Two-Dimensional Shapes and Lemniscates

Dmitry Khavinson (joint with Peter Ebenfelt (Univ. of California in San Diego, La Jolla) and Harold S. Shapiro (Royal Institute of Technology)) dkhavins@usf.edu http://shell.cas.usf.edu/ dkhavins/

University of South Florida
June 10, 2013

Outline

(1) Introduction

Outline

(1) Introduction
(2) Conformal Welding

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates
(4) Results

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates
(4) Results
(5) Proofs

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates
(4) Results
(5) Proofs
(6) Critical Values

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates
(4) Results
(5) Proofs
(6) Critical Values
(7) Rational Lemniscates

Outline

(1) Introduction
(2) Conformal Welding
(3) Lemniscates
(4) Results
(5) Proofs
(6) Critical Values
(7) Rational Lemniscates
(8) Questions

Introduction

Definition

A "shape" is a simple, closed smooth curve in the plane.

Introduction

Definition

A "shape" is a simple, closed smooth curve in the plane.
No distinction between shapes obtained one from the other by translations and scalings.

Introduction

Definition

A "shape" is a simple, closed smooth curve in the plane.
No distinction between shapes obtained one from the other by translations and scalings. Thus a "shape" stands for an equivalence class of smooth curves.

How to study the enormous space of shapes?

How to study the enormous space of shapes?

How to study the enormous space of shapes?

Hausdorff distance: $h\left(C_{1}, C_{2}\right)=d_{C_{1}}\left(C_{2}\right)+d_{C_{2}}\left(C_{1}\right)$.

How to study the enormous space of shapes?

Hausdorff distance: $h\left(C_{1}, C_{2}\right)=d_{C_{1}}\left(C_{2}\right)+d_{C_{2}}\left(C_{1}\right)$. $\operatorname{dist}_{C_{1}}\left(C_{2}\right)=\sup _{z \in C_{2}} \operatorname{dist}\left(z, C_{1}\right)$.

Conformal Welding

A.A. Kirillov (1987, 1998), D. Mumford - E. Sharon (2004),

Conformal Welding

A.A. Kirillov (1987, 1998), D. Mumford - E. Sharon (2004), based on earlier works of L. Ahlfors - L. Bers (1960), C. Bishop, D. Hamilton (1990s).

Conformal Welding

A.A. Kirillov (1987, 1998), D. Mumford - E. Sharon (2004), based on earlier works of L. Ahlfors - L. Bers (1960), C. Bishop, D. Hamilton (1990s).

Conformal Welding:
"shape" \rightsquigarrow "fingerprint" , i.e.,

Conformal Welding

A.A. Kirillov (1987, 1998), D. Mumford - E. Sharon (2004), based on earlier works of L. Ahlfors - L. Bers (1960), C. Bishop, D. Hamilton (1990s).

Conformal Welding:
"shape" \rightsquigarrow "fingerprint" , i.e.,
a closed, smooth, curve \rightsquigarrow \rightsquigarrow an orientation preserving diffeo of the circle \mathbb{T}.

Fingerprint

$$
\phi_{+}(\infty)=\infty ; \quad \phi_{+}^{\prime}(\infty)>0 .
$$

Fingerprint

A fingerprint of Γ is $k:=\mathbb{T} \rightarrow \mathbb{T}, k=\Phi_{+}^{-1} \circ \Phi_{-}$, or

Fingerprint

A fingerprint of Γ is $k:=\mathbb{T} \rightarrow \mathbb{T}, k=\Phi_{+}^{-1} \circ \Phi_{-}$, or $k=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.

Kirillov's Theorem

$\mathfrak{S}=$ smooth curves $/$ translations $\&$ scalings $=$ shapes.

Kirillov's Theorem

$\mathfrak{S}=$ smooth curves $/$ translations \& scalings $=$ shapes.
Diff $_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D})=$ "fingerprints".

Kirillov's Theorem

$\mathfrak{S}=$ smooth curves $/$ translations \& scalings $=$ shapes.
Diff $_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D})=$ "fingerprints".
We have:

$$
\mathfrak{F}: \mathfrak{S} \rightsquigarrow \operatorname{Diff}_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D}) .
$$

Kirillov's Theorem

$\mathfrak{S}=$ smooth curves $/$ translations \& scalings $=$ shapes.
Diff $_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D})=$ "fingerprints".
We have:

$$
\mathfrak{F}: \mathfrak{S} \rightsquigarrow \operatorname{Diff}_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D}) .
$$

(Kirillov, 1987)

Theorem

\mathfrak{F} is a bijection.

Kirillov's Theorem

$\mathfrak{S}=$ smooth curves $/$ translations \& scalings $=$ shapes.
$\operatorname{Diff}_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D})=$ "fingerprints".
We have:

$$
\mathfrak{F}: \mathfrak{S} \rightsquigarrow \operatorname{Diff}_{+}(\mathbb{T}) / \operatorname{Möb}(\mathbb{D}) .
$$

(Kirillov, 1987)

Theorem

\mathfrak{F} is a bijection.

Note: The statement is false if we replace Diff $_{+}(\mathbb{T})$ by Homeo $+(\mathbb{T})$, (\mathfrak{F} is neither 1-1, nor onto).

D. Mumford - E. Sharon, 2004

"Constructive" Approximation to $\mathfrak{F}, \mathfrak{F}^{-1}$.

D. Mumford - E. Sharon, 2004

"Constructive" Approximation to $\mathfrak{F}, \mathfrak{F}^{-1}$.

- For $\mathfrak{F}, \Phi_{-,+}$are approximated by the Schwarz - Christoffel integrals.

D. Mumford - E. Sharon, 2004

"Constructive" Approximation to $\mathfrak{F}, \mathfrak{F}^{-1}$.

- For $\mathfrak{F}, \Phi_{-,+}$are approximated by the Schwarz - Christoffel integrals.
- For $\mathfrak{F}^{-1}, \Phi_{-,+}$are found via a series of renormalizations and by solving a Riemann - Hilbert type problem.

Mumford - Sharon Data, Examples

Shape fingexprint - $\boldsymbol{\Psi}(\theta)$

Fingerprints of Lemniscates

Definition
A domain $\Omega_{-}=\{|P|<1, P$ is a polynomial of degree $n\}$.

Fingerprints of Lemniscates

Definition

A domain $\Omega_{-}=\{|P|<1, P$ is a polynomial of degree $n\}$.

Fingerprints of Lemniscates

Definition

A domain $\Omega_{-}=\{|P|<1, P$ is a polynomial of degree $n\}$.

- Ω_{-}is connected

Fingerprints of Lemniscates

Definition

A domain $\Omega_{-}=\{|P|<1, P$ is a polynomial of degree $n\}$.

- Ω_{-}is connected
- All zeros $\xi_{j}, j=1, \ldots, n$ and critical points of P lie inside Ω_{-}

Fingerprints of Lemniscates

Fingerprints of Lemniscates

$B_{1}:=P \circ \Phi_{-}: \mathbb{D} \rightarrow \mathbb{D}$. This is n to 1 map.

Fingerprints of Lemniscates

$B_{1}:=P \circ \Phi_{-}: \mathbb{D} \rightarrow \mathbb{D}$. This is n to 1 map. Hence

$$
\begin{aligned}
B_{1} & =e^{i \theta} \prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z}, \\
a_{j} & =\Phi_{-}^{-1}\left(\xi_{j}\right)
\end{aligned}
$$

Fingerprints of Lemniscates

$B_{1}:=P \circ \Phi_{-}: \mathbb{D} \rightarrow \mathbb{D}$. This is n to 1 map. Hence

$$
\begin{aligned}
B_{1} & =e^{i \theta} \prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z}, \\
a_{j} & =\Phi_{-}^{-1}\left(\xi_{j}\right)
\end{aligned}
$$

Moreover, $\Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and

Fingerprints of Lemniscates

$B_{1}:=P \circ \Phi_{-}: \mathbb{D} \rightarrow \mathbb{D}$. This is n to 1 map. Hence

$$
\begin{aligned}
B_{1} & =e^{i \theta} \prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z}, \\
a_{j} & =\Phi_{-}^{-1}\left(\xi_{j}\right)
\end{aligned}
$$

Moreover, $\Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and $P \circ \Phi_{+}=c z^{n},|c|=1$.

Fingerprints of Lemniscates

Fingerprints of Lemniscates

Recapture: $B_{1}:=P \circ \Phi_{-}$,

Fingerprints of Lemniscates

Recapture: $B_{1}:=P \circ \Phi_{-}, \quad \Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and

Fingerprints of Lemniscates

Recapture: $B_{1}:=P \circ \Phi_{-}, \quad \Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and

Fingerprints of Lemniscates

Recapture: $B_{1}:=P \circ \Phi_{-}, \quad \Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and we have a simple result (P. Ebenfelt - DK - H. S. Shapiro, 2010).

Fingerprints of Lemniscates

Recapture: $B_{1}:=P \circ \Phi_{-}, \quad \Phi_{+}^{-1}(w)=\sqrt[n]{P(w)}$ and we have a simple result (P. Ebenfelt - DK - H. S. Shapiro, 2010).

Theorem

The fingerprint of the lemniscate $\Gamma:=\partial \Omega$ equals

$$
k:=\mathbb{T} \rightarrow \mathbb{T}, k=\Phi_{+}^{-1} \circ \Phi_{-}=\sqrt[n]{B_{1}(z)}
$$

Evolution of Bernoulli's Lemniscates

Bernoulli's Lemniscate

$$
\left|z^{2}-1\right|=r^{2}, \quad r>0
$$

$r<1$

Evolution of Bernoulli's Lemniscates

$$
\begin{aligned}
& \text { Bernoulli)s Lemniscate } \\
& \qquad\left|z^{2}-1\right|=r^{2}, \quad r>0
\end{aligned}
$$

Evolution of Bernoulli's Lemniscates

$$
\begin{aligned}
& \text { Bernoulli)s Lemniscate } \\
& \qquad\left|z^{2}-1\right|=r^{2}, \quad r>0
\end{aligned}
$$

Evolution of Bernoulli's Lemniscates

$$
\begin{aligned}
& \text { Bernoulli)s Lemniscate } \\
& \qquad\left|z^{2}-1\right|=r^{2}, \quad r>0
\end{aligned}
$$

Hilbert's theorem

D. Hilbert, 1897.

Hilbert's theorem

D. Hilbert, 1897.

Theorem
For any closed Jordan curve Γ and any $\epsilon>0$

Hilbert's theorem

D. Hilbert, 1897.

Theorem
For any closed Jordan curve Γ and any $\epsilon>0$ there exists a lemniscate L_{ϵ} such that

Hilbert's theorem

D. Hilbert, 1897.

Theorem

For any closed Jordan curve Γ and any $\epsilon>0$ there exists a lemniscate L_{ϵ} such that L_{ϵ} contains Γ in its interior and $h\left(\Gamma, L_{\epsilon}\right)<\epsilon$.

Hilbert's theorem

D. Hilbert, 1897.

Theorem

For any closed Jordan curve Γ and any $\epsilon>0$ there exists a lemniscate L_{ϵ} such that L_{ϵ} contains Γ in its interior and $h\left(\Gamma, L_{\epsilon}\right)<\epsilon$.

Main Questions

Main Questions

Main Questions

Recall: Fingerprints k of n - lemniscates are n-th roots of Blaschke products B, i.e.

Main Questions

Recall: Fingerprints k of n - lemniscates are n-th roots of Blaschke products B, i.e.

$$
k \in \operatorname{Diff}_{+}, k: \mathbb{T} \rightarrow \mathbb{T}, k=\sqrt[n]{B(z)}
$$

Main Questions

Recall: Fingerprints k of n - lemniscates are n-th roots of Blaschke products B, i.e.

$$
k \in \operatorname{Diff}_{+}, k: \mathbb{T} \rightarrow \mathbb{T}, k=\sqrt[n]{B(z)}
$$

Main Questions

Recall: Fingerprints k of n - lemniscates are n-th roots of Blaschke products B, i.e.

$$
k \in \operatorname{Diff}_{+}, k: \mathbb{T} \rightarrow \mathbb{T}, k=\sqrt[n]{B(z)}
$$

Questions: (i) Are such k dense in $\operatorname{Diff}_{+}(\mathbb{T})$?

Main Questions

Recall: Fingerprints k of n - lemniscates are n-th roots of Blaschke products B, i.e.

$$
k \in \operatorname{Diff}_{+}, k: \mathbb{T} \rightarrow \mathbb{T}, k=\sqrt[n]{B(z)}
$$

Questions: (i) Are such k dense in $\operatorname{Diff}_{+}(\mathbb{T})$?
(ii) Does each such k "fingerprint" a polynomial lemniscate?

Results: Ebenfelt - DK - Shapiro, 2011

Results: Ebenfelt - DK - Shapiro, 2011

Theorem (I)

Algebraic diffeomorphisms of the unit circle

$$
k=\sqrt[n]{B(z)}, \quad B=e^{i \theta} \prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z},\left|a_{j}\right|<1
$$

are dense in $\operatorname{Diff}_{+}(\mathbb{T})$ in, say, $C^{1}(\mathbb{T})$ - topology.

Results: Ebenfelt - DK - Shapiro, 2011

Theorem (I)

Algebraic diffeomorphisms of the unit circle

$$
k=\sqrt[n]{B(z)}, \quad B=e^{i \theta} \prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z},\left|a_{j}\right|<1
$$

are dense in $\operatorname{Diff}_{+}(\mathbb{T})$ in, say, $C^{1}(\mathbb{T})$ - topology.

Theorem (II)

Every diffeomorphism $k=\sqrt[n]{B(z)}$ of \mathbb{T}, where B is a Blaschke product of degree n, represents the fingerprint of a polynomial lemniscate $\Gamma:=\{|P|=1, \operatorname{deg} P=n\}$.

Theorem I

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$,

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$.

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

Theorem I

Let $\Psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

where P is the Poisson kernel.

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

where P is the Poisson kernel.

- Approximate ψ^{\prime} by a positive harmonic polynomial

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

where P is the Poisson kernel.

- Approximate ψ^{\prime} by a positive harmonic polynomial
- Perform "balayage inward"

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

where P is the Poisson kernel.

- Approximate ψ^{\prime} by a positive harmonic polynomial
- Perform "balayage inward"
- Use the Poisson formula for $\{|z|>r, r<1\}$

Theorem I

Let $\psi: \mathbb{T} \rightarrow \mathbb{T}, \Psi=e^{i \psi}, \psi(\theta+2 \pi)=\psi(\theta)+2 \pi, \psi^{\prime}>0$.
Goal: approximate ψ^{\prime} by $\frac{1}{n} \frac{d \arg B\left(e^{i \theta}\right)}{d \theta}$, where B is a Blaschke product of degree n with zeros $a_{j}, j=1, \ldots, n$. The key is :

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{n} \arg B\left(e^{i \theta}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} P\left(e^{i \theta}, a_{j}\right) \tag{1}
\end{equation*}
$$

where P is the Poisson kernel.

- Approximate ψ^{\prime} by a positive harmonic polynomial
- Perform "balayage inward"
- Use the Poisson formula for $\{|z|>r, r<1\}$
- Apply (1)

Theorem II

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Brouwer's theorem

Theorem
If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a $1-1$ continuous map, then f is open.

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Brouwer's theorem

Theorem
If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a $1-1$ continuous map, then f is open.
Applied to $\mathfrak{F}: \mathcal{P} \rightsquigarrow \mathcal{B}$,

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Brouwer's theorem

Theorem
If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a $1-1$ continuous map, then f is open.
Applied to $\mathfrak{F}: \mathcal{P} \rightsquigarrow \mathcal{B}$,
where \mathcal{P} stands for (Polynomials of degree $n) /($ Affine mappings),

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Brouwer's theorem

Theorem
If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a $1-1$ continuous map, then f is open.
Applied to $\mathfrak{F}: \mathcal{P} \rightsquigarrow \mathcal{B}$,
where \mathcal{P} stands for (Polynomials of degree $n) /($ Affine mappings),
$\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$.

Theorem II

The proof rests on Brouwer's theorem and Koebe's contnuity method.

Brouwer's theorem

Theorem
If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a $1-1$ continuous map, then f is open.
Applied to $\mathfrak{F}: \mathcal{P} \rightsquigarrow \mathcal{B}$,
where \mathcal{P} stands for (Polynomials of degree $n) /($ Affine mappings),
$\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$.
The key is the injectivity of \mathfrak{F}.

Injectivity of \mathfrak{F} : "Rigidity" Theorem

Injectivity of \mathfrak{F} : "Rigidity" Theorem

Injectivity of \mathfrak{F} : "Rigidity" Theorem

Theorem (III)

Let Ω_{1}, Ω_{2} be (connected) n-lemniscates $\{|P|<1\},\{|Q|<1\}$. If $F: \Omega_{2} \rightarrow \Omega_{1}$ is a conformal mapping that maps nodes into nodes, then F is an affine mapping, i.e., $F=A w+B$.

High Ground: Critical Values Problem

High Ground: Critical Values Problem

B is an n - Blaschke product,

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.
$v_{j}=B\left(z_{j}\right), V:=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is the set of its critical values.

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.
$v_{j}=B\left(z_{j}\right), V:=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is the set of its critical values.
Recall $\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$,

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.
$v_{j}=B\left(z_{j}\right), V:=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is the set of its critical values.
Recall $\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$,
$\mathcal{P}=($ Polynomials of degree $n) /($ Affine mappings).

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.
$v_{j}=B\left(z_{j}\right), V:=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is the set of its critical values.
Recall $\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$,
$\mathcal{P}=($ Polynomials of degree $n) /($ Affine mappings).

Definition

Given the set $V:=\left\{v_{1}, \ldots, v_{n}-1,\left|v_{j}\right|<1\right\}$, let $C V_{\mathcal{B}}[V]$ denote the set of equivalence classes in \mathcal{B} with the same set of critical values V.

High Ground: Critical Values Problem

B is an n - Blaschke product,

$z_{j}, j=1, \ldots, n-1: B^{\prime}\left(z_{j}\right)=0$ are its critical points.
$v_{j}=B\left(z_{j}\right), V:=\left\{v_{1}, \ldots, v_{n-1}\right\}$ is the set of its critical values.
Recall $\mathcal{B}=($ Blashke products of degree $n) /(\operatorname{Möb}(\mathbb{D}))$,
$\mathcal{P}=($ Polynomials of degree $n) /($ Affine mappings).

Definition

Given the set $V:=\left\{v_{1}, \ldots, v_{n}-1,\left|v_{j}\right|<1\right\}$, let $C V_{\mathcal{B}}[V]$ denote the set of equivalence classes in \mathcal{B} with the same set of critical values $V . C V_{\mathcal{P}}[V]$ is defined similarly.

Critical Values Problem

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902),

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965),

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

If we could prove directly that the answer is "Yes",

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

If we could prove directly that the answer is "Yes", we would obtain an independent proof of Theorem II.

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

If we could prove directly that the answer is "Yes", we would obtain an independent proof of Theorem II. Nevertheless,

Theorem II does imply the following:

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

If we could prove directly that the answer is "Yes", we would obtain an independent proof of Theorem II. Nevertheless,

Theorem II does imply the following:

Corollary

$\#\left(C V_{\mathcal{B}}[V]\right)=n^{n-3}, n \geq 3$.

Critical Values Problem

We know that $\mathfrak{F}: \mathrm{CV}_{\mathcal{P}}[V] \rightarrow \mathrm{CV}_{\mathcal{B}}[V]$ is $1-1$.
Question Is $\#\left(\mathrm{CV}_{\mathcal{P}}[V]\right)=\#\left(\mathrm{CV}_{\mathcal{B}}[V]\right)$?
$\mathrm{CV}_{\mathcal{P}}[V]$ problem was studied by A. Hurwitz (1902), R. Thom (1965), V. Arnold (1996), B. Shapiro (1997),...

If we could prove directly that the answer is "Yes", we would obtain an independent proof of Theorem II. Nevertheless,

Theorem II does imply the following:

Corollary

$\#\left(C V_{\mathcal{B}}[V]\right)=n^{n-3}, n \geq 3$. For $n=2$, there is one equivalence class.

Rational Lemniscates

Rational Lemniscate

Rational Lemniscates

R is a rational function of degree n.

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n.

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n. Yet, $A \neq z^{n}$ as for polynomial lemniscates.

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n. Yet, $A \neq z^{n}$ as for polynomial lemniscates.
Thus, $k=A^{-1} \circ B$.

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n. Yet, $A \neq z^{n}$ as for polynomial lemniscates.
Thus, $k=A^{-1} \circ B$. Kirillov's theorem \Rightarrow the converse,

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n. Yet, $A \neq z^{n}$ as for polynomial lemniscates.
Thus, $k=A^{-1} \circ B$. Kirillov's theorem \Rightarrow the converse, i.e., every such k is a fingerprint of a rational lemniscate (D. Marshall, 2011).

Rational Lemniscates

R is a rational function of degree $n . A, B$ are Blaschke products of degree n. Yet, $A \neq z^{n}$ as for polynomial lemniscates.
Thus, $k=A^{-1} \circ B$. Kirillov's theorem \Rightarrow the converse, i.e., every such k is a fingerprint of a rational lemniscate (D. Marshall, 2011).

There is no known direct proof of that fact.

Further Questions

Further Questions

The Scheme:

Further Questions

The Scheme:

- Shape

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\}$

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel,

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P})$

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$.

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically?

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.
- Rational Lemniscates:

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.
- Rational Lemniscates: How to characterize analytically $\Omega_{-}:=\{|R|<1$, where R is a rational function $\}$?

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.
- Rational Lemniscates: How to characterize analytically $\Omega_{-}:=\{|R|<1$, where R is a rational function $\}$? For polynomials NASC are that all the critical values are in the unit disk ($\mathrm{E}-\mathrm{K}-\mathrm{S}$).

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.
- Rational Lemniscates: How to characterize analytically $\Omega_{-}:=\{|R|<1$, where R is a rational function $\}$? For polynomials NASC are that all the critical values are in the unit disk ($\mathrm{E}-\mathrm{K}-\mathrm{S}$).
- Differential-geometric properties of lemniscates vs. placement of zeros of Blaschke products forming their fingerprints.

Further Questions

The Scheme:

- Shape \Rightarrow Approximating Lemniscate $\{|P|<1\} \Rightarrow$ Φ_{-}, by Schwarz - Christoffel, $\Phi_{+}(=\sqrt[n]{P}) \Rightarrow$ fingerprint k
- $k=\sqrt[n]{B(z)} \rightarrow$ Lemniscate $=\{|P|<1\}$. How to find P knowing B ?
- How effectively follow this scheme numerically? It looks "doable" numerically at least for $n \leq 4$.
- Rational Lemniscates: How to characterize analytically $\Omega_{-}:=\{|R|<1$, where R is a rational function $\}$? For polynomials NASC are that all the critical values are in the unit disk ($\mathrm{E}-\mathrm{K}-\mathrm{S}$).
- Differential-geometric properties of lemniscates vs. placement of zeros of Blaschke products forming their fingerprints.

Courtesy of D. E. Marshall: Marshall's "zipping" algorithm

First Blaschke product B_{1}

Courtesy of D. E. Marshall: Marshall's "zipping" algorithm

First Blaschke product B_{1}

Courtesy of D. E. Marshall: Marshall's "zipping" algorithm

First Blaschke product B_{1}

Second Blaschke product B_{2}

Courtesy of D. E. Marshall: Marshall's "zipping" algorithm

First Blaschke product B_{1}

Second Blaschke product B_{2}

Fingerprint $k=B_{2}^{-1} \circ B_{1}$

Fingerprint $k=B_{2}^{-1} \circ B_{1}$

The Rational Lemniscate

Fingerprint $k=B_{2}^{-1} \circ B_{1}$

The Rational Lemniscate

THANK YOU!

