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[Motivation: Registration]

= Main Goal: Registration

= Image registration: medical imaging, image
super-resolution, video compression...

= Surface registration: face recognition, texture

mapping, medical shape analysis...




[Motivation: Registration]

= Categories of Registration:

= Intensity-based registration: based on image
intensity for image registration or geometric
quantities (curvatures) for surface registration.

=/ Landmark-based registration: based on salient
features or landmarks (e.g. sulcal/gyral
landmarks on brains)

Goal: Look for a registration with minimum geometric distortion!

Brain 2
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| Our Goal |

= Develop algorithm to compute constrained registration:

= Preserve bijectivity (many landmarks/large
deformations)

= Preserve local geometry

= Match landmark consistently

= Uniqueness (won't jump into local minimum)
= Efficiency

= Independence of the mesh structure

Consider a special class of bijective map, called T-Map:
= Minimizes the local geometric distortion
= Uniform local geometric distortion
" Always bijective .
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[ What is Quasi-conformal map?]

Generalization of conformal maps (angle-preserving);

Orientation preserving homeomorphism between Riemann
surfaces;

Bounded conformality distortion;

Intuitively, map infinitesimal circle to eIIipse; Beltrami

Mathematically, it satisfies: Jf _ (Z coefficient
07
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Examples of QC maps

In term of Riemannian metric,

4 . R
Conformal Quasi-conformal

9,
(s = Ml £ dsh) = 1Ll + e

Conformal map Quasiconformal map
Original face Circle packing (Circles to circles) (Circles to ellipses)



| Discrete QC Maps |

Discrete Measurable Riemann Mapping Theorem

Theorem (Discrete measurable Riemann mapping).  Suppose K1 and Ko are
genus 0 (simply-connected) closed (open) surface meshes. Fixing three (two) points
correspondence, there 1s a 1-1 correspondence between the set of discrete BC' defined
on Ky and the set of discrete QC maps between K1 and K.

Brain 1 Brain 2 Beltrami Coefficient Reconstructed



[Extremal Map]

= Extremal map: minimizes conformality distortion.

Definition Let f:S; — S5 be a quasi-conformal mapping between Sy and Ss.
: 1 2 1 : ppng 1 2
f s said to be an extremal mapping if for any quasi-conformal mapping h : S1 — So

isotopic to ¢ relative to the boundary,

et ) |so S ||| s

It is uniquely extremal if the inequality s strict.

Properties of extremal map:
= Minimizes the conformality distortion
= Extremal map always exists but may not unique

= Under suitable condition on the boundary/landmark constraints,
extermal map is unique.




What is T-Map?

= Quasi-conformal mapping with uniform conformality distortion.

Definition Let f : 51 — So be a quasi-conformal mapping. f is said to be a
Teichmiiller mapping associated to the integrable holomorphic function ¢ : S7 — C if
its associated Beltrami differential is of the form:
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[ T-Map v.s. Extremal Map]

= Huge relationship between T-Map and Extremal map!

Definition (Boundary dilation). Suppose S1 and Sa are open Riemann surfaces
with the same topology. The boundary dilation K1[f] of f is defined as:

Ki[f] = igt’{li'(h|51\c) thed CCS;,C is compact.}

where § s the family of quasi-conformal homeomorphisms of S, onto Sy which are
homotopic to f modulo the boundary.

= Under suitable condition, T-Map = Extremal map!

Theorem (Strebel’s theorem ). Let f be an extremal quasi-conformal
mapping with K(f) > 1. If Kq|f] < K(f), then f is a Teichmiiller

map associated with an integrable holomorphic function on Si.

Hence, f s also an unique extremal mapping.



[ T-Map v.s. Extremal Map]

= Under suitable boundary condition, T-Map = Extremal map on disk!

Theorem Let g : 0D — I be an orientation-preserving homeomorphism
of OD. Suppose further that h'(e") # 0 and h" (€'?) is bounded. Then

there 1s a Teichmiiller mapping f that is the unique extremal extension of g to ID.

That is, [ : 1D — D is an extremal mapping with flsp = g.

Main idea:

= For open surfaces with disk topology, if the boundary
correspondence satisfies “good” conditions for their derivatives,

EXTREMAL MAP =T-MAP!




[ Landmark matching T-Map ]

= [-Map exists and unique even with interior landmark constraints
enforced!

Theorem (Landmark-matching Teichmiiller mapping). Let S1 and S be
open Riemann surfaces with the same topology. Let {p;}I, € S1 and {q;}]—, € Sa be
the corresponding interior landmark constraints. Let f : S1\ {pi}iey — S2 \ {aqi}i
be the ertremal quasi-conformal mapping, such that p; corresponds to q; for all 1 <
i < n. If Ki|f] < K(f), then f is a Teichmiller map associated with an integrable
holomorphic function on Sy \ {p;}I—y. Hence, f is an unique extremal mapping.

Main idea:

= If boundary dilation is under certain condition, there EXISTS
landmark matching T-Map;

= T-Map is unique extremal map. Hence, given a prescribed set of
landmark constraints, the associated T-Map is UNIQUE!

= T-Map has BC with norm k < 1. Hence, T-Map is BIJECTIVE!




Outline Of The Talk

Motivation

Mathematical Background
Computational Algorithms
Applications

Conclusion

Brain 2



[ Our problem]

Problem:

= Find a T-Map which satisfies some boundary condition and interior
landmark constraints.

= Find a mapping which has LEAST and UNIFORM (everywhere the
same) conformality distortion.

Mathematically:
= Find a T-Map such that:

of _, @ 0f
Iz 0| Oz
Beltrami equation

fla;) =bi; f(pj) =q5; fori=1,....n; j=1,....m
Interior landmark points/curves constraints

and f|sp, =g on 9D,



[ Variational formulation ]

Main idea:

= Solving the above problem is difficult!

= Propose a variational formulation of the problem.

= |terative method, called the QC iterations, will be developed.

Variational formulation:
= [-Map fis extremal in the sense that:

e (F)llso < || p(R)]

= Our problem can be formulated as:

~ forany h: Dy — Dy satistying hlsgp, = g

f=argming,  p Fi(f) = ﬂrgmiﬂf;ﬂl_-,ﬂg{| ()]s}

subject to:

o flap, = g (boundary condition); f(p;j) =g¢;: fori=1...n: j=1....m
e i(f) :;,-L: for some constant ( < k& <« 1 and holomorphic function ¢ : Dy — C,

-
T



[ Variational formulation ]

Difficulty:
= Solving the above variational problem over f is difficult!
- vem L o (| 2/0F

f = axgming {[|(/)]|} = argmin | 5o

e

= Propose to minimize it over the Beltrami coefficients!

Variational formulation:
= We formulate the variational problem over Beltrami coefficients:

(v, f) = argmin,,., cE2(v):=argmin,.p, _c{||V||~}

subject to:

e v=pu(f)and ||v||- < 1
e v = kZ for some constant 0 < k < 1 and holomorphic function ¢ : D, — C:

Wr"

e flap, = g (boundary condition). f(p;) =¢q;; fori=1...n: j=1,...m



[ Computational Algorithm ]

Main idea:
= In each iterations, smooth and average the BC;

= Find the “best” associated gc map that fixes landmark and
boundary constraints.

Tools that we need:

= Linear Beltrami Solver (LBS): Provides a way to go between
Beltrami coefficient and its associated QC map.

(should be efficient so that fast computation in each iterations)

= Quasi-conformal (QC) Iterations: Provides a way to minimizes
the variational model for computing the T-Map.

(should converge fast, so that only few iterations are needed)




[ Linear Beltrami Solver]

Main idea:

= Build a discrete analogue of the generalized version of Beltrami
equation:

Let f=u++v—1v. Let u(f)=p+v-1r7.

(p—1)°+7>. 2T . 1+2p+p2 472

1—p2—72 » Y2 = 71372 X3 = T2 50

where oy =

= [ake divergence on both sides:

V- (4( ta )) —0 and V- (&( vx )) — 0
“y -I?y

f ¥q )
where A = .
(Y 2 (@ 3



[ Linear Beltrami Solver]

Discrete analoque:
= In the discrete setting, assume mapping to be piecewise linear.
= On triangulation mesh, let BC be defined on each faces.
= Then on each face, we have:
—dr = ay(T)ar + as(T)br
cr = ag(T)ar + az(T')br

where
Dyu(T) = ap, Dyu(T) = bp, Dyv(T) = ep and Dyo(T) = drp.

= Discrete divergence can be defined by (using divergence theorem
on mesh): .
Div(V)(vi) = Y AT VA(T) + Bf Va(T)
TEN;
where:

Al = (b — hi) JArea(T), AT = (hy — hi)/Area(T), AL = (hy — h;)/Area(T):
J , i , s k \ J Sl

1

BT = (g — g;)/Area(T), BT = (g — gi)/Area(T), BF = (g; — gi)/Area(T):



[ Linear Beltrami Solver]

Linear system to get the associated QC map:
= A sparse symmetric positive definite linear system can be obtained.

Div (4( Dzu )) — 0 and Div (4( Dz )) — () where A = ( Lt )
Dy-u Dy-u (v (3

= This is equivalent to the following linear system:

~

KZ Alloq(TYar + ao(T)br] + B [aa(T)ar + as(T)br] = 0
TeN;

Z Al (T)er + as(T)dp] + Bl [as(T)er + az(T)dp] = 0

@Em— /




[Quasi-conformal (QC) Iterations]

Main idea:
= lIteratively minimizes the variational model for computing T-Map

= Recall: (Lf' f) — argminMDl_}@{HU‘ x}
subject to: (1) v = u(f) with |jv|l < 1: (2) v = AE:

(3) f satisfies certain boundary condition and/or landmark constraints.

= |nitially, we consider an initial map:
fo=LBSpr(po :=0)
= Compute the BC of the initial map: ¥o = /(o)
Hence, obtain the initial pair: (9. fo)
= Laplace smooth and Averaging:

L) (1) = Z vo(1") /|INbhd(1")]| (Laplace smooth)
T; €Nbhd(T)

D Te all £ ¢ ko () yiq (T) :
(1 )(T) = c al faces oF A1 ! Averaqin
Alpn)(T) = No. of faces of K1 ) (1) ( ging)




[Quasi-conformal (QC) Iterations]

Detailed algorithm:
(a1 = A(L(vn)); N

1 s

frn+1 = LBSpar(ftn41):
\_VYn+1 -— p(frt1)- Y,

Algorithm: (QC iteration )
Input : Triangular meshes: K1 and Ks; the desired landmark constraints and/or

boundary condition.
Output : Optimal Beltrami coefficient v and the T-Map f

L. Obtain the initial mapping fo = LBSpar(po :=0). Set vg = pu(fo);
2. Given vy, compute pnpiq = A(L(vy)); Compute froy = LBSpa(ftna1) and

set vpy1 1= p(fnt1);
3. If ||vne1 — vn|| = €, continue. Otherwise, stop the iteration.



[ Convergence Analysis ]

Summary of QC iterations:
= Laplace smooth BC;

= Projection of BC into the space of BCs of Teichmuller type
Why it works:

= QC iterations = Minimization of harmonic energy under the
distorted metric given by BC.

Theorem (T-Map and harmonic energy). Let

|

T(S1) = {u:8i—=Cip=k

Pk

Define the harmonic energy with respect to p € T'(S1) by:

AS

E(//)— 111111 / ]\\_,l)‘ S, 5 = _Inin {/ f—— ‘d—f|’db}

f:S1—S%
Then: E : T(S1) — RT is convexr and its global minimizer is the Teichmiiller extremal

map.

L.M. Lui, X.F. Gu, S.T. Yau, Convergence of an Iterative Algorithm for Teichmuller Maps via
Harmonic Energy Minimization, UCLA CAM report 13-36, June 2013



[Numerical experiments 1 ]

Analytic example:

For a ring domain with inner and outer radii r, and r;, we map it fo a ring
with inner and outer radii r," and r;".
The extremal map has the polar formal

where ( :)

In the following, experiments with different situation is illustrated. Most of
the program codes are still in Matlab version. C++ version or even GPU
calculating can be applied to speed up the calculation.



Numerical experiments 1

Analytic example:
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Numerical experiments 3

Arbitrary s
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[Numerical experiments 4 ]

Irregular triangulation:

Histogram of the

BC norm
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[Numerical experiments 5 ]

Without fixing the whole boundary:
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[Numerical experiments 6 ]

Multiply-connected domains
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Numerical experiments 7
Interior landmark constraints:
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Numerical experiments 8
Soft landmark constraints:

Hard - Mean = 041934585 Std = 0.010031088

gt

. Mean of the norm of BC: 0.4193
(A) Hard constraints

Sof - Mean = 035346463 S1d = 0.0081731681

(B) Soft constraints Mean of the norm of BC: 0.3535



[QC Iterations for large deformation]

QC iterations obtain bijective map even with large deformation:
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[QC Iterations for large deformation]

QC iterations obtain bijective map even with large deformation:
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[Computational time for QC iterations ]

Laptop machine: Intel Core i7 2.70 GHz CPU; 8 GB RAM
(implemented using MATLAB)

Computational time for QC iterations

Vertex number Time | 2t |oe

Analytic example 8936 1.297 s 0.4122

4 points on boundary + 3 landmark curves 8257 446 s  0.4154
Disk (Dirichlet boundary) 8257 5.420 s 0.2295

8 points on boundary 8257 6.645 s  0.2120

4 points on boundary + 20 landmarks 8257 8.467 s  0.2843
Arbitrary shape 8257 10.056 s 0.3475

Disk free boundary + 20 landmarks 8257 18.579 s 0.1855
Three holes disk 17746 15.030 s 0.4088

Six holes disk 22979 17.680 s 0.4433

Sphere 10242 34.679 s 0.3086




[ Comparison with other methods ]

Comparison with: 1. Harmonic Map 2. TPS 3. LDDMM

Comparison with other methods

Teichmiiller map Harmonic map TPS LDDMM

Time 6.276 s 1.697s 0.117s 416.247 s
Overlap faces 0 110 13 0
e | o 0.594 5.389 | 0.805
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[Brain landmark matching registration]

Goal:

Find meaning 1-1 correspondence between brain surface
matches sulci consistently.

Applications:
Statistical analysis; morphometry,; processing,...
Difficulties:

Overlaps or flips occurs when there are large number of
landmarks or with large deformation.

Brain 1 Brain 2



[Brain landmark matching registration]

th 3 sulcal landmarks
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Brain landmark matching registration

T-Map for Brain registration with 6 sulcal landmarks

(A)

(B)
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[Brainstem registration ]

Brainstem:

Anatomical brain structures which govern the balance
control; regulate cardiac/respiratory function...

Goal:

Study Adolescent Idiopathic Scholiosis = 3D structural
deformity of the spine

Method:

1. Find meaningful surface
registration, |

2. Statistical shape analysis.

Normal AIS



Brainstem registration

T-Map —

6000

5000 —

4000

3000 —

2000

1000 —

Histogram of the BC norm



Constrained Texture Mapping

Texture mapping = map image onto a surface

(for surface decoration etc)

Idea: 1. Map vertices to 2D positions of an image;
(Correspondence guided by landmark features)
2. Color value is assigned for each vertex;
3. Color value inside the face by linear interpolation.

Textured surface mesh



[Constrained Texture Mapping ]

T-Map for constrained texture mapping

(B) ©



[Constrained Texture Mapping ]

T-Map for constrained texture mapping

(A) (B) (©)




[T-Map for high-genus surfaces]

Vertebrae bone (genus-1) registration
Shape morphometry: analysis of bone cancer, AIS etc...

Bone 2




Human Face registration

T-Map for face registration

(9



Human Face registration

T-Map for face registration
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| QC iterations with intensity matching |

Extension of QC iterations:

Goal: 1. Intensity matching;
2. Landmark matching;
3. Allow non-uniform conformality distortion.

Key idea:

Imatchz’ng(y) ‘= argminﬂ{ (I — IQ(fM)Q + n—rvP+ |VP~"‘2}
S S1 St

Solve by Alternating Direction Method of multipliers (ADMM)

QC iterations with intensity matching

Hn+1 -= Imatching (-Un);
frn+1 = LBSpar(ftnt1):

Un+1 1= (1 fnt1)-



QC iterations with intensity matching |

Example 1: ‘A’ to 'R’

Intensity and landmark matching registration



QC iterations with intensity matching |

Example 1: ‘A’ to 'R’

Intensity and landmark matching registration



[QC iterations with intensity matching ]
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QC iterations with intensity matching |

Example 2: 'I' to 'C’

Intensity and landmark matching registration



QC iterations with intensity matching |

Example 2: 'I' to 'C’

Intensity and landmark matching registration



[QC iterations with intensity matching ]

Intensity and landmark matching registration



[Conclusion and Future works ]

= Conclusion: T-Map

= Introduce T-Map: minimum and uniform local
geometric distortion;

= QC iterations: fast algorithm to compute T-Map

= T-Map is suitable for landmark-matching registration:
Every prescribed set of landmark constraints is
associated to a UNIQUE T-Map

= Applications: medical imaging, computer graphics
and computer visions.

= Future work:
= Study the convergence rate of QC iterations;
= GPU implementation of QC iterations;
= Extend the algorithms to point clouds;
= Apply T-Map to medical morphometry...



