Geodesic equation on the Universal Teichmller space, Teichons and Imaging

Sergey Kushnarev (Akil Narayan, Umass Dartmouth)

Singapore University of Technology and Design

June 2013, Imperial College London

Outline

- Fingerprints representation of the 2D shapes
- Universal Teichmüller space
- Weil-Petersson metric
- ▶ EPDiff(S¹)
- Geodesic finding
- Teichons
- Application

Shape parametrization

 $\mathrm{PSL}_2(\mathbb{R}) \backslash \text{Diff}(\mathcal{S}^1) \cong \text{ set of shapes/translations, scalings}$

Beltrami differential μ

Unit disk $\Delta \subset \mathbb{C}$.

$$L^{\infty}(\Delta)_1 = \{\mu \in L^{\infty}(\Delta) : \|\mu\|_{\infty} < 1\}.$$

K-quasiconformal map f:

$$\partial_{\overline{z}}f=\mu(z)\partial_z f,$$

where $K = rac{1+\|\mu\|_\infty}{1-\|\mu\|_\infty}$.

Model A: Homeo_{qs}(S^1). $\mu \in L^{\infty}(\Delta)_1$ is the Beltrami differential.

$$\mu\left(\frac{1}{\bar{z}}\right) = \bar{\mu}(z)\frac{z^2}{\bar{z}^2}, z \in \Delta$$

 f_{μ} is the unique solution to the Beltrami equation:

$$\partial_{\overline{z}} f_{\mu} = \mu(z) \partial_z f_{\mu}, \ (\mu(z) = \mu(z) \frac{\partial_z}{\partial_{\overline{z}}})$$

 $\mu, \nu \in L^{\infty}(\Delta)_1$: $\mu \sim \nu$ iff $f_{\mu} \mid_{S^1} = f_{\nu} \mid_{S^1}$.

$$\mathit{Teich}(\Delta) = L^\infty(\Delta)_1 / \sim .$$

 $Teich(\Delta) = Homeo_{qs}(S^1)/PSL_2(\mathbb{R}).$

Model A: Homeo_{qs}(S^1). $\mu \in L^{\infty}(\Delta)_1$ is the Beltrami differential.

$$\mu\left(\frac{1}{\bar{z}}\right) = \bar{\mu}(z)\frac{z^2}{\bar{z}^2}, z \in \Delta$$

 f_{μ} is the unique solution to the Beltrami equation:

$$\partial_{\overline{z}} f_{\mu} = \mu(z) \partial_z f_{\mu}, \ (\mu(z) = \mu(z) \frac{\partial_z}{\partial_{\overline{z}}})$$

 $\mu, \nu \in L^{\infty}(\Delta)_1$: $\mu \sim \nu$ iff $f_{\mu} \mid_{S^1} = f_{\nu} \mid_{S^1}$.

$$\mathit{Teich}(\Delta) = L^\infty(\Delta)_1 / \sim .$$

$$Teich(\Delta) = Homeo_{qs}(S^1)/PSL_2(\mathbb{R}).$$

Model B: quasicircles. $\mu \in L^{\infty}(\Delta)_1$ is the Beltrami differential. $\mu(z) = 0$ for $z \in \Delta^*$. f^{μ} is the solution to the Beltrami equation:

$$\partial_{\overline{z}}f^{\mu} = \mu(z)\partial_{z}f^{\mu},$$

 $f^{\mu}: \Delta^* o D^{\mu}:= f(\Delta^*)$ is conformal.

$$\mu \sim \nu$$
 iff $f^{\mu} \mid_{\Delta^*} = f^{\nu} \mid_{\Delta^*}$.
Teich $(\Delta) = L^{\infty}(\Delta)_1 / \sim$.

In other words $Teich(\Delta) = \{$ quasicircles $\}/\{$ translations, scaling $\}$

Model B: quasicircles. $\mu \in L^{\infty}(\Delta)_1$ is the Beltrami differential. $\mu(z) = 0$ for $z \in \Delta^*$. f^{μ} is the solution to the Beltrami equation:

$$\partial_{\overline{z}}f^{\mu} = \mu(z)\partial_{z}f^{\mu},$$

 $f^{\mu}: \Delta^* o D^{\mu}:= f(\Delta^*)$ is conformal.

$$\mu \sim \nu$$
 iff $f^{\mu} \mid_{\Delta^*} = f^{\nu} \mid_{\Delta^*}$.
Teich $(\Delta) = L^{\infty}(\Delta)_1 / \sim$.

In other words $Teich(\Delta) = \{quasicircles\}/\{translations, scaling\}$

$\begin{array}{l} \textbf{Model } \textbf{A} \Leftrightarrow \textbf{Model } \textbf{B} \\ f_{\mu} \mid_{\mathcal{S}^{1}} = f_{\nu} \mid_{\mathcal{S}^{1}} \Leftrightarrow f^{\mu} \mid_{\Delta^{*}} = f^{\nu} \mid_{\Delta^{*}} . \end{array}$

Therefore

 $Homeo_{qs}(S^1)/PSL_2(\mathbb{R}) \cong \{quasicircles\}/\{translations, scaling\}$

 $\operatorname{Diff}(S^1)/\operatorname{PSL}_2(\mathbb{R})\cong \{ {
m smooth shapes} \}/\{ {
m translations, scaling} \}$

$\begin{array}{l} \textbf{Model } \textbf{A} \Leftrightarrow \textbf{Model } \textbf{B} \\ f_{\mu} \mid_{S^{1}} = f_{\nu} \mid_{S^{1}} \Leftrightarrow f^{\mu} \mid_{\Delta^{*}} = f^{\nu} \mid_{\Delta^{*}} . \end{array}$

Therefore

 $Homeo_{qs}(S^1)/PSL_2(\mathbb{R}) \cong \{quasicircles\}/\{translations, scaling\}$

 $\mathbf{Diff}(S^1)/\mathrm{PSL}_2(\mathbb{R}) \cong \{ \text{smooth shapes} \} / \{ \text{translations, scaling} \}$

Now, without the scary words:

 $\mathrm{PSL}_2(\mathbb{R}) \setminus \mathsf{Diff}(S^1) \cong$ set of shapes/translations, scalings

By Riemann mapping theorem

 $\phi_{\text{int}}: \mathbb{D}_{\text{int}} \to \Gamma_{\text{int}},$ $\phi_{\text{ext}}: \mathbb{D}_{\text{ext}} \to \Gamma_{\text{ext}}.$

$\mathsf{Shape} \to \mathsf{fingerprint?}$

How to get conformal maps?

Schwarz-Christoffel toolbox for Matlab, Toby Driscoll.

http://www.math.udel.edu/~driscoll/software/SC/

Zipper algorithm, Don Marshall.

http://www.math.washington.edu/~marshall/zipper.html

$\mathsf{Shape} \to \mathsf{fingerprint?}$

 ϕ_{int} is unique up to $\phi_{\text{int}} \circ A$ $A : \mathbb{D}_{\text{int}} \to \mathbb{D}_{\text{int}}$, subgroup of Möbius transformations $A(z) \in \text{PSL}_2(\mathbb{R})$,

$$A(z) = \frac{az+b}{\overline{b}z+\overline{a}}, |a|^2 - |b|^2 = 1$$

$\mathsf{Shape} \to \mathsf{fingerprint?}$

$$\begin{split} \phi_{\text{ext}}(S^1) &= \mathsf{\Gamma}, \ \phi_{\text{int}}^{-1}(\mathsf{\Gamma}) = S^1 \\ \psi &= \phi_{\text{int}}^{-1} \circ \phi_{\text{ext}} \in \text{PSL}_2(\mathbb{R}) \backslash \text{Diff}(S^1), \end{split}$$

defined on the circle ${\cal S}^1$

Shape \rightarrow fingerprint?

Möbius ambiguity

One shape, different fingerprints: $A_1 \circ \psi, A_2 \circ \psi, A_3 \circ \psi$. Where $A_k \in PSL_2(\mathbb{R})$.

b_marked.fig

0002*b_marked.fig* zoom

Fingerprint \rightarrow shape?

Welding:
$$F(\theta) := f_{\text{ext}}(e^{i\theta}) = f_{\text{int}}(e^{i\theta}) \circ \Psi.$$

 $K(F) + F = e^{i\theta},$

$$\begin{split} \mathcal{K}(F)(\theta_1) &= \frac{i}{2} \int \left(\cot\left(\frac{\theta_1 - \theta_2}{2}\right) - \Psi'(\theta_2) \cot\left(\frac{\Psi(\theta_1) - \Psi(\theta_2)}{2}\right) \right) F(\theta_2) d\theta_2 \\ \mathcal{K}_{\alpha,\beta} &= 2 \log \left| \frac{\sin(\theta^\alpha - \theta^{\beta+1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta-1/2}))}{\sin(\theta^\alpha - \theta^{\beta-1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta+1/2}))} \right|, \end{split}$$

Fingerprint \rightarrow shape?

Welding:
$$F(\theta) := f_{\text{ext}}(e^{i\theta}) = f_{\text{int}}(e^{i\theta}) \circ \Psi$$
.
 $K(F) + F = e^{i\theta}$,

$$\begin{split} \mathcal{K}(F)(\theta_1) &= \frac{i}{2} \int \left(\cot\left(\frac{\theta_1 - \theta_2}{2}\right) - \Psi'(\theta_2) \cot\left(\frac{\Psi(\theta_1) - \Psi(\theta_2)}{2}\right) \right) F(\theta_2) d\theta_2 \\ \mathcal{K}_{\alpha,\beta} &= 2 \log \left| \frac{\sin(\theta^\alpha - \theta^{\beta + 1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta - 1/2}))}{\sin(\theta^\alpha - \theta^{\beta - 1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta + 1/2}))} \right|, \end{split}$$

Fingerprint \rightarrow shape?

Welding:
$$F(\theta) := f_{\text{ext}}(e^{i\theta}) = f_{\text{int}}(e^{i\theta}) \circ \Psi$$
.
 $K(F) + F = e^{i\theta}$,

$$\begin{split} \mathcal{K}(F)(\theta_1) &= \frac{i}{2} \int \left(\cot\left(\frac{\theta_1 - \theta_2}{2}\right) - \Psi'(\theta_2) \cot\left(\frac{\Psi(\theta_1) - \Psi(\theta_2)}{2}\right) \right) F(\theta_2) d\theta_2 \\ \mathcal{K}_{\alpha,\beta} &= 2 \log \left| \frac{\sin(\theta^\alpha - \theta^{\beta+1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta-1/2}))}{\sin(\theta^\alpha - \theta^{\beta-1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta+1/2}))} \right|, \end{split}$$

$\mathsf{Fingerprint} \to \mathsf{shape}?$

Welding:
$$F(\theta) := f_{\text{ext}}(e^{i\theta}) = f_{\text{int}}(e^{i\theta}) \circ \Psi.$$

 $K(F) + F = e^{i\theta},$

$$\begin{split} \mathcal{K}(F)(\theta_1) &= \frac{i}{2} \int \left(\cot\left(\frac{\theta_1 - \theta_2}{2}\right) - \Psi'(\theta_2) \cot\left(\frac{\Psi(\theta_1) - \Psi(\theta_2)}{2}\right) \right) F(\theta_2) d\theta_2 \\ \mathcal{K}_{\alpha,\beta} &= 2 \log \left| \frac{\sin(\theta^\alpha - \theta^{\beta + 1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta - 1/2}))}{\sin(\theta^\alpha - \theta^{\beta - 1/2}) \sin(\Psi(\theta^\alpha) - \Psi(\theta^{\beta + 1/2}))} \right|, \end{split}$$

So far...

$\mathrm{PSL}_2(\mathbb{R}) ackslash \mathsf{Diff}(S^1) \cong \ \mathsf{set} \ \mathsf{of} \ \mathsf{shapes}/\mathsf{translations}, \ \mathsf{scalings}$

Weil-Petersson metric

Traditionally, $\mu, \nu \in T(1)$

$$\langle \mu, \nu \rangle_{WP} = \int_{\Delta} \mu \bar{\nu} d\rho$$

Nag, Verjovsky* showed, that for fingerprints, given $v(\theta) = \sum_{n=-\infty}^{\infty} v_n e^{in\theta} \in \mathbf{Vec}(S^1)$:

$$\|v\|_{WP}^2 = \sum_{n \in \widehat{\mathbb{Z}}} |n^3 - n| |v_n|^2$$

$$\|v\|_{WP}^{2} = \int_{S^{1}} Lv.vd\theta,$$

= $-\int_{S^{1}} \mathcal{H}(v_{\theta\theta\theta} + v_{\theta}).vd\theta.$

 $^{^{\}star}$ Diff(S^1) and the Teichmuller spaces, S Nag and A Verjovsky. Comm. Math. Phys. V 130, N1, 1990, 123-138.

Weil-Petersson metric

Traditionally, $\mu, \nu \in T(1)$

$$\langle \mu, \nu \rangle_{WP} = \int_{\Delta} \mu \bar{\nu} d\rho$$

Nag, Verjovsky* showed, that for fingerprints, given $v(\theta) = \sum_{n=-\infty}^{\infty} v_n e^{in\theta} \in \mathbf{Vec}(S^1)$:

$$\|v\|_{WP}^2 = \sum_{n\in\widehat{\mathbb{Z}}} |n^3 - n| |v_n|^2$$

or

$$\begin{split} \|v\|_{WP}^2 &= \int_{S^1} Lv.vd\theta, \\ &= -\int_{S^1} \mathcal{H}(v_{\theta\theta\theta} + v_{\theta}).vd\theta. \end{split}$$

^{*} Diff(S¹) and the Teichmuller spaces, S Nag and A Verjovsky. Comm. Math. Phys. V 130, N1, 1990, 123-138.

Weil-Petersson metric

Why WP metric?

Unique geodesics

Recap

- Shape S (modulo translations and scaling) represented by fingerprint φ ∈ PSL₂(ℝ)\Diff(S¹).
- Metric on $PSL_2(\mathbb{R}) \setminus Diff(S^1)$: Weil-Petersson.

$$\|v\|_{WP}^2 = \sum_{n\in\widehat{\mathbb{Z}}} |n^3 - n| |v_n|^2.$$

▶ Goal: find geodesics between shapes, i.e. geodesics in space PSL₂(ℝ)\Diff(S¹).

Theorem (Arnold, 1966*)

Let G be any Lie group. Let $\langle v_1, v_2 \rangle_L = (L(v_1), v_2)$ be a positive-definite symmetric inner product on the Lie algebra g, defined by a symmetric linear map $L : \mathfrak{g} \to \mathfrak{g}^*$. For $v_1, v_2 \in T_g G$: $\langle v_1, v_2 \rangle_g = \langle D_g R_{g^{-1}} v_1, D_g R_{g^{-1}} v_2 \rangle_e = \langle v_1 \cdot g^{-1}, v_2 \cdot g^{-1} \rangle$. Let g(t)be any path in G and define $u(t) = g_t \cdot g^{-1}$ to be its tangent path in g. Then:

$$g(t) \subset G$$
 is a geodesic $\iff Lu_t = -\mathrm{ad}^*_u(Lu)$ in \mathfrak{g}^*

where $\operatorname{ad}_{u}^{*} : \mathfrak{g}^{*} \to \mathfrak{g}^{*}$ is the adjoint of $\operatorname{ad}_{u}, u \in \mathfrak{g}$.

*Vladimir Arnold. Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits. Annales de l'institut Fourier, 16 no. 1 (1966), p. 319-361

$$\begin{split} & v_1, v_2 \in T_g G: \\ & \langle v_1, v_2 \rangle_g = \langle v_1 \cdot g^{-1}, v_2 \cdot g^{-1} \rangle = \left(\mathcal{L}(v_1 \cdot g^{-1}), v_2 \cdot g^{-1} \right). \\ & g(t) \subset G \text{ is a geodesic } \iff \mathcal{L}u_t = -\mathrm{ad}_u^*(\mathcal{L}u), \\ & \text{where } u(t) = g_t \cdot g^{-1} \end{split}$$

Rotating body

Example

Group G = SO(3), a group of rotations of a 3D rigid body with a fixed point, The path $t \mapsto g(t)$ is the motion of the body. Metric $E = \frac{1}{2}(\mathbb{I}\omega, \omega)$, $\mathbb{I} = \text{diag}(I_1, I_2, I_3)$.

$$Lu_t = -\mathrm{ad}_u^*(Lu) \Longleftrightarrow \begin{cases} \dot{m}_1 = \left(\frac{1}{I_3} - \frac{1}{I_2}\right) m_2 m_3, \\ \dot{m}_2 = \left(\frac{1}{I_1} - \frac{1}{I_3}\right) m_3 m_1, \\ \dot{m}_3 = \left(\frac{1}{I_2} - \frac{1}{I_1}\right) m_1 m_2. \end{cases}$$

Ideal fluid

Example

Take G = SDiff(M), a group of volume-preserving diffeomorphisms of $M \subset \mathbb{R}^3$.

The path $t \mapsto g(t)$ is the motion of the incompressible fluid in M. Metric $E = \frac{1}{2} \int_{M} v^2 d^3 x$.

$$Lu_t = -\operatorname{ad}^*_u(Lu) \Longleftrightarrow \partial v_t + v \cdot \nabla v = -\nabla p.$$

$$Lu_t = -\operatorname{ad}_u^*(Lu).$$

Group	Metric	Equation
SO(3) $SO(3) \ltimes \mathbb{R}^3$	$< \omega, I\omega >$ quadratic forms	Euler top Kirchhoff equations for a body in a fluid
SO(n)	Manakov's metrics	<i>n</i> -dimensional top
$\operatorname{Diff}(S^1)$	L^2	Hopf (or, inviscid Burgers) equation
Virasoro	L^2	KdV equation
Virasoro	H^1	Camassa – Holm equation
Virasoro	\dot{H}^1	Hunter – Saxton (or Dym) equation
SDiff(M)	L^2	Euler ideal fluid
SDiff(M)	H^1	Averaged Euler flow
$SDiff(M) \ltimes SVect(M)$	$L^2 + L^2$	Magnetohydrodynamics
$Maps(S^1, SO(3))$	H^{-1}	Heisenberg magnetic chain

B.Khesin, Topological Fluid Dynamics, Notices of the AMS, January 2005.

Theorem (DM, SK 2010*)

Let G be any Lie group and H a subgroup. Let $\langle v_1, v_2 \rangle_L = (L(v_1), v_2)$ be a non-negative symmetric inner product on \mathfrak{g} with null space \mathfrak{h} , defined by a non-negative symmetric linear map $L : \mathfrak{g} \to \mathfrak{g}^*$. Assume this inner product is invariant under $Ad_h, h \in H$. Let g(t) be any path in G and define $u(t) = g_t \cdot g^{-1}$ to be its tangent path in \mathfrak{g} . Then:

$$\{H\cdot g(t)\}\subset Hackslash G$$
 is a geodesic $\iff Lu_t=-\mathrm{ad}^*_u(Lu)$ in \mathfrak{g}^*

where $\operatorname{ad}_{u}^{*} : \mathfrak{g}^{*} \to \mathfrak{g}^{*}$ is the adjoint of $\operatorname{ad}_{u}, u \in \mathfrak{g}$.

*Euler equations on homogeneous spaces and Virasoro orbits. B Khesin, G Misiolek, Advances in Math. 176 (2003), 116-144;

2D shapes

Take $H \setminus G = PSL_2(\mathbb{R}) \setminus Diff(S^1)$, the space of fingerprints (or 2D shapes).

The path $t \mapsto g(t)$ is the path in the space of 2D shapes. Metric $E = \int_{S^1} Lv(\theta) \cdot v(\theta) d\theta$, where $L = -\mathcal{H}(\partial_{\theta}^3 + \partial_{\theta})$:

$$Lu_t = -\operatorname{ad}^*_u(Lu) \Longleftrightarrow \partial(Lv)_t + 2Lv.v_{\theta} + Lv_{\theta}.v = 0.$$

 $\langle v_1, v_2 \rangle_L = (L(v_1), v_2)$

EPDiff

(

Euler-Poincaré equation for the group of diffeomorphisms

$$Lv_t = -\operatorname{ad}_v^*(Lv).$$

$$(Lv)_t + v.(Lv)_\theta + 2v_\theta.Lv = 0, \ v \in T_{Id}\operatorname{Diff}(S^1).$$

$$m_t + v.m_\theta + 2v_\theta.m = 0, \ m \in T_{Id}\operatorname{Diff}(S^1)^*.$$

$$\left(m = Lv, v = G * m, L = -\mathcal{H}(\partial_\theta^3 + \partial_\theta)\right).$$

Minimization

Equivalent to minimizing the energy:

$${\sf E}(\psi) = \int_0^1 \left\| rac{\partial \psi}{\partial t}(\psi^{-1}(x,t),t)
ight\|_L^2 dt,$$

Shape
$$S_1$$
: $\psi(\theta, t = 0) = \psi_0(\theta)$,
Shape S_2 : $\psi(\theta, t = 1) = \psi_1(\theta)$.

$$\begin{split} \psi_t \circ \psi^{-1} &= \mathsf{v}, \\ (\psi^{-1})_t &= -\mathsf{v}.(\psi^{-1})_\theta. \end{split}$$

Minimizing numerically

$$\int_0^1 \|\psi_t \circ \psi^{-1}\|_{WP}^2 dt = \int_0^1 \|(\psi^{-1})_t / (\psi^{-1})_\theta\|_{WP}^2 dt$$

0002*b_marked.fig* zoom

What shall we do?

Solution:

$Teichons^* = solitons + Teichmüller$

*Name credit D. Holm.

Teichons (= solitons + Teichmüller)

 $m_t + v.m_\theta + 2v_\theta.m = 0$

$$v(heta,t) = \sum_{j=1}^{N} a_j G(heta - b_j).$$

$$\begin{pmatrix} \dot{a}_k = -a_k \sum_{j=1}^N a_j G'(b_k - b_j), \\ \dot{b}_k = \sum_{j=1}^N a_j G(b_k - b_j). \end{cases}$$

Teichons (= solitons + Teichmüller)

$$m_t + v.m_\theta + 2v_\theta.m = 0$$

$$\left(\begin{array}{c} \dot{a}_k = -a_k \sum_{j=1}^N a_j G'(b_k - b_j), \\ \dot{b}_k = \sum_{j=1}^N a_j G(b_k - b_j). \end{array} \right)$$

Teichons (= solitons + Teichmüller)

►

$$m_t + v.m_\theta + 2v_\theta.m = 0$$

$$m(heta, t) = \sum_{j=1}^{N} a_j \delta(heta - b_j),$$

$$v(heta,t) = \sum_{j=1}^{N} a_j G(heta - b_j).$$

$$\left(egin{array}{l} \dot{a}_k = -a_k \sum_{j=1}^N a_j G'(b_k - b_j), \ \dot{b}_k = \sum_{j=1}^N a_j G(b_k - b_j). \end{array}
ight.$$

 $\begin{array}{c} 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{array}$

Canoe

Torch with the flame.

Seagull.

Some random shape.

Shooting method

Given ψ_0 and ψ_1 find v_0 :

$$Lv_t + 2Lv \cdot v_\theta + Lv_\theta \cdot v = 0, \quad v(t=0) = v_0.$$

Reconstruction equation:

$$\psi_t = \mathbf{v} \circ \psi,$$

$$\psi(t = \mathbf{0}) = \psi_0,$$

such that $\psi(t=1) = \psi_1$.

Shooting method

Given ψ_0 and ψ_1 find $p_k(0), q_k(0)$:

$$\begin{cases} \dot{p}_k = -p_k \sum_{j=1}^N p_j G'(q_k - q_j), \\ \dot{q}_k = \sum_{j=1}^N p_j G(q_k - q_j). \end{cases}$$

Reconstruction equation:

$$egin{aligned} &m{v}(heta,t) = \sum_{k=1}^N p_k(t) G(heta-q_k(t)) \ &\partial_t \psi = m{v} \circ \psi, \ &\psi(t=0) = \psi_0, \end{aligned}$$

such that $\psi(t=1) = \psi_1$.

Shooting with Teichons. Outline.

Given ψ_0 and ψ_1 find $\mathbf{q}_0, \mathbf{p}_0$:

- integrate to get $\mathbf{q}(t), \mathbf{p}(t)$: $\dot{\mathbf{q}} = G(\mathbf{q})\mathbf{p}, \dot{p} = -\mathbf{p} \bullet G'(\mathbf{q})\mathbf{p};$
- get $v(t) = \sum p_k(t)G(x q_k(t));$
- integrate to get $\psi(t)$: $\psi_t = \mathbf{v} \circ \psi$;
- weld: $\psi(t) \longrightarrow \text{shapes}(t);$
- update \mathbf{p}_0 via the $\nabla_{\mathbf{p}_0} E$.

Shooting with Teichons

What does it mean, $\psi(t = 1) = \psi_1$?

$$F = \int_0^{2\pi} (\psi_1(x) - \psi(x, t = 1))^2 dx.$$

Would it work for fingerprints?

Shooting with Teichons

What does it mean, $\psi(t = 1) = \psi_1$?

$$F = \int_0^{2\pi} (\psi_1(x) - \psi(x, t = 1))^2 dx.$$

Would it work for fingerprints?

New matching functional

Cross-ratios

$$C(\mathbf{z}) = \frac{z_4 - z_1}{z_1 - z_2} \frac{z_2 - z_3}{z_3 - z_4},$$

where $\mathbf{z} = (z_1, z_2, z_3, z_4)$. Main property:

$$C(A(\mathbf{z})) = C(\mathbf{z}),$$

where $A(\mathbf{z}) = (A(z_1), A(z_2), A(z_3), A(z_4))$, and A is a Möbius transformation.

Delaunay Triangulation

Delaunay triangulation for a set P of points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P)

Delaunay Triangulation

Multiscale: DT on 8, 16, 32, 64, 128 points.

3D surfaces

How can we compare 3D surfaces?

Laplace-Beltrami operator

Level sets of eigenfunction f:

MSE planes

We will compare to a unit template: circle

20000

44 subjects: CDR 0 (22), CDR 1 (22). We have $\{\mathbf{p}_k\}_{k=1}^{44}$ for each slice.

Slice 1: PC_1, \ldots, PC_5

Slice 1: $PC_6, ..., PC_{10}$

SVM, Correct Rate of Classification

Leave-one-out cross validation on momenta projected to PC_k

SVM, Correct Rate of Classification

Leave-one-out cross validation on momenta: All slices:

CorrectRate = 0.59091.

The best score: combine slices 1, 6, 9

CorrectRate = 0.81818

onor_oooo_min_aceg_nilaya - e

Why can't we shoot from slice to slice?

$$egin{aligned} m(heta,t=0) &= \sum_{k=1}^4 p_k \delta(heta-q_k), \ (p_1,p_2,p_3,p_4) &= (p,-p,p,-p) \ (q_1,q_2,q_3,q_4) &= (2\pi-q,q,\pi-q,\pi+q). \ p(t) &\sim e^{t^2}/t, \quad q(t) \sim e^{-t^2}. \end{aligned}$$

Solution (A.Narayan)

Change of variables:

$$egin{aligned} &p_1(t), p_2(t) o rac{p_1(t)+p_2(t)}{2}, rac{p_1(t)-p_2(t)}{2}, \ &q_1(t), q_2(t) o rac{q_1(t)+q_2(t)}{2}, rac{q_1(t)-q_2(t)}{2}. \end{aligned}$$

Future Directions

extend WP to multiply connected domains

What is the WP distance between two closed simply connected surfaces?

Future Directions

- extend WP to multiply connected domains
- What is the WP distance between two closed simply connected surfaces?

Thank you.

- V.I. Arnold. Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits. Annales de l'institut Fourier, 16 no. 1 (1966), p. 319-361.
- S. Kushnarev, Teichons: Soliton-like Geodesics on Universal Teichmüller Space, Experiment. Math., Volume 18, Issue 3 (2009), 325-336.
- S. Kushnarev. Thesis The Geometry of the space of 2D shapes and the Weil-Petersson metric. http://www.bioeng.nus.edu.sg/cfa/sk/.
- E. Sharon and D. Mumford, 2D-Shape Analysis using Conformal Mapping, IJCV, V. 70, 1.
- S. Nag and A. Verjovsky. Diff(S¹) and the Teichmuller spaces. Comm. Math. Phys. V 130, N1, 1990, 123-138.
- B Khesin, G Misiolek. Euler equations on homogeneous spaces and Virasoro orbits. Advances in Math. 176 (2003), 116-144.
- M. Vaillant, M.I. Miller, L. Younes, A. Trouve. Statistics on diffeomorphisms via tangent space representations. NeuroImage. Volume 23, Supplement 1, 2004, Pages S161-S169.
- P. Michor, D. Mumford. Riemannian geometries on spaces of plane curves. JEMS 8 (2006), 1-48. arXiv:math.DG 0312384.