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In remembrance

Philip Geoffrey Saffman, FRS (1931–2008)
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In remembrance
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Uniform flow past a cylinder

The first photograph in Van Dyke’s Album of Fluid Motion
Complex potential

w(z) = U

(

z +
1

z

)

Simple. But what about flow past multiple objects?
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The biplane problem

Weierstrass σ-function ↗ and ζ-function ↗
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The Flettner rotor ship

Flettner rotors are rotating cylinders which exploit the
Magnus effect for propulsion
This mechanism was explored in the 1920’s and 1930’s

. – p.6



Triply connected analogues

The triplane 3-rotor Flettner yacht

These are examples where flows past three obstacles are relevant
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Quadruply connected rotor vessels

(source: BBC website)

Futuristic “cloudseeder yachts” – wind-powered, unmanned vessels

(from Enercon press release)

“Enercon’s E-ship uses “sailing rotors” to cut fuel costs by 30%”
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Civil engineering

Civil engineers are interested in forces on multiple objects (e.g. bridge
supports) in laminar flows
T. Yamamoto, “Hydrodynamic forces on multiple circular cylinders”, J. Hydraulics
Division, ASCE, 102, (1976)
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Topology of laminar mixing

Mixing in an octuply connected flow domain
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Biolocomotion

Recent interest in biolocomotion has led to resurgence in flow
modelling techniques originally pioneered in aeronautics
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Oceanic eddies
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Geophysical fluid dynamicists want to model motion of oceanic eddies
in complicated island topographies
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Other engineering challenges
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Other engineering challenges

“The World”
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History of the two-obstacle problem

W.M. Hicks, On the motion of two cylinders in a fluid, Q. J. Pure Appl. Math., (1879)
A. G. Greenhill, Functional images in Cartesians, Q. J. Pure Appl. Math., (1882)
M. Lagally, The frictionless flow in the region around 2 circles, ZAMM, (1929).
C. Ferrari, Sulla trasformazione conforme di due cerchi in due profili alari,
Mem. Real. Accad. Sci. Torino, (1930)
T. Yamamoto, Hydrodynamic forces on multiple circular cylinders,
J. Hydr. Div, ASCE, (1976).
E.R. Johnson & N. Robb McDonald, The motion of a vortex near two circular cylinders,
Proc. Roy. Soc. A, (2004)
Burton, D.A., Gratus, J. & Tucker, R.W., Hydrodynamic forces on two moving discs,
Theor. Appl. Mech., (2004)

No prior analytical results for more than two aerofoils
Standard fluids literature contains almost nothing on multi-obstacle
flows
This talk seeks to fill this gap with an analytical treatment
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Riemann mapping theorem

Any simply connected domain Dz (bounded or unbounded) in the
plane can be conformally mapped to the unit disc (and vice versa)

Let the unit disc in a complex ζ-plane be denoted Dζ

Let the conformal mapping from Dζ to Dz be z(ζ)

If the domain is unbounded then a point β ∈ Dζ maps to infinity and,
locally

z(ζ) =
a

ζ − β
+ analytic

There are three degrees of freedom in the mapping theorem
This means, for example, that we can pick β arbitrarily
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A point vortex outside a cylinder

Consider a single point vortex outside a unit-radius cylinder
Conformal map from the interior to the exterior of unit disc:

z(ζ) =
1

ζ

We have chosen β = 0 to map to z =∞.
Let the unit circle |ζ| = 1 be denoted C0
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A point vortex outside a cylinder

Complex potential for isolated point vortex at ζ = α:

w(ζ) = − i

2π
log(ζ − α)

But, we need it to be real on |ζ| = 1 (so it is a streamline)
A function, built from w(ζ), that is real:

w(ζ) + w(ζ)

But this is not analytic. On |ζ| = 1, ζ = 1/ζ, so consider

w(ζ) + w(1/ζ)

= − i

2π
log

(

ζ − α

1/ζ − α

)

= − i

2π
log

(

ζ − α

|α|(ζ − 1/α)

)

− i

2π
log ζ + c
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Circulation around the cylinder?

Another possible solution:

− i

2π
log

(

ζ − α

|α|(ζ − 1/α)

)

− iγ

2π
log ζ

where γ is any real number
Consider the two terms separately:

− i

2π
log

(

ζ − α

|α|(ζ − 1/α)

)

← circulation −1 around cylinder, vortex at α

and

− iγ

2π
log ζ ← circulation −γ around cylinder, vortex at ζ = 0 (z = ∞)

Note: we are free to choose the round-obstacle circulation
Pick −1− γ = 0 if want zero circulation around cylinder
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The function G0(ζ, α)

It seems pedantic, but introduce the notation

ω(ζ, α) ≡ (ζ − α)

Also introduce notation G0(ζ, α):

G0(ζ, α) = − i

2π
log

(

ζ − α

|α|(ζ − 1/α)

)

= − i

2π
log

(

ω(ζ, α)

|α|ω(ζ, 1/α)

)

Recall, this is complex potential for:

• a point vortex, circulation +1, at α

• it has circulation −1 around obstacle whose boundary is
image of C0 (hence subscript)

• it has constant imaginary part on C0
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What about three cylinders?

Now consider fluid region exterior of three circular cylinders

sss

z(ζ)=s/ζ

d δ

q

Fluid region

q

Dζ

obstacles

circular region

z(ζ) =
s

ζ
with q =

s2

d2 − s2
, δ =

sd

d2 − s2

Geometry of Dζ depends on geometry of given domain
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Generalized Riemann Theorem

Dζ

Any multiply (M + 1)-connnected domain can be conformally mapped
to from a circular domain Dζ consisting of the unit disc with M smaller
circular discs excised
The radii of the discs will be {qj|j = 1, ..., M}
The centres of the discs will be {δj|j = 1, ..., M}
Let unit circle be C0; all other circular boundaries {Cj|j = 1, .., M}
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Back to G0(ζ, α)

Let’s go back to G0(ζ, α) for the single cylinder example:

G0(ζ, α) = − i

2π
log

(

ω(ζ, α)

|α|ω(ζ, 1/α)

)

Recall, this is complex potential for:

• a point vortex, circulation +1, at α

• it has circulation −1 around obstacle whose boundary is
image of C0 (hence subscript)

• it has constant imaginary part on C0

What is analogous complex potential for the three cylinder example?
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Higher connected generalization?

Remarkable fact

G0(ζ, α) ≡ − i

2π
log

(

ω(ζ, α)

|α|ω(ζ, 1/α)

)

is the required complex potential!
It has exactly the same functional form!!

It has

• a point vortex, circulation +1, at α

• a circulation −1 around object whose boundary is
image of C0 (hence subscript)

• circulation 0 around all other objects
• it has constant imaginary part on Cj (j = 0, 1, ....M )
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A fact from function theory

What can we possibly mean by this?

Fact: there exists a special transcendental function of two variables
ω(., .) – it is just a function of the data {qj, δj|j = 1, .., M} –
such that:

(1) ω(ζ, α) has a simple zero at ζ = α

(2) G0(ζ, α) has constant imaginary part on all the boundary circles
of Dζ (so that all the obstacle boundaries are streamlines)

The function ω(ζ, α) is called the Schottky-Klein prime function

It plays a fundamental role in complex function theory that extends
far beyond the realm of fluid dynamics.

Consider it just a computable special function (cf: sin(x), Jk(x)) . – p.25



Adding circulation around the other
obstacles

What if we want non-zero circulations around the other M obstacles?
Then we need M additional complex potentials:

Gj(ζ, α) = − i

2π
log

(

ω(ζ, α)

|α|ω(ζ, θj(1/α))

)

, j = 1, .., M

The complex potential Gj(ζ, α) has

• a point vortex, circulation +1, at α

• a circulation −1 around cylinder whose boundary is
image of Cj (hence the subscript)

• circulation 0 around all other cylinders
• it has constant imaginary part on Ck (k = 0, 1, .., M )
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The functions {θj(ζ)|j = 1, .., M}

The functions {θj(ζ)|j = 1, .., M} are simple functions of the data
{qj, δj|j = 1, .., M}:

θj(ζ) ≡ δj +
q2

j ζ

1− δjζ
, j = 1, .., M

These functions are fully determined by {qj, δj|j = 1, .., M}

Example: Suppose Dζ is the annulus ρ < |ζ| < 1 then there is just
one Möbius map (M = 1): δ1 = 0, q1 = ρ

θ1(ζ) = ρ2ζ

. – p.27



Uniform flow past multiple objects

What about adding background flows?

Suppose, as ζ → β, we have

z(ζ) =
a

ζ − β
+ analytic

for some constant a, and we want the complex potential for uniform
flow of speed U at angle χ to the x-axis

The required complex potential is

2πUai

(

eiχ ∂G0

∂α
− e−iχ ∂G0

∂α

)
∣

∣

∣

∣

α=β

It is just a function of G0(ζ, α)
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By the way...

If we let ω(ζ, α) = (ζ − α) so that

G0(ζ, α) = − i

2π
log

(

ζ − α

|α|(ζ − 1/α)

)

then the formula

2πUai

(

eiχ ∂G0

∂α
− e−iχ ∂G0

∂α

)
∣

∣

∣

∣

α=β

with
z(ζ) =

1

ζ
← flow past circular cylinder (β = 0)

reduces to

U

(

1

ζ
+ ζ

)

= U

(

z +
1

z

)

(choosing χ = 0)
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Straining flows around multiple objects

What about higher-order flows?

Suppose, as ζ → β, we have

z(ζ) =
a

ζ − β
+ analytic

for some constant a, and we want the complex potential for straining
flow tending to Ωeiλz2 as z →∞

The required complex potential is

2πΩa2i

(

e−iλ ∂2G0

∂α2
− eiλ ∂2G0

∂α2

)
∣

∣

∣

∣

α=β

Again, it is just a function of G0(ζ, α)
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What if the objects move?

Complex potential when jth obstacle moves with complex velocity
Uj :

WU(ζ) =
1

2π

∮

C0

[

Re[−iU0z(ζ′)]
]

[

d log

(

ω(ζ′, ζ)

ω(ζ′−1, ζ−1)

)]

−
M
∑

j=1

1

2π

∮

Cj

[

Re[−iUjz(ζ′)] + dj

]

[

d log

(

ω(ζ′, ζ)

ω(θj(ζ
′−1), ζ−1)

)]

U ≡ (U0, U1, ..., UM)

The constants {dj|j = 1, ..., M} solve a linear system
This time, expression is an integral depending on ω(., .)

(Useful for modelling biological organisms, vortex control problems)
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Strategy for problem solving

Step 1: Analyse the geometry and determine
Dζ, the data {qj , δj|j = 1, ..., M} and map z(ζ)

(use numerical conformal mapping if necessary)

⇓

Step 2: Construct the Möbius maps {θj(ζ)|j = 1, ..., M}
and compute ω(., .) (it all depends on this function!)

⇓

Step 3: Do calculus with the functions
{Gj(ζ, α)|j = 0, 1, .., M} to solve the fluid problem

Let’s do some examples!
. – p.32



Three point vortices near three circular
islands

α1

α2

α3

γ1γ2 γ0

d

s

Dζ is the unit ζ-disc with two smaller discs excised, each of radius q

and centred at ±δ.
The point β = 0 maps to infinity.
Assume point vortices all have circulation Γ

Assume circulation γj around island Dj

Dζ

qq
δ−δ
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Three point vortices near three circular
islands

α1

α2

α3

γ1γ2 γ0

d

s

w1(ζ) =
3
∑

k=1

ΓG0(ζ, αk) ← point vortices

− 3ΓG0(ζ, 0) ← round-obstacle circulations zero

−
2
∑

j=0

γjGj(ζ, 0) ← add in round-obstacle circulations
. – p.34



What is the lift on a biplane?

U
γ

γ

ds

Take Dζ as the annulus ρ < |ζ| < 1:

z(ζ) = i
√

d2 − s2

(

ζ −√ρ

ζ +
√

ρ

)

,

ρ =
1− (1− (s/d)2)1/2

1 + (1− (s/d)2)1/2
,

We have z(ζ) =
a

ζ +
√

ρ
+ analytic, a = −2i

√

ρ(d2 − s2)

Dζ

ρ

. – p.35



What is the lift on a biplane?

U
γ

γ

ds

w2(ζ) = 2πUai

(

∂G0

∂α
− ∂G0

∂α

)
∣

∣

∣

∣

α=−√
ρ

← uniform flow (χ = 0)

−
1
∑

j=0

γGj(ζ,−√ρ) ← add round obstacle circulations

(now use Blasius integral formula for Fx − iFy)
. – p.36



Generalized Föppl flows with two cylinders

U α1

α2

δ2

δ1

d
s

w3(ζ) = 2πUai

(

∂G0

∂α
− ∂G0

∂α

)
∣

∣

∣

∣

α=−√
ρ

← uniform flow (χ = 0)

+ ΓG0(ζ, α1)− ΓG0(ζ, α2)

+ ΓG0(ζ, δ1)− ΓG0(ζ, δ2) ← point vortices

(now search finite dimensional parameter space for equilibria)
. – p.37



Cylinder with wake approaching a wall

d

Γ−Γ

U=−i

Take Dζ as ρ < |ζ| < 1

z(ζ) =
i(1− ρ2)

2ρ

(

ζ + ρ

ζ − ρ

)

, d =
(1− ρ)2

2ρ
.

|ζ| = 1 maps to the boundary of the cylinder
|ζ| = ρ maps to wall.
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Cylinder with wake approaching a wall

d

Γ−Γ

U=−i

w4(ζ) = ΓG0(ζ, α)− ΓG0(ζ,−α) ← point vortices
+ WU(ζ) ← flow due to moving cylinder

where U = (−i, 0)
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Model of school of swimming fish

Point vortices

Moving objects

U

U0
U1U2

Conformal mapping non-trivial in this case. It happens to be

z(ζ) =

[

−a
∂

∂α

∣

∣

∣

∣

α=0

+b
∂

∂α

∣

∣

∣

∣

α=0

]

G0(ζ, α) + c

Near ζ = 0 (so β = 0):

z =
a

ζ
+ analytic

Dζ

qq
δ−δ
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Model of school of swimming fish

Point vortices

Moving objects

U

U0
U1U2

w5(ζ) =
6
∑

k=1

ΓkG0(ζ, αk) ← point vortices

−
(

6
∑

k=1

Γk

)

G0(ζ, 0) ← round-obstacle circulations zero

+ 2πUai

(

∂G0

∂α
− ∂G0

∂α

)
∣

∣

∣

∣

α=0

← uniform flow (χ = 0)

+ WU(ζ) ← flow due to moving bodies U = (U0, U1, U2)
. – p.41



How to compute ω(., .)?

Option 1: There is a classical infinite product formula for it:

ω(ζ, α) = (ζ − α)
∏

θk

(θk(ζ)− α)(θk(α)− ζ)

(θk(ζ)− ζ)(θk(α)− α)

Example: In the doubly connected case, Dζ to be ρ < |ζ| < 1

There is just a single Möbius map given by θ1(ζ) = ρ2ζ

The infinite product is then

ω(ζ, α) ∝ P (ζ/α, ρ)

where

P (ζ, ρ) ≡ (1− ζ)
∞
∏

k=1

(1− ρ2kζ)(1− ρ2kζ−1).
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Infinite sum representations

P (ζ, ρ) is analytic in ρ < |ζ| < 1, so also has Laurent series

P (ζ, ρ) = A
∞
∑

n=−∞
(−1)nρn(n−1)ζn,

where A is a constant. This converges faster than product!
Crowdy & Marshall have extended this idea to produce a fast
numerical algorithm for higher connectivity
It is based on Fourier-Laurent representations (not infinite products)

MATLAB M-files will be freely available soon at
www.ma.ic.ac.uk/˜ dgcrowdy/SKPrime.

Crowdy & Marshall, “Computing the Schottky-Klein prime function on the Schottky
double of planar domains”, Comput. Methods Func. Th., 7, (2007)
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Relation to Lagally?

It can be shown that

P (ζ, ρ) = − iCe−τ/2

ρ1/4
Θ1(iτ/2, ρ)

where τ = − log ζ and Θ1 is first Jacobi theta function

The Jacobi theta function can be related to the Weierstrass σ and ζ

function

Recall: Lagally (1929) used the latter functions in his solution to
the biplane problem

Our calculus simplies and extends this two-obstacle result
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Streamlines for uniform flow
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Very easy to plot using analytical formulae for complex potential
Conformal maps from circular domains Dζ are just Möbius maps
This answers the question prompted by Van Dyke’s first photograph!
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Two aerofoils in unstaggered stack
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Two aerofoils with gradually increasing circulation
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Kirchhoff-Routh theory

In 1941, C.C. Lin wrote two papers in which he established that
N -vortex motion in multiply connected domains is Hamiltonian
He relied on the existence of a “special Green’s function”
This special Green’s function is precisely G0(ζ, α)!
He also showed the following transformation property of

Hamiltonians:

H(z)({zk}) = H(ζ)({ζk}) +
N
∑

k=1

Γ2
k

4π
log

∣

∣

∣

∣

dz

dζ

∣

∣

∣

∣

ζk

where zk = z(ζk)

This fact completes the theory!
A general analytical framework now exists for N -vortex motion
Crowdy & Marshall, Analytical formulae for the Kirchhoff-Routh path function in multiply
connected domains”, Proc. Roy. Soc. A, 461, (2005)
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Life’s little ironies

My office door at MIT
. – p.48



Modelling geophysical flows

Simmons & Nof, “The squeezing of eddies through gaps”, J. Phys.
Ocean., (2002).
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Vortex motion through gaps in walls
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Critical vortex trajectories for two offshore islands
Crowdy & Marshall, “The motion of a point vortex through gaps in
walls” J. Fluid Mech., 551, (2006)

. – p.50



Critical vortex trajectories
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Five offshore islands
Note: Even the conformal slit maps are obtained analytically! . – p.51



Other applications of the calculus

The calculus has many other applications:

Contour dynamics: Facilitates numerical determination of
vortex patch dynamics
(kernels in contour integrals expressed using ω(., .) )

Crowdy & Surana, Contour dynamics in complex domains, J. Fluid Mech., 593, (2007)

Surface of a sphere
(need to endow spherical surface with complex analytic structure
by means of stereographic projection)

Surana & Crowdy, Vortex dynamics in complex domains on a spherical surface,
J. Comp. Phys., 227, (2008)
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Test of the method
Comparison with “free space” code [Dritschel (1989)]:
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Patch motion through a gap in a wall

Compares well with Johnson & MacDonald, Phys. Fluids, (2004):

Crowdy/Surana Johnson/McDonald
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Patch motion near a spherical cap
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Patch motion near a barrier on a sphere

Simulation of vortex patch penetrating a barrier on a spherical surface
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References and resources

For

• Published papers
• A PDF copy of this talk
• A preprint of the paper: “A new calculus for two dimensional

vortex dynamics”
• Downloadable MATLAB M-files for computing ω(., .) (soon)

Website: www.ma.ic.ac.uk/˜ dgcrowdy

d.crowdy@imperial.ac.uk
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