, 0 = Λ1 > Λ2 = Λ3,

0 = Λ1 > Λ2 > Λ3 and Λ1 > 0 = Λ2,

respectively. Of course, these conditions are checked
with some tolerance (typically between 10−5 and
10−6, depending on the computations) and integra-
tions are stopped as soon as an equilibrium state
or a periodic orbit is approached, refining the peri-
odic orbit numerically. The color code associated to
each domain is explained in Fig. 4. The big region
of persistent strange attractors is located, roughly,
around (α, λ) = (0.4, 1).
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(a) (b)

Fig. 4. (a) Attractors found for the Shimizu–Morioka model starting from the unstable manifold of the origin. Color code:
green: stable equilibrium state (of focus type); light blue: stable periodic orbit with nodal normal behavior; magenta: periodic
orbit with focal normal behavior; red: strange attractor. (b) The bifurcation diagram due to Shilnikov [1993]. The dashed line
separates, with a good precision, the Lorenz attractor region from the region of a quasi-attractor. Variables plotted (α, λ).

This region consists visibly of two parts: in
the upper and right parts the behavior is chaotic
for all parameter values, while in the lower left
part the region is penetrated by stability windows.
The divide between these two parts goes quite well
along the bifurcation curve from [Shilnikov, 1986,
1993] which separates the region of existence of the
Lorenz attractor from the quasi-attractor region,
see Fig. 4(b). Analogous bifurcation curve for the
Lorenz model was built in [Bykov & Shilnikov,
1989]. The T-point on this curve is a codimension-
two point corresponding to a heteroclinic cycle
involving all three equilibria (the saddle at zero
and the two saddle-foci at (±√

α, 0, 1)); a bunch
of similar codimension-two points exist below the
curve. According to [Bykov, 1980, 1993], each of the
T-points on the parameter plane is a limit of an
infinite series of other T-points, from each an infi-
nite number of bifurcation curves emanates that
correspond to homoclinic loops to the saddle-foci,
and onto each an infinite number of bifurcation
curves spiral that correspond to multiround homo-
clinic loops to the saddle; three of such curves are
shown in Fig. 4(b). Approaching the bifurcations of
saddle-focus loops causes period-doubling bifurca-
tions, so the abundance of the stability windows cor-
responding both to stable periodic orbits with nodal
and focal behavior, see Fig. 4(a), is natural. See

more on the relation between saddle-focus homo-
clinic and heteroclinic cycles and stable periodic
orbits in [Afraimovich et al., 1980; Ovsyannikov &
Shilnikov, 1987, 1991].

Above the dashed curve, as the numerical evi-
dence of Shilnikov [1986, 1993] suggests, we have
a genuine Lorenz attractor. The upper and right
boundaries of the Lorenz attractor region (line
LA in Fig. 4(b), and a line, not shown, follow-
ing closely line H2) correspond to the separatrices
of the zero saddle equilibrium approaching certain
saddle limit cycles, in agreement with the canon-
ical scenarios from Afraimovich et al. [1983]: on
the upper boundary a “solid” Lorenz attractor is
formed, while the Lorenz attractor born on the
right boundary has a “lacuna” (compare with the
attractors in Fig. 1). The tips of the Lorenz attrac-
tor region in Fig. 4 correspond to codimension-
two homoclinic bifurcations of [Shilnikov, 1981] (see
also [Shilnikov, 1986; Robinson, 1989, 1992; Rychlic,
1990; Shilnikov et al., 2001]): the saddle value σ van-
ishes on line HB of single-round homoclinic loops to
the saddle, and the separatrix value A vanishes on
line H2 of double-round loops. For more details see
[Shilnikov, 1986, 1993] and [Shilnikov et al., 1993].

We note also that there is a domain of escape
on the lower part of Fig. 4 bounded exactly by the
line λ = α/4. This boundary corresponds to an
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attracting periodic orbit which escapes to infinity
when λ → α/4+0. This can be proved by using the
scalings

X =
X

ν
, Y =

Y

ν2
, Z =

Z

ν2
, τ = τν

and letting ν → 0. The system for the rescaled
variables (X,Y ,Z) as functions of τ depends on
the parameter ν and has elementary periodic solu-
tions at ν = 0. Then, standard averaging pro-
cedures allow one to compute a periodic solution
at small ν, using expansion in the powers of ν
by Lindstedt–Poincaré method, under the require-
ment λ = α/4 + ν2. The amplitude of this solu-
tion remains finite as ν → 0. Returning to the
nonrescaled variables (X,Y,Z) thus gives us a peri-
odic solution whose amplitude tends to infinity as
λ → α/4 + 0. That boundary continues up to
α � 1.86 when another attracting periodic orbit
shows up.

Then we passed to the 3D Hénon map. In a
similar way Lyapunov exponents have been com-
puted by iteration of the differential map and suc-
cessive orthonormalization. As before the sum of the
Lyapunov exponents is known and equals log(|B|).
Typically we have proceeded to scan with respect
to (M1,M2) for several values of B. As initial
points several possibilities have been used, all of
them in some of the unstable manifolds of the
points P1, P2, Q1, in that order. It is clear that
for given (B,M1,M2) several attractors can coex-
ist. In that case computations are stopped as soon
as one attractor is detected. Also computations are
stopped if a fixed or periodic point (of any period
less than 106) is approached. A small sample of the
results is displayed in Fig. 5 for some representative
values of B : 0.1, 0.5, 0.7,−0.95.

Assuming Λ1 ≥ Λ2 ≥ Λ3 the following possibil-
ities have been found (in cases where some of the
initial points were tried is not escaping):

1. 0 > Λ1, which corresponds to fixed or periodic
attracting point, displayed in green;

2. Λ1 = 0 > Λ2 = Λ3, which corresponds, as the
visual inspection showed, to an invariant curve
of focal normal behavior, displayed in magenta;

3. Λ1 = 0 > Λ2 > Λ3, which corresponds to an
invariant curve of nodal normal behavior, dis-
played in light blue;

4. Λ1 > 0 > Λ2 > Λ3, which corresponds to a
strange attractor, typically looking Hénon-like,
displayed in yellow;

5. Λ1 > 0 = Λ2 > Λ3, which corresponds to a
strange attractor, typically looking Lorenz-like,
displayed in red;

6. Λ1 > Λ2 > 0 > Λ3, which corresponds to a
strange attractor with two positive Lyapunov
exponents, looking as a Lorenz-like attractor but
perhaps “thicker”, displayed in blue.

It should be kept in mind that the sign “=” means
here that the difference is less than some tolerance.

It has also been checked that while in the
Hénon-like attractor domains a detailed scanning
(for instance, fixing B and M1 and letting M2 vary
with step-size as small as 10−8 for intervals of length
0.01) shows a good abundance of “windows” of
attracting periodic orbits, these windows are absent
in selected domains of the Lorenz-like attractors
which adjoin to the point of (−1,−1, 1)-bifurcation
(both in the red and in a part of the blue region).

The results for small |B|, as expected, display
mainly the 2D Hénon pattern. The strange attrac-
tors correspond to the yellow zones on the top plots
in Fig. 5. They are crossed by very narrow (hardly
visible with the resolution of the plot, except for
period 3) green strips corresponding to periodic
sinks. Only the regions where two of the large strips
meet (the so-called “cross-road areas”, see [Bosch
et al., 1991a, 1991b]) are well visible with the reso-
lution of the plot. For B = 0.5 these strips of peri-
odic sinks are more visible. For B = 0.7 Lorenz-like
attractors are found not too far from the param-
eters predicted for B = 1 − ε1. We return later
to this point. Furthermore one can see zones of
invariant curves which are interrupted by zones of
sinks (the well-known Arnold tongues, one of the
sources of destruction of smooth invariant curves,
see [Afraimovich & Shilnikov, 1983a; Broer et al.,
1998; Shilnikov et al., 2004]. After these tongues
Hénon-like attractors are found. For larger values
of B < 1 the situation is similar but the regions
of Lorenz-like attractors shrink (in agreement with
the theory) to become almost invisible near the tip.

For B < 0 and moderate values, the situation
is similar, concerning strange attractors, to the case
of small B > 0. However for B approaching −1
an interesting phenomenon occurs. Beyond some
extremely narrow “red” zones which appear near
the tip close to (M1,M2) = (−1/4, 1) correspond-
ing to the (−1,−1,−1)-bifurcation (based on the
normal form analysis from [Arneodo et al., 1985a]
one can conclude that these zones should corre-
spond to an exponentially small perturbation of a
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(a) (b)

(c) (d)

Fig. 5. Attractors found for the 3D Hénon map (1) for (a) B = 0.1, (b) B = 0.5, (c) B = 0.7, (d) B = −0.95. Variables
plotted (M1 · M2). See the text for color codes.

spiral quasi-attractor), a more important region of
this type appears near (M1,M2) = (7/4,−1). This
must be related to the fact that for (B,M1,M2) =
(−1, 7/4,−1) the fixed point P1 has multipliers
−1,±i. The fourth power of the map can be approx-
imated by a flow in suitable domains. An analysis of
what seems a new source of Lorenz-like attractors is
planned for the future (an appropriate rescaled flow
normal form should be found in [Pisarevsky et al.,
1998]). Magnifications of selected zones of Fig. 5 for
B = 0.7 and B = 0.95 are shown in Fig. 6.

An illustration of some of the attractors found
for B < 0 with |B| close to 1 is shown in Fig. 2(b).
The black points on it are successive iterates, under
H4

B,M1,M2
, of some initial point. They are close to an

unstable invariant curve. This curve becomes stable,
for instance, changing M2 from −0.925 to −0.900,

having a rotation number close to 1/4. The param-
eters of this strange attractor belong to the upper
blue spot in Fig. 6(a). The ones of the invariant
curve are in the light blue domain on top of it.

We refrain from displaying strange attractors of
different type and refer only to Figs. 1 and 2. But
it is interesting to compare the theoretical predic-
tions with the numerical results. To this end it is
possible to pass from the parameters (B,M1,M2)
of the 3D Hénon map to the parameters (α, λ, s)
of the Shimizu–Morioka model, including the scal-
ing factor s, and vice versa. For a fixed value of s
the value of β1 is s2 and, as (α, λ) must be finite,
the values of β2, β3 are O(s). Hence we expect the
components of ε to be O(s) and relatively close to
the plane ε1 − ε2 + ε3 = 0. For comparison pur-
poses, instead of fixing s, it is better to fix B. Hence,
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(a) (b)

(c)

Fig. 6. Magnifications of some plots in Fig. 5 in regions where strange attractors are found. (a) B = −0.95; (b) B = 0.7.
(c) The domain corresponding to the Lorenz attractor in the Shimizu–Morioka model (the upper and right part of the red
region of Fig. 4) is transformed back to the (M1, M2) variables. The value of s is determined in such a way that B = 0.7.

we have selected the open domain corresponding to
the Lorenz attractor part of the “red” region of the
Shimizu–Morioka system (see Fig. 4). Then values
of (M1,M2) and s have been determined according
to the transformation of parameters. Using B = 0.7
the corresponding values of s range in (0.14, 0.31).
The result is displayed in the lower part of Fig. 6.
This domain should (except by some distortion,
after all s = 0.31 is not so small) fit the “red” region
of the 3D Hénon map. The agreement is quite good.

Thus, we can assume that a periodically per-
turbed Shimizu–Morioka system describes well the

3D Hénon map in this region of the parameter val-
ues. Therefore, a certain part of the blue region
adjoining to the red one in the middle plot of Fig. 6
can be related, on a qualitative level at least, to
the region of the existence of a quasi-attractor in
the Shimizu–Morioka model (this is the lower part
of the red region in Fig. 4(a)). Since an effective
periodic force is applied, the windows correspond-
ing to stable periodic orbits become windows of
stable invariant closed curves. As mentioned, the
saddle-focus equilibria with two-dimensional unsta-
ble manifold play an important role in the quasi-
attractor of the Shimizu–Morioka model, i.e. the
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chaotic trajectories may spend sufficiently large
time in the neighborhood of these two points. The
same may hold true for the 3D Hénon map in
the corresponding region, thus providing a possible
source for the numerically observed pair of positive
Lyapunov exponents.

A direct computation of a Lyapunov diagram,
similar to previous ones, for a periodically per-
turbed Shimizu–Morioka system, could be very
interesting. Instead, we performed a similar exper-
iment using a family of diffeomorphisms depend-
ing on an additional parameter, µ, which, in the
limit µ → 0 behaves as the time µ map of (11).
One possibility is to use the Euler step of (11)
with step-size µ. This presents the problem that the
map has nonconstant Jacobian and for large val-
ues of the variables is no longer a diffeomorphism.
As the Shimizu–Morioka system has constant neg-
ative divergence, it is always possible to construct
an approximation to the time µ map with constant
Jacobian, as follows:


X

Y

Z


 �→




X

Y

Z


 =




X + µY

Y + µ(X(1 − Z) − λY )
Z + µ(−αZ + X2)


.

(15)

This mimics the way in which the standard map is
obtained as an approximation of the time µ map
of a pendulum to keep it canonical. The map (15)
has the Jacobian J = (1 − µα)(1 − µλ). If µ <
min{1/α, 1/λ} one has a global diffeomorphism.

Using values like µ = 0.1 or even µ = 0.3 the
results look very much like the ones displayed in
Fig. 4(a) for the flow. But it is possible to use a
larger value of µ, so that the differences with the
flow are increased. Figure 7 displays the results for

Fig. 7. Lyapunov diagram for map (15) with µ = 0.8. Plot-
ted variables (α, λ). The color code is the same as used in
Figs. 5 and 6.

µ = 0.8. As done with the Shimizu–Morioka flow,
the starting point has been taken in the unstable
manifold of the origin. Up to 5 × 107 iterates have
been used. A Lyapunov exponent Λ is considered as
zero when |Λ| < 4 × 10−6. The same tolerance has
been used to consider two Lyapunov exponents as
similar. Even with this large µ and small tolerance,
a region of strange attractors with one Lyapunov
exponent very close to zero can be seen on the left.

To conclude, we repeat that the theoretical
results described work in a sufficiently small neigh-
borhood of the bifurcation point. It is lucky that the
region of existence of Lorenz-like pseudo-hyperbolic
attractors in the 3D Hénon map extends sufficiently
far in the parameter space, so it becomes visible.
Still, a very large portion of the parameter space is
occupied by regions corresponding to other types of
dynamical behavior. What kinds of new structures
show up in this map and in other three-dimensional
maps, nonreducible to two-dimensional ones, this
remains a question wide open for further studies.
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