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Introduction Simply connected

Schwarz-Christoffel

(simply connected)

@ Recall the conformal map from the unit disk in C to the interior of a
polygon P C Cis:

f(2) = A/Z 1 -2)%dc+8B.
k=1

Notation:

» polygon vertices are w,
» prevertices on the circle are zx, s.t. wx = f(zx),
» polygon tangent turning angles are Sy.
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Introduction Simply connected

Schwarz-Christoffel

(simply connected)

@ Recall the conformal map from the unit disk in C to the interior of a
polygon P C Cis:

f(2) = A/Z 1 -2)%dc+8B.
k=1

Notation:

» polygon vertices are w,
» prevertices on the circle are zx, s.t. wx = f(zx),
» polygon tangent turning angles are Sy.

@ The factors of the product are such that

arg {%f(e’e)} = p.w. const., with jumps of S, at z.
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Schwarz-Christoffel

(simply connected)

(@) =A [ TIC-20 % dc+8
k=1

@ Given P, the parameter problem is to find the correct values for
2z = €%, A, and B such that the side lengths, position, and
orientation of the polygon is correct under this formula.

@ SCPACK, Trefethen (1980); SC Toolbox, Driscoll (1996).
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Introduction Multiply connected SC

Schwarz-Christoffel

Multiply connected (unbounded)

211 Q Wy,1 ’ j

We conformally map an unbounded domain 2 with m circular holes to
an unbounded domain P with m polygonal holes.
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Form of the map

(unbounded case)

@ (Delillo, Elcrat and Pfaltzgraff, 2004) The map to an unbounded
domain P with m polygonal holes from a conformally equivalent
unbounded domain Q with m circular holes is given by

Bk.j

z m K/ _ .
/ <Czkf> dc + B.
j= 1k | o NS Sy

vEon(j)

» zx,, are reflections (through circles) of prevertices zy

» s, are reflections (through circles) of circle centers s; := ¢;

» v is a multi-index which tracks reflections

» Bk jm are the turning angles of the tangent vectors on the polygons

E. Kropf, et al. Efficient MCSC June 2013 6/36



Reflection example

@ Example of a reflected circle domain with m =3 and N = 2.
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Convergence conditions

@ A sufficient condition for convergence of the infinite product is
A < (m—1)""% where

r+r
A:= max 1P

/AR 1<jp<m
jpij#p |G —Cp| ’
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Convergence conditions

@ A sufficient condition for convergence of the infinite product is
A < (m—1)""% where

r+r
A:= max 1P

/AR 1<jp<m
jpij#p |G —Cp| ’

@ Far from necessary in practice.
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Convergence conditions

Bk,j
> m K oo
_Z .
/ 11 (C k”f’) dc+ B
j=1k=1| n=0 =Sy
vean(f)

@ A sufficient condition for convergence of the infinite product is
A < (m—1)""% where

r+r
A:= max 1P

— <1, 1<,p<m
j-p: j#p |G — Cp J

@ Far from necessary in practice.

m
@ A better indication of convergence: >~ Y 1,
j=1 veon(j)
(the sum of the radii of the reflected circles at the Nt level of
reflection).
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Problem statement

Bk.j

K.
z / 0 C_Z,V'
=TI TT (57)| e

j=1 k=1 n=0

@ Given P, the parameter problem is to find centers c¢;, radii r;, and
prevertices zy ; = ¢; + r;e'%, along with A and B such that the
side lengths, positions, and orientations of the polygons are
correct under this formula.
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Map preview
(unbounded)

Given P, the numerical problem is to find centers ¢;, radii r;, and
prevertices z ; = ¢; + r;e'%, along with A and B such that the side

lengths, positions, and orientations of the polygons are correct under
this formula.
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Orthogonal grid

An orthogonal grid is plotted using the resultant map from the solution
of the parameter problem.




Polar grid

| | |
w N = =) - N w » o )

@ Slit map from circle domain is constructed using Laurent series
based on boundary behavior.

@ Polar grid is mapped to circle domain by numerical inversion.
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Prevertices determine map

@ Consider the truncated integrand

p(C) =_H

j=1k=1| n=0
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Prevertices determine map

@ Consider the truncated integrand

m K N B .
p(0) =] 11 (—CC _Zﬁ;j’)

j=1k=1| n=0

o Write z,; = s; + rie’s.
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Numerics Parameter problem

Prevertices determine map

@ Consider the truncated integrand

Bk,j

m K N
( —Z R
p(C) = 11 (—C_Sk,’)
j=1k=1| n=0 Vi
veEan(f)

o Write z,; = s; + rie’s.
@ The map is then determined by

Kit+Ko+---+Kpn+3m

unknown real parameters.

E. Kropf, et al. Efficient MCSC June 2013

13/36



Parameter count

further determined by normalization

@ Relax normalization from
f(z)=z+0(1/z), z—

(determines circle domain uniquely (Henrici, 1986))
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Parameter count

further determined by normalization

@ Relax normalization to
f(z)y=Cz+D+0(1/z), z— x

where C and D are determined implicitly
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Parameter count

further determined by normalization

@ Relax normalization to
f(z)y=Cz+D+0(1/z), z— x

where C and D are determined implicitly by setting ¢ =0,y = 1,
and 641 = 0 (one circle is fixed).
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Numerics Parameter problem

Parameter count

further determined by normalization

@ Relax normalization to
f(z)y=Cz+D+0(1/z), z— x

where C and D are determined implicitly by setting ¢ =0,y = 1,
and 641 = 0 (one circle is fixed).

@ This leaves
(Ki—1)+Ko+ - +Kn+@Bm-3)=Ky +---+ Kn+3m—4

real parameters to determine.
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Nonlinear conditions

@ Thereare (K; — 1)+ Ko + - - - + Kj side-length conditions,

A/k+1,/‘p(c)dc|:|Wk+17j—Wk7j|, (k,j);é(1,1)

k.j

where
Wo1— W1 A

221
f21 1
(this fixes one side length, and orientation of I'y; setting B = wy 4
fixes its position).

Note: for convenience we will write
ZKk+1,j
fzcen)) ~ fz) =A [ PO d¢
zk,j
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Nonlinear conditions
@ Thereare (Ki — 1)+ Kz + - - - + Kj side-length conditions,

1F(Zks1 ) — F(2hj)| = [Wicr1,j — Wil

(k) # (1,1)

=] = = E na
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Nonlinear conditions
@ Thereare (Ki — 1)+ Kz + - - - + K side-length conditions,
1f(Zi41,) — (2 )l = W1 j — Wiejl, (K j) #(1,1)
@ There are 2(m-1) real equations
f(z1j) —f(z10) =wyj—wyq, 2<j<m

to determine the positions of polygons 'a, ..., I wrt I'y.
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Numerics Parameter problem

Nonlinear conditions
@ Thereare (Ki — 1)+ Kz + - - - + K side-length conditions,
1f(Zk11,) — F(2kj)| = W1 — wiegl, (k) #(1,1)
@ There are 2(m-1) real equations
f(z1j) —f(z10) =wyj—wyq, 2<j<m

to determine the positions of polygons 'a, ..., I wrt I'y.
@ There are (m-1) real equations

arg(f(zz) — f(z1,))) = arg(we,j — wy )

to determine the orientation of polygons I, ..., .
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Numerics Parameter problem

Nonlinear conditions

@ There are (Ki — 1) + Ko + - - - + K side-length conditions,

1f(Zk11,) — F(2kj)| = W1 — wiegl, (k) #(1,1)
@ There are 2(m-1) real equations

f(z1j) —fHzZ11)=wj—wiq, 2<j<m
to determine the positions of polygons s, ..., [m wrt 1.
@ There are (m-1) real equations
arg(f(zz,) — f(z1,)) = arg(wz,; — wy ;)

to determine the orientation of polygons I, ..., .
@ Total of K1 + - -- + Ky + 3m — 4 equations to match the parameter
count.
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Integration paths

objective function call #152
(m-1)"" 207071 A=0.7319

| | |
[ I T S~ NS - N - B S <, )

0 2 4 6

Evaluating the side length, position, and orientation conditions involves
integrating around and between the circles.
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Transformation
to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 J< 9271' <0< HKjv/" and 25;1(9;(_,_1 — ‘9k) = 27 where
9Kj+1,j = 04 J T 2m.

=] = = E na
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Transformation

to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 i< 9271' < e < HK/vj’ and Z;’sz1(9k+1 - ‘9k) = 27 where
GKI.JHJ = 917/‘ + 2.
@ Following Reppe (1979) we
» set d)k,j = 9k+1,j — 9;(7], k = 1,.. .7Kj,
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Transformation

to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 i< 9271' < e < HK/vj’ and Z;’sz1(9k+1 - ‘9k) = 27 where
GKI.JHJ = 917/‘ + 2.
@ Following Reppe (1979) we
» set qﬁk,j = 9;(_,_17/ — 9;(7/', k = 1,.. .7Kj,

> andf¢k,jzlog¢$:jj=f,k:1,...,K,~—1.
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Numerics Parameter problem

Transformation

to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 i< 9271' < e < HK/vj’ and 25;1(9;(4_1 - ‘9k) = 27 where
GKj+1,j = 917/‘ + 2.
@ Following Reppe (1979) we
» set qﬁk,j = 9;(_,_17/—9;(7/', k = 1,...7Kj,
> andqpk,,:log%»f, k=1,...,K—1.
14302 evmi

» Given 64 j» We have 9;(_/' = 04 JT 27T7_
7 ’ ' 1+ 211 eVn
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Numerics Parameter problem

Transformation

to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 i< 9271' < e < HK/vj’ and 25;1(9;(4_1 - ‘9k) = 27 where
GKI.JHJ = 917/‘ + 2.
@ Following Reppe (1979) we
» set qﬁk,j = 9k+1,j_9k,ja k = 1,...7Kj,
> andqpk,,:log%»f, k=1,...,K—1.
» Given 64 j» We have ek,- = 64 i+ 2%%.
’ k ’ 13 evn
@ The unconstrained angle variables are )1 1,...,vk,_11 and
01’/',1[)17/', R ,1!);(/._171 for 2 S_[ <m.
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Numerics Parameter problem

Transformation
to unconstrained coordinates

@ The prevertex angles must satisfy the constraints
01 i< 9271' < e < HK/J" and 25;1(9;(4_1 - ‘9k) = 27 where
HKj+1,j = 917/‘ + 2.
@ Following Reppe (1979) we
» set ¢k,j = 9k+1,j_9k,ja k = 1,...7Kj,
> andqpk,,:log%;f, k=1,...,K—1.
» Given 64 j» We have ek,- = 64 i+ 27‘(%.
’ ’ ’ 13 evn
@ The unconstrained angle variables are 1 1,...,%k,_1,1 and
9171',2,[)17]', e ,1/1;(]._171 for 2 S_[ <m.
@ Since also r; > 0, the unconstrained radii are log r;.
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System of equations

@ The above conditions, in terms of the transformed variables, are
expressed as a nonlinear system of equations, F(x) = 0.

@ We use the numerical continuation algorithm (homotopy method)
CONTUP, program 3, from a book by Allgower and Georg to solve
this system.

@ In testing, this algorithm was shown to be more robust — less
sensitive to the initial guess — than the nonlinear equation solvers
in MATLAB.
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Using Series Finite product

Reflection complexity

Note that for m boundary circles and N levels of reflection, there are a
total of S, m(m — 1)" reflected circles!
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MCSC factors

@ Write the MCSC map as a finite product of factors

meJ

(@)=A [ TIT (hs(©)™ dc + 8

j=1 k=1

where ~
Z — Zg vj
fo(2) = <_) .
/ H Z— Sz/j

@ We will consider evaluating fx ; without using reflections.
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Boundary behavior

@ In general let a; be a point (prevertex) on a boundary circle C; and

write -
Z— a,j
fa(2) := <—f)
1 ,1;[0 Z — Suj
vean())
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Boundary behavior

@ In general let a; be a point (prevertex) on a boundary circle C; and

write -
Z— a,j
fa(2) = <—f)
1 };[0 Z — Suj
Veon(j)

@ It can be shown this function satisfies the boundary conditions

0 1 .
> 55 391(2) = —3 for z=¢;+ e € C;.
» arg f(z) = const. forz € Cp, p # j, and
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Using Series Finite product
Example MCSC factor

0.5

C

-0.5

@ An example of f5 computed with N = 5 levels of reflection.
@ Maps the prevertex to the origin and the point at infinity to 1.
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Using Series Finite product

Example MCSC factor

@ Note these factors are not maps to canonical slit domains.
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Series representation

@ Given -
zZ—a,
f4(2) = H (Z_ Su/)
n=0
vean(j)
write
log f5,(z) = log(z — &) — log(z — s;) + 9(2)
where
3 i dh,j
j=1 n=1 (z—8)"

(sum of Laurent expansions around each circle).
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Series representation

@ Given -
zZ—a,
f4(2) = H (Z_ Su/)
n=0
vean(j)
write
log f5,(z) = log(z — &) — log(z — s;) + 9(2)
where
3 i dh,j
j=1 n= 1 (Z-8)"

(sum of Laurent expansions around each circle).
@ Then

Z — aj

gives fa(8;) = 0 and f5(c0) = 1 as required.
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Boundary condition
Image of C; (outer boundary)
e Consider z = s; + r;e’?, then

0
20 arg fa,(z) =

Im {log f5,(2)}

:Re{z
V4

gj

|14 (2 9)g(@) | =

2’

=] = = E na
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Boundary condition

Image of C; (outer boundary)
e Consider z = s; + r;e’?, then

0 0
—-argfy(z) = %0 Im {log f,(2) }

lolY}
_ Z—Sj_ e _ 1
_Re{z 2 14 (z s/)g(z)}_ 5

/)

@ and for a; = s; + r;e",

zZ-s e’ 1 090 1
R ! :R EEr— :R —— ! = —=.
e{z—aj} e{e"’—e’ef} e{2 oot 2 } 2
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Boundary condition
Image of C; (outer boundary)

@ Then, for z € Cj,

0 1
% arg faj(Z) = ——
becomes

2

Re {(z-s))d'(z)} =0.

=] = = E na
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Boundary condition
Image of Cp, p # j (radial slit)

@ Forze Cp, p#/,

arg fy(2) = arg /
@ This gives

+ Im{g(z)} = const.
Im{g(z)} = const. — arg

Sj
=] = = E na
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Boundary conditions

@ Thus in terms of g we have, for

faj(z) =

the boundary conditions

» Re{(z-s))g'(z)} =0 forz € Cj, and

S

» Im{g(z)} = const. — arg i forz e Cp, p # /.

E. Kropf, et al. Efficient MCSC June 2013

28 /36



Discretization
m N d
o Truncate: g(2) = > ) _—mk
k=1 n=
[m] = = = A



Discretization
m N d
e Truncate: g(z) ~ ZZ L
k=1 n= 1

Sk)n
@ Pick M points z on each boundary circle

=] = = E na
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Discretization
m N d P
@ Truncate: g(z) ~ -
9(2) ;; 5
@ Pick M points z on each boundary circle

@ Define
X = [dn,k]me1
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Discretization

e Truncate: g(z) ~ ; ; s
@ Pick M points z on each boundary circle

@ Define
X = [dn,k]me1

@ Using z to determine rows and the double sum in g to determine
columns, based on g define

Fo=1[(z—sk) " lmxmn fork=1,....m; z€ Cp, p#]j
and based on g’ define

G=[-n(z-58)z—5)""luxmn forzeC.
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Approximate
boundary conditions
@ Consider

> Fp = an + iF/p,
» G=Gr+iG,,and

> X = Xg + iX].

=] = = E na
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Approximate
boundary conditions

@ Consider
> Fp = an + iF/p,
» G=Gr+iG,,and

> X = Xg + iX].

@ This gives
> Im{g(2)} = Fi.xp + Fr,Xxi

» Re{(z-5)9'(2)} = Grxr — Gix|

=] = = E na
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Linear system
basis matrices

@ Inlight of Fj xg + Fgr,Xx; and Ggrxg — G)X|, define

[ F, Fr, 1
Fl,-,1 F,::,»F1
A= | Gg -G
F/j+1 FRj+1
- F/m FRm = mMx2mN

E. Kropf, et al. Efficient MCSC
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Constant argument
for radial slits

z—aj
Z—Sj

Im{g(z)} = const. — arg

@ For the images of radial slits, that is for any two z1,z> € Cp, p # J,

we can say Im {f;(z2) — f5(z1)} = 0.
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Constant argument

for radial slits

z—aj

Im{g(z)} = const. — arg s
— 9

@ For the images of radial slits, that is for any two z1,z> € Cp, p # J,
we can say Im {f;(z2) — f5(z1)} = 0.
@ So define

(M—1)xM
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Linear system
multiplier
@ Define also

where [ is in the jth block-row.

4 (M(m—1)+1)xmM
CIRT-= = E I



Linear system

@ Then C a-
arg szj

EA [XH] ——E| o0

z—aj
Z=5 1 mMmx1

_arg

gives the coefficients of g.

@ This linear system must be solved for each prevertex,
fj(2) = z‘_zgjjf e9(?) which seems like a lot of work, but. ..

p4
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10-connected example

=4.

@ Takes over 5 hours using the reflection method, N

@ Done in around 5 minutes using the series method.
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Conclusion

Questions?

=] = = E na
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