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The aims:
- to report on the method of reduction of the Hele-Shaw model to an

abstract Cauchy-Kovalevsky problem;

- to present results for unbounded and bounded Hele-Shaw cell;

- to give a formulation of the real-variable Hele-Shaw model;

- to describe the way of application of certain asymptotic methods.

Plan:

o Complex-variable Hele-Shaw model

¢ Mathematical model for Hele-Shaw problem

o Nirenberg-Nishida-Ovsjannikov theorem

¢ Case 1. Complex-variable Hele-Shaw model with kinetic undercooling
regularization

o Case 2. Complex-variable Hele-Shaw flow in a bounded cell.

¢ Real-variable Hele-Shaw model



Hele-Shaw model. Hele-Shaw flow is the flow of a viscous fluid between
two closely related parallel plate. The Navier-Stokes equations neglecting

the gravity
oV
8—+(V V)V__( Vp+uAV), V-V =0. (1)
Assumptions
oV
~ =0, V3=0.
dt 3
Under these the equations (1) become
0 0 — 1 0p
(V13x1 + Vza@) Vi = —E? + EAv,
_ p o4 p
(Vlaml + Vzaxz) Vo = —2ga, T AV,
0 — _10p
- pOuzz’
with boundary conditions
V1 =1 = 0.
z3=0,h z3=0,h




If h is sufficiently small and the flow is slow, then
op  0°Vy  dp 9%V,
bz, " 923 Oxp " 923
The boundary conditions then imply

V:lﬁp x%_@ V:lﬁp x%_hmg,
YT 200\ p ) 7T 20w \p o )

The integral mean V of V satisfies Hele-Shaw equation
__ h2
V=—-—Vp. (2)
124
A point sink/source (z9,29) of constant strength. Then
h2
// —pApdajlde = const.
0 124

On the fluid boundary the balance of forces gives

0=
0x3

p = exterior air pressure + surface tension.



Let Q2(t) be the bounded simply connected domain and consider suc-
tion/injection through a single sink/source at the origin. '(t) = 02(¢t)
(€2(0) =: €20, (0) =:Tp).

Ap = Qdp(2), z=ux+ iy € Q(t). (3)
The zero surface tension dynamic boundary condition is given by
p(z,t) =0, Vzel(t). (4)
vp =V -n(t), (5)
‘F(t)
The kinematic boundary condition

Op _

o —Un. (6)



The complex potential x(z,t),Rex = p.
dx _ Op .0Op

8z Omq Z@azg.

X(5,1) = 2109 = + x0(=, ). (7)
The Polubarinova-Galin equation: find a family of conformal mappings
f(z,t) Gy ={z€C:|z| <1} — Q(t), s.t.

e {(FGOTEC D) =2, ¢=e? (8)

Mathematical model for the complex-variable Hele-Shaw problem.

(18f(z N f( t)> _ 622(73,(2 t) € 8G1 x [0, T): (9)

f(z,0) = fo(2), z€Gu; (10)
f(0,t) = 0, tel[0,T). (11)
6



Nirenberg-Nishida-Ovsjannikov theorem. Let us consider the problem
dtw — F(t,’ll)), ’UJ(O) — 07 (12)

in a scale of Banach spaces {Bs, ||*||s}gc4<1, @nd let
e for each fixed s,0 < s < 1, the mapping F(t,w) of [0,T] x {w € Bs :

|lw||s < R} to By, 0 < s’ < s, is continuous with respect to t,
e for all 0 < s’ < 1 the continuous function F(t,0) satisfies

K
HF(taO)Hs’ S 1 —S,;
e forall0< s’ <s<1,tel0,T], wy,wy € {||Jw||, < R}
C

||F(t7wl) T F(tan)”s’ S / ||w1 T wQ”s .

Then the problem (12) has a unique solution

w e L ([0,a0(1 = 5)), Bs)gese1, lw®), < R,

where ag IS a suitable positive constant.



Case 1. Complex-variable Hele-Shaw model with kinetic under-

cooling regularization Problem (P,):

Re (%? z, ( t)) = QQ(ﬂt_) + Re (zwreg(2,t)) ,
f(270) = fo(»),
f(0,t) = 0,

) —1
0z
where a > 0,z = et
For complex potential x = x(f(z,t),t) we have

Re lgg — Re < 8X> :
z Ot 0z 0z
Rey = — 8f e lﬁﬁ , a > 0.
82’ z Ot 0z

(Q(t) + Re (Zw’reg(zat))>> 3

(13)
(14)
(15)

(16)

The ansatz for x = Q(t) 109 2z + Xreg, and for w := 0, x = Q(t)/z + wreg -

8



On structure of the problem (FP,). Under the additional assumption

10 af\ 1
( et (3 <z,t>> (0,6) =0, (17)
one can rewrite (13) by using Schwarz’'s integral formula as follows:
af ¢+ zd(
S =L [ S Q) + Re(cu reg)) ¢ =0




—1
Differentiating and setting w(z,t) 1= zwreg(z,t), ¢(2,t) = (g—g) (z,t)

gives
Problem (Q.):

- abstract Cauchy-Kovalevsky problem

0 O¢ 8 .
- _ (0fo\? 1 2 ¢+ zd¢
b0(2) 1= 8(2,0) = (22) , Te(dw) i= - 192 Q) + Rew) = |

- Riemann-Hilbert-Poincaré problem for w = w(z,t):
Im (w(z,8)) = ady(16(z DI (D) + Re (w(z,6) ) ) on 9G1 x [0,T). (20)

10



Mathematical treatment of problem (Q«). Let us fix constants rqg, 71,
1 < rg < ry, apositive constant b, and a parameter s € (0,1). By H(G(S))
we denote the space of functions which are holomorphic in Gy, where

Gy ={2€C:z]| <rp+s(r1 —ro)}

B = {g =gz e | ¢(10,b(1 —)), H(G(y)) NCA (o))

O<s<1
g|lg = max sup max_|lg(-,t) = N
ol {56(0,1),h<b(1—s)t6[0,h]H HCA(G@)
2
sup 99 t) _ (1— ! ) <oo}.
s€(0,1),t<b(1—s) 1102 CMG(y)) b(1 —s)

11



The problem (18) can be rewritten as:
1(6) =1(60) + AoM(6,M(=Tu(6,0)))

- 2JoM<q§,8zoM<z,Tt(q5,w)>), (21)
M(p,w) i=¢-w, Jp .= gw(-,T)dT.

B, 1= {g —gzt)e |J C(10,b(1 — ), H(Ay) NCA(A)) :
O<s<1

lgllB, = max sup max_[lgC, Ol s;
s€(0,1),h<b(1—s) tE[O,R] CAM(As))

b\
) CM(Aryy) (1 (1 — s)) } < OO}’

<|z|<ro—|—(r1—ro)s}, 0<s<1.

dg

Oz
1
ro + (r1 — 70)s

sup
s€(0,1),t<b(1—5)

A(S):{ZECZ

12



Existence result. For each w € B there exists a constant b = b(w)
such that the Cauchy-Kovalevsky problem (18) has a unique solution
¢ € B, holomorphic and non-vanishing function in G;. We prove that w

connected with ¢ by
Im (w(2)) = ady(16()](Q + Re (w()) ) ) on 8G1,  (22)
w(0) = 0, (23)

is also holomorphic in G;. Let ¢ € H(G1) NCLAMG1), #(z) # 0. Then

problem (22)—(23) possesses a unique solution w(z) € H(G1) NCLA(G1).
Main Theorem. There exists an interval of time [0,b) such that the

problem (Qa) has a unique solution (¢,w). ¢ = ¢(z,t) has no zeros on
Gry x [0,b) and belongs to the space C1 ([O,b),’H(GrO) ﬂCl’)‘(@,ao)) LW =
w(z,t) belongs to the space C ([O,b),’H(GrO) mCl’/\(éro)) . The constant

ro IS taken as in the definition of B.
13



Case 2. Hele-Shaw flow in a bounded domain. The polymer is
injected through the gate AD under a constant pressure pg and occupied
a domain €2; at the time t. The flow reaches the back wall along of
arcs {(ak\,/ﬁk),k = 1,2,...,n}. The arcs {(7/;/5k),k = 1,2,...,n+ 1},
where v € (A, B), v = Bp1,k = 2,....n+1, 6, = ap, bk = 1,...,n,
Op+1 € (C\,/D) is a free part Ipy of 9%, Myt is the part of 92 which

reached by the polymer (i.e., (A:/’yl) Lnj (ak\jﬁk) U(5n+\1/,D)), and by [«
k=1

the gate (A, D).

The flow satisfying Darcy law is described in terms w = p 4+ i), o(z,t) =
o(x,y,t) is a velocity potential, ¥ (z,t) = ¥ (x,y,t) is a stream function.
It is assumed that the (impermeable) walls (A\,/B), (D\,/C), as well as the
arcs (oq:ﬁk) are stream lines, but the free arcs are equipotential lines.

=vo, Y ~ =v,k=1,2,...,n.

More precisely, ¥ |(DVC) (@B
) AL, PL

s R

14



It leads

Re [za—w] = 0, on the wall.
ot

On the gate (A\,/D) we have a constant pressure p = pg, wIlog:

@ = 0, on the free boundary.

Besides,
0 0
P = n, on the free boundary.
on ot
Combining (25) and (26) one can get
%, on\ 2
7P = <—n> , on the free boundary,
ot ot
or in terms of the complex potential:
5] Ow |2
Rew = 0, Re [—w] — _|Z2 . on the free boundary.
ot 0z

(24)

(25)

(26)

(27)
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Hele-Shaw flow in a bounded cell. Mathematical model. Let f((,t) be
a conformal mapping of the unit disc G1 onto domain ¢, W((,t) be
analytic in the unit disc G4, s.t.:

O, T € sz,t’
n ~
v, T € kul(&lmﬁk)a

Re {A(MW(r,1)} = e(r) = e (AA). (28)
vo, T € (Op+1,D),
| PO, T € (AaD)a
1, T & I=f,t7
/\(T) — —1, T E Iffw,t) (29)
1, T € I_*

w(z, t) =W [f—l(z,t),t] . (30)

16



Then the problem is equivalent to the Riemann-Hilbert problem

( 07 T € Iz’w,tU Iz*)
Re {TT)cb(T, t)} =d(r,t) =4, (31)
] e
/ f(Cvt)
(¢, t) = WL, : 32
(¢, t) (¢ t)f'(g,t) (32)
Re {ANOW(T)} =e(r), 7€ T\{rl,..., 5,14}, (33)

Re {WW’(T) ]”cf,((:_’ i))} = d(r,t), T € 0G1\ {T{, .. ,T§n+4}, (34)

F(¢,0) = fo(Q), ¢ €U. (35)

17



The problem (33) has the form
Re {A(Mg(m)} =h(r), 7€dG1\{r], .., 75,14}, (36)

w=n-+2;

W () = Wp(Q) + X (O Px(),

A 4

2n—+4 —1/2
X<<>=C< _ (C—r})) ,
1

j:

PO =colF+c1 4. 4w, co=c,5, k=0,1,..., 5,

X(¢) [t ¢t La(r)dr

Wil = i e XF T 1o ¢

18



By using the solution operator T’}\ to (36) we rewrite the boundary

condition (34) in the following equivalent form

V!
f7_T (d)a CEGI\{TlaaTEn+4} (37)
By using new unknown function
W, ¢t __
B(C1) = f,(%t)), (€ GT\ {71, Tonta} (38)

we rewrite the relations (34), (35) in the form of an abstract Cauchy-

Kovalevsky problem

[ 9206 t) = gty S2(C TR (C, 1)

< — ey (O DFTAD ), (1) €9G1 x [0,T],  (39)

— W'(£,0)

19



Let us fix numbers o € C and define the weight functions

. m .
pD () = [ It —tpl*tI, jeNg=NuU{0}, (40)
k=1

¥ GBZ(tkvtk—Fl)? k= 1737"'7

Tl Tk+1

p € Az;n(l‘;tl,...,tm) <= 4

P GKZF,)H-H(tkatk-I-l)v k=2,4,....

\ T Th1

(41)
The conditions on the arcs with even indexes (k = 2,4,...):

p € KZ2+#(tkatk+1) & ;= pldiyp e Z9(ts ter1) (G =0,1,...,n)

& ;€ Lu(ty, tk+1); ¢i(tr) = ¢j(tg41) = O.
(42)

20



For each aj, the expression p(1)diy is defined by the equality

p Dol = p(j)(w(f))awé()iy))' (43)

The spaces Zy(tg, tgy1), Zn(tg, trt1):

HSO\ZS(tkatk—l—l)H:HPSO|Zu(tkatk—|—1) : (44)
|0 |Zu (s tip )| = sup [p(w(n)|+
TE(TkTh41)
(45)

+ sup h™H Y (w(T 4+ h)) — 2¢9(w(7)) + Y (w(T — h))].

TE(Tk,Tk+1);h>O

21



The norm in the space KZp (t4,t,41) is defined by the standard way:

HSO 'KZn+u(tk,tk+1)H = sup  pj(w(m))] + Hson \Zﬂ(tk,tkH)H :
O TE(T,Ti4-1)

(46)
Fo=o0(p), t =ty or t—tyyq. (47)

It will be said that ¢ € B, (t,t,41), K =1,3,..., if 3r > 0 such that
€ C(tg, tpy1) SEUD Hsog ‘Zu(tkatk—l—l)H - ( 3 < +o0. (48)

The last supremum determines the norm in the space B" (tk,tk_l_l)

. (D () !
| Bty 1) || = sup |00 o |7ty try )| (49)
J€

r1()

22



Scale of Banach spaces. We choose Az;n (I D;tq,...,tm) as a subspace
of n-times piece-wise continuously differentiable functions.

HSO‘AZ;n (rte,... ,tm)H =

B” (¢, ¢ , KZO | (1.t H}
max{k:ml?é"|‘<ﬂ ) (s toyr1) k:mQ?Zf...HSO ) ‘ n+ (> Tkt-1)
totl4-1 totlh+1
(50)
Al (Dt o tm) = HD)NA,, (Tt tm). (51)
AS (I_(S)> e Az,n (I’(S); t]_(S), ce ,tm(8)> . (52)

23



Introduce also the space of functions defined in the domains:

Ag <C| D(s)) ="H (D(s)> N Ag (I’(S)> . (53)

Let us fix a positive number r and numbers 1 < rg < r1.

Disy = Drotstry—ro))» sy = 9 Dy (54)

tgs),tgs), ce ,tg;i) - knots. A{S}(d D{s}) L= ATO+S(T1_TO)(C| D(TO+S(T1_TO))),
A{S}(I‘{S}) L= A"‘O‘FS("‘l—TO)(I_(’f’0+8(7°1—7°0)))' The scale of Banach spaces

BE (189, ()

Hso Bs,p<D{s}: rl:p>H = maX{ sup |s0(2) ‘90

MaxXx —
;N k+1
D k=1.,3,... s) ,(s
&2 4,
max |g0 - KZQ+M(t,§S),tlgﬂ)_1)‘} < 4o0.
k=2,4,... (s) ,(s)
b Sl

(55)

24
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Bpw,n := {g<c,t>e U ¢(10,6(1—9)),Bsp (DieyiT1ip)) : (56)
0<s<1,0<p<1

l9llB,.,,, := Max sup max_ sup |lg(z,t)|,
’ s€(0,1),d<5(1—s) t€[0,d] zeDy
sup max max Hg(-, IBPT(T(S) (s)
86(031)3p6(071)7d<5(1_8) k=1’3”2n+3 tE[O,d] T]SS)?Tlgj-)l

sup max max Hg(-,

K29, (r®, ()
s€(0,1),d<8(1—s) k=2,4,....2n+2t€[0,d] ‘ 1+p\T,

)

1/2
(1) __ ¢ |
sE(O,l),pE(SOu,?),d<5(1—s) t?[g?l] Hp ¢ ) ( )HZ{u} (E{s}) (1 6(1 — 3)> } A OOI

25



Main Theorem. Let v,vi,vo,p0 > 0 be positive constants. Let
fo = fo(¢) maps G1 onto 20, and can be continued for the func-

tion analyt/c and univalent in a neighborhood G1 \ {Tl,...,T§n+4}

N—

G1 kyl U (TS Topt 1)

N—r N—r N—r

0 0 0 _0 .0 0
U(rop, Top41) [ 1S ok ok 1] = (Top, Top41)-
= fo(r), k=1,...,2n+ 4,

be the images of t0 under the mapping fo.
Then for each t € [0,8) with & sufficiently small there exists a unique

solution w(z,t) =W [f_l(z,t),t] to (33), (34), (35) in the space

n—+1 n—+2
0) (0 - (0
! <[Oa5)7H<D{0}> ﬂ( U KZQ-I-M TQ(k)’TQ(kzl—l )ﬂ(kL_Jl B (Tz(k) 1’7-2k))))
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Real-variable Hele-Shaw model.
Viscous incompressible fluid occupies a doubly connected domain D1 (%)

at a time instant ¢ > 0. Internal domain F is a fixed small obstacle
(hole). The simply connected domain without hole will be denoted D(%),
d :=diam F > 0, D(0) is open bounded set with a smooth boundary

dist {8 F,0 D(0)} = 2d > 0. (57)

OF €C%>®, 8D(0)ecC 0<a<1l. (58)

2D potential flow of incompressible fluid in the Hele-Shaw cell:

oV

—=O, V- =O) 59

57 3 (59)
h2

V=—Vnp 60
12, P (60)

Ap=D0. (61)
27



Unique sourse/sink at a fixed point zg = (zg, yo)

z0 € D1(0) = D(0)\cl F, O €intF.

p(z,t) ~ Q( ) log |z — zo|, |z| = z0. (62)
g—i=o,zeaﬁ (63)
p(z) =0, zeTl(t), (64)
dr
o =V, zel(t). (65)
il = —h—QVp. (66)

28



Let us now introduce new unknown function, a one-parametric family of
C2-diffeomorphisms

w(s,t) = (u(s,t),v(s,t)) :0G1xI =T (t), G1={s=(s1,82) € R? : |s| < 1}.

(67)
The function w(s,t) in (67) determines an unknown parametrization of
the free boundary I'(t), namely,

(i) w(s,t) e I'(t) for all (s,t) € 0G1 x I,
(i) w(-,t) : 0G1 — I(t) is a C2-diffeomorphism for each fixed t € I,
(i) w(-,-) € C2 (ac;l X I;RQ) .
P=Q-Gp, (1) (68)

29



and Gp, () Is the solution to
AGp, )(#,20) +d0(2 —20) =0, z€ Di(?),

gDI(t)(ZazO) =0, ze€ r(t)a

0G
Dy () (2,20) =0, z€dF.
on

30



Problem (HSg). Find a pair {w(s,t);G(z,20;t)}, such that w(s,t) :
dG1 x I — R? js a C2-diffeomorphism satisfying

(i) w(s,t) € I'(t) for all (s,t) € 0G1 X I;
(i) w(-,t) : 0G1 — [(¢) is a C2-diffeomorphism for each fixed t € I;

(i) w(0)(s) = w(s,0) is a given C2-diffeomorphism of the unit circle & Gy,
which describes the boundary I'(0) of initial domain D1(0);

(iv) G(z,zg;t) is Green’s function of the operator —A in the doubly con-
nected domain D1(t) with the homogeneous Neumann data on the fixed
boundary O F and the homogeneous Dirichlet data on the free boundary
[ (t), i.e. satisfies conditions (69)—(71) for each fixed t € I;

(V) 8,w(s,t) = —%f VG(w(s,b),z0:) for all (s,t) € DGy x I.
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We consider four essentially different situations:

(a) the source zg and ALL points z = w(s,t) of the boundary 91 (0)
of the initial domain D1(0) are distant from the boundary dw. of the

obstacle;

(b) the source zg is close to the boundary dw. of the obstacle, but ALL
points z = w(s,t) of 0N (0) are distant from 9 we;

(c) the source zg and SOME points z = w(s,t) of 9 (0) are close to
the boundary dw: of the obstacle; we consider those points z = w(s,t)

which are distant from 0 we:

(d) the source zg and SOME points z = w(s,t) of 9 (0) are close to
the boundary dw. of the obstacle; we consider those points z = w(s,t)

which are close to 0 we.
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