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Collaborators
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Introduction Some background

Conformal map w = f (z) from disk to target domain
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Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
ellipse using 64 Fourier points. f ′(z) 6= 0, so locally f (a + h) ≈ f (a) + f ′(a)h
and f maps a small circle near z = a to a circle near f (a) magnified by |f ′(a)|
and rotated by arg f ′(a). Therefore curves intersecting at angle θ at a will be
mapped to curves intersecting at angle θ at f (a) and the map is
angle-preserving or conformal. Existence and uniquesness given by
Riemann Mapping Theorem with f (0) and f (1) fixed.
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Introduction Some background

Interior mult. conn. case–Kropf’s MS thesis (2009)
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Figure: Outer circle is unit circle. Map normalization fixes f (0) and f (1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Introduction Some background

Boundary correspondence

The boundary Γ of Ω is parametrized by S (e.g., arclength or polar
angle), Γ : γ(S),0 ≤ S ≤ L, γ(0) = γ(L). If S = S(θ) or its inverse
θ(S) = arg f−1(γ(S)) is known, then the map is known for z ∈ D or
w ∈ Ω by the Cauchy Integral Formula,

w = f (z) =
1

2πi

∫
C

γ(S(θ))

ζ − z
dζ(θ)

or

z = f−1(w) =
1

2πi

∫
Γ

eiθ(S)

γ(S)− w
dγ(S).
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Introduction Some background

Two classes of “traditional” methods

1. Find S = S(θ) such that f (eiθ) = γ(S(θ)). We will discuss this
case. These methods solve a nonlinear integral equation for S(θ)
by linearly convergent methods of successive approximation
(Picard-like iteration) such as Theodorsen’s method, or
quadratically convergent Newton-like methods such as Fornberg’s
or Wegmann’s methods. Cost: O(N log N) with FFTs.

2. Find θ = θ(S) such that f−1(γ(S)) = eiθ(S). These methods solve
linear integral equations arising from potential theory for θ(S) or
θ′(S). Cost: O(N2) operation counts, but can handle more highly
distorted regions.
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Introduction Some background

MANY other methods exist, as we see at this meeting, based on ideas
from computational geometry, circle packing, Riemann-Hilbert
problems, orthogonalization, compositions of explicit maps
(Grassmann, Marshall),...
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Introduction Some background

A few general references

[1.] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel mapping,
Cambridge U. Press, 2002.
[2.] D. Gaier, Konstruktive Methoden der konformen Abbildung,
Springer, 1964.
[3.] X. D. Gu and S.-T. Yau, Computational Conformal Geometry,
International Press, 2008.
[4.] P. Henrici, Applied and Computational Complex Analysis, Vol. 3,
Wiley, 1986.
[5.] K. Stephenson, Introduction to Circle Packing, Cambridge, 2005.
[6.] R. Wegmann, Methods for Numerical Conformal Mapping, survey
article in Handbook of Complex Analysis: Geometric Function Theory,
Vol. 2, R. Kühnau, ed., Elsevier, 2005, pp. 351–477.
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Introduction Some background

Key idea for this talk: Taylor/Laurent series = Fourier
series
For |z| < |ζ| = 1, ζ = eiθ,dζ = ieiθdθ

f (z) =
1

2πi

∫
|ζ|=1

γ(S(θ))

ζ − z
dζ

=
1

2πi

∫
|ζ|=1

γ(S(θ))

(
1 +

z
ζ

+

(
z
ζ

)2

+ · · ·

)
dζ
ζ

=
1

2π

∫ 2π

0
γ(S(θ))(1 + ze−iθ + z2e−2iθ + · · · )dθ

=
∞∑

k=0

(
1

2π

∫ 2π

0
γ(S(θ))e−ikθdθ

)
zk

=
∞∑

k=0

akzk ,

Taylor coeff. = Fourier coeff. ak := 1
2π

∫ 2π
0 γ(S(θ))e−ikθdθ.
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Figure: Fornberg map from exterior of unt disk to exterior of spline
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Introduction Numerical preview and gallery

Simply-connected case: crowding=large
distortions=Ill-conditioning

Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse
using 1024 Fourier points.
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Introduction Numerical preview and gallery

Map from annulus–D. and Pfaltzgraff (1998)
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Figure: Doubly connected Fornberg maps annulus ρ < |z| < 1 to domain
between two ellipses α = .3, .6 with N = 64. Normalization fixes one
boundary point f (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S1(θ) and S = S2(θ) along with the unique
ρ(=1/conformal modulus) must be computed numerically.
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Introduction Numerical preview and gallery

Exterior mult. conn. case–Benchama’s PhD thesis
(2003)
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Figure: Fornberg map to the exterior of five curves.

Tom DeLilloWichita State U Math Dept (Conformal Geometry in Mapping, Imaging, and Sensing)Numerical Conformal Mapping
Imperial College, June 20-21, 2013 16 /

66



Introduction Numerical preview and gallery

Interior mult. conn. case–Kropf’s MS thesis (2009)
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A target region (on the right) with an outer spline boundary which
is parametrized by arclength.
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Introduction Numerical preview and gallery

Radial slit map from Kropf’s PhD thesis (2012)
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Introduction Numerical preview and gallery
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A target region with m = 7.
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Introduction Numerical preview and gallery

Numerical Example
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Annulus with circular holes as a computational domain.
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Fourier series methods Fornberg’s method for the disk (1980)

Conformal map w = f (z) from disk to target domain
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Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
ellipse using 64 Fourier points. Normalization fixes three real parameters:
f (0) fixed and f (1) fixed.
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Fourier series methods Fornberg’s method for the disk (1980)

Some useful linear operators
For h = h(θ),2π-periodic, h(θ) =

∑∞
k=−∞ ckeikθ

Jh(θ) :=
1

2π

∫ 2π

0
h(θ)dθ = c0

P+h(θ) :=
∞∑

k=1

ckeikθ

P−h(θ) :=
0∑

k=−∞
ckeikθ

Note that P2
± = P± are projection operators onto subspaces of

L2[0,2π] whose nonpositive/positive indexed Fourier coefficients 0.
Also note

P+h =
1
2

(I + iK − J)h,

P−h =
1
2

(I − iK + J)h.
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Fourier series methods Fornberg’s method for the disk (1980)

(Infinite) matrix form Fh :=



...
c−2
c−1
c0
c1
c2
...


=: c and Kh = F−1K̂ Fh

= F−1



. . .
i

i
0
−i
−i

. . .





...
c−2
c−1
c0
c1
c2
...


= F−1



...
ic−2
ic−1

0
−ic1
−ic2

...


,
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Fourier series methods Fornberg’s method for the disk (1980)

Condition for analytic extension of boundary values
Theorem
A function h ∈ Lip(Γ) can be continued analytically into D+ (i.e.,
f (t) = h(t), t ∈ Γ) if and only if

f (z) :=
1

2πi

∫
Γ

h(t)
t − z

dt = 0, z ∈ D−,

or, equivalently, if

1
2πi

∫
Γ

tnh(t)dt = 0, n = 0,1,2, . . . .

Proof.
Cauchy Integral Theorem and Sokhotskyi jump relations, f + − f− = h;
see, e.g., Henrici, ACCA, v. 3, Muskhelishvili, SIE.
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Fourier series methods Fornberg’s method for the disk (1980)

Condition for unit D=disk

Theorem
A function f ∈ Lip(C) on the boundary C of the unit disk extends to an
analytic function in the interior of the disk with f (0) = 0 if and only if

P−f (eiθ) = 0. (1)

That is, negative indexed coefficients are 0.
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Fourier series methods Fornberg’s method for the disk (1980)

Linearization
Given the k th Newton iterate S = Sk (θ), find correction Uk (θ), real,
such that

f (eiθ) = γ(Sk (θ) + Uk (θ)) ≈ ξ(θ) + eiβ(θ)U(θ)

extends analytically to the interior of the unit disk with f (0) = 0, where
ξ(θ) = γ(S(k)(θ)), β(θ) = arg γ′(S(k)(θ)), and
U(θ) := |γ′(S(k)(θ)|U(k)(θ) extends analytically to the interior of the
unit disk with f (0) = 0. The analyticity condition

2P−f = (I − iK + J)f = 0

implies that
(I − iK + J)eiβ(θ)U(θ) = −2P−ξ(θ).

U real gives
(I + R)U = r

where R = Re(e−iβ(J − iK )eiβ) and r = −Re(e−iβ(I − iK + J)ξ).
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Fourier series methods Fornberg’s method for the disk (1980)

R is a compact operator (Widlund, Wegmann)

RU(θ) :=
1

2π

∫ 2π

0

sin
(
β(φ)− β(θ) + θ−φ

2

)
sin
(
θ−φ

2

) U(φ) dφ,

and for γ sufficiently smooth R in is a symmetric, compact operator on
L2.
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Fourier series methods Fornberg’s method for the disk (1980)

Discretization by N-pt. trig. interp.
With E = diagj(e

iβ(θj )), j = 0,1, · · · ,N − 1, discretization gives

AU = (IN + RN)U = r .

where the matrix

IN + RN =
2
N

Re(EHF HPNFE)

(with PN := diag[1,0, . . . ,0,1, . . . ,1]) is symmetric and pos.(semi)def.
with eigenvalues well-grouped around 1 and conjugate gradient
converges superlinearly.
Matrix-vector multiplications costs O(N log N) with FFT.
The Newton update is given by

S(k+1) = S(k) + U(k),

with U0 = 0 set to fix a boundary point
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Fourier series methods Fornberg-like method for the annulus (1998)

Map from annulus–D. and Pfaltzgraff (1998)
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Figure: Doubly connected Fornberg maps annulus ρ < |z| < 1 to domain
between two ellipses α = .3, .6 with N = 64. Normalization fixes one
boundary point f (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S1(θ) and S = S2(θ) along with the unique
ρ(=1/conformal modulus) must be computed numerically.
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Fourier series methods Fornberg-like method for the annulus (1998)

Analyticty conditions
Let C1 and C2 denote the outer and inner boundaries, respectively, of
the annulus ρ < |z| < 1, and put C = C1 − C2.

Theorem
A function h ∈ Lip(C) extends analytically to the annulus ρ < |z| < 1 if
and only if ∫

C1

h(z)zkdz =

∫
C2

h(z)zkdz, k ∈ Z.

If we let

h(eiθ) =
∞∑

k=−∞
akeikθ h(ρeiθ) =

∞∑
k=−∞

bkeikθ

then the above condition becomes ρkak = bk , k ∈ Z or (to prevent
overflow)

ρkak = bk ,a−k = ρkb−k , k = 0,1,2, . . . .
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Fourier series methods Fornberg-like method for the annulus (1998)

Mapping problem

Target region Ω bounded by two smooth curves Γ1 : γ1(S1) and
Γ2 : γ2(S2).

Problem: Find the boundary correspondences S1(θ) and S2(θ) and the
conformal modulus ρ such that f (z) is analytic in the annulus
ρ < |z| < 1 and f (eiθ) = γ1(S1(θ)) and f (ρeiθ) = γ2(S2(θ)).
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Fourier series methods Fornberg-like method for the annulus (1998)

Linearization for Newton-like method

At each Newton step we want to compute corrections U1(θ), U2(θ),
and δρ to S1(θ), S2(θ), and ρ. With Sj arclength,
βj(θ) := arg γ′j (Sj(θ)), ξj(θ) := γj(Sj(θ)), j = 1,2, ζ(θ) := f ′(ρeiθ)eiθ =

−ieiβ2(θ)dS2(θ)/dθ/ρ, as in [LM] we linearize about S1,S2, and ρ,

γj(Sj(θ) + Uj(θ)) ≈ γj(Sj(θ)) + γ′j (Sj(θ))Uj(θ)), j = 1,2,

f ((ρ+ δρ)eiθ) ≈ f (ρeiθ) + f ′(ρeiθ)δρeiθ

giving

f (eiθ) ≈ ξ1(θ) + eiβ1(θ)U1(θ)

f (ρeiθ) ≈ ξ2(θ) + eiβ2(θ)U2(θ)− ζ(θ)δρ.

We find U1,U2, δρ to force these BVs to satisfy the analyticity
conditions for the annulus.
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Fourier series methods Fornberg-like method for the annulus (1998)

Linear system

Letting ak and bk now denote the N discrete Fourier coefficients and
using the N−periodicity ak+N = ak , we have with N = 2M

a = (a0,a1, . . . ,aM ,aM+1, . . . ,aN−1)T = (a0,a1, . . . ,aM ,a−M+1, . . . ,a−1)T .

b is defined similarly. Next define the N × N matrices P1 =
diag(1, ρ, . . . , ρM−1,1, . . . ,1) and P2 = −diag(1, . . . ,1,1, ρM−1, . . . , ρ).
If we set aM = bM as in [Fo2, eq. 6], we write the discrete form of our
analyticity conditions as

(29) P1a + P2b = 0.
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Fourier series methods Fornberg-like method for the annulus (1998)

Linear system
With Ej := diagl=0,...,N−1(eiβj (θl )), j = 1,2, our discrete linearizations
become

(30) Na = Fξ1 + FE1U1

(31) Nb = Fξ2 + FE2U2 − Fζδρ.

Substituting these linearizations into the discrete analyticity conditions
gives our linear system for U1, U2, and δρ,

(C w)U = P1FE1U1 + P2FE2U2 − P2Fζδρ = −P1Fξ1 − P2Fξ2 =: c.

where C = (P1FE1 P2FE2) is a complex N × 2N matrix, w = −P2Fζ is
a complex N-vector, and

U =

U1
U2
δρ

 .
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Fourier series methods Fornberg-like method for the annulus (1998)

We have a system of N complex equations in 2N + 1 real unknowns,
U. To satisfy the normalization f (1) = γ1(0), we add the equation
qT U = U0 = δ := 0, where qT = (1,0, . . . ,0)T is a 2N + 1-vector. We
write

D =

[
C w√
N qT/2

]
, g :=

[
c
δ

]
.

and our system now becomes

DU = g,

a system of N complex equations and 1 real equation for the 2N + 1
real unknowns, U. Using the normal equations and U real, we have

AU =
2
N

Re(DHD)U = r :=
2
N

Re(DHg).

As in the simply connected case, we solve the system by the conjugate
gradient method using FFTs.
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Fourier series methods Fornberg-like method for the annulus (1998)

The matrix A is a discretization of the identity plus a compact operator
as in the disk case. We have the following 2N + 1× 2N + 1-matrix

A =
2
N

Re(DHD) =

A11 A12 w1
AT

12 A22 w2
wH

1 wH
2 2wHw/N

+
1
2

qqT

where Aij = 2
N Re(EH

i F HPiPjFEj) and w i = 2
N Re(EH

i F HPiw), i , j = 1,2.
Now it is easy to see that A11 is a (low rank perturbation of) the
discretization of

2Re(e−iβ1(P− + l1∗)eiβ1) = I + R1 + C1

with N−point trigonometric interpolation where
R1 = Re(e−iβ1(J − iK )eiβ1 is compact, ∗ is convolution,
l1(θ) = ρ2eiθ/(1− ρ2eiθ) =

∑∞
k=1 ρ

2keikθ, and
C1 = 2Re(e−iβ1 l1 ∗ (eiβ1)) is the product of bounded operators and a
convolution and is, hence, compact.
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Fourier series methods Fornberg-like method for the annulus (1998)

Newton update

S(k+1)
1 = S(k)

1 + U(k)
1

S(k+1)
2 = S(k)

2 + U(k)
2

ρ(k+1) = ρ(k) + δρ(k).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Outline

1 Introduction
Some background
Numerical preview and gallery

2 Fourier series methods
Fornberg’s method for the disk (1980)

Analyticity conditions
Linearization
Discretization by N-pt. trig. interp.

Fornberg-like method for the annulus (1998)
Multiply connected Fornberg (bounded case, 2009)

3 Remarks and extra details
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Interior mult. conn. case–Kropf’s MS thesis (2009)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure: Outer circle is unit circle. Map normalization fixes f (0) and f (1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Computational Goal

w=f(z)

w
0
=f(z

0
)z

0

w
0

D

C
1

D
1

D
2

C
2

D
3

C
3 Ω

Γ
1

Γ
2

Γ
3

The goal is to compute the conformal map f : D → Ω.
To do this we must calculate

1 the centers cν and radii ρν of the circles Cν , 2 ≤ ν ≤ m, and
2 the boundary correspondences Sν(θ), where 0 ≤ θ ≤ 2π,

such that f (cν + ρνeiθ) = γν(Sν(θ)), 1 ≤ ν ≤ m.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Form of the Map

Theorem

The conformal map described above has the series representation

f (z) =
∞∑

j=0

a1,jz j +
m∑
ν=2

∞∑
j=1

aν,−j

(
ρν

z − cν

)j

,

where for 1 ≤ ν ≤ m and j > 0 the Fourier coefficients aν,j are defined

aν,j :=
1

2π

∫ 2π

0
f (cν + ρνeiθ)e−ijθ dθ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Analytic Continuation

Theorem

Let C be a positively oriented, Lipschitz continuous curve with D the
region bounded by C and D− the compliment of D ∪ C. A function
f ∈ Lip(C) can be continued analytically into D if and only if

1
2πi

∫
C

f (ζ)

ζ − z
dζ = 0, ∀z ∈ D−.

Now applied to multiply connected circle domain D.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Analyticity Conditions

Theorem
A function f ∈ Lip(C) extends analytically into D if and only if for all
k ≥ 0

a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1) = 0

and
∞∑

j=0

Bk+1,jρ
k
` c j
`a1,k+j − a`,k

−
m∑
ν=2
ν 6=`

∞∑
j=0

ρk
`

(cν − c`)k+1 Bk+1,j
ρj+1
ν

(c` − cν)j aν,−(j+1) = 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Note on Analyticity Conditions
For the analyticity conditions we need to define some binomial
coefficients.

Definition
For k > 0 and x , y ∈ C,

(x + y)k =
k∑

j=0

(
k
j

)
xk−jy j where

(
k
j

)
:=

k !

j!(k − j)!
.

Definition
For k > 0 and |z| < 1,

1
(1− z)k =

∞∑
j=0

Bk ,jz j where Bk ,j :=
k(k + 1) · · · (k + j − 1)

j!
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Note on Proof of Analyticity Conditions

The proof involves
1 applying the above analytic continuation Theorem for an arbitrary

point z in each D1, . . . ,Dm,
2 expanding the function in the appropriate Laurent series, and
3 setting the resulting series equal to 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Outside C1)

Proof.
For z in D1 we have |z| > 1 and |ζ|/|z| < 1 for ζ on any C1, . . . ,Cm,
thus

1
2πi

∫
C

f (ζ)

ζ − z
dζ = − 1

2πi

∫
C

f (ζ)
1
z

∞∑
k=0

(
ζ

z

)k

dζ

= −
∞∑

k=0

z−k−1 1
2πi

∫
C

f (ζ)ζk dζ = 0.

The last integral on the RHS must be zero for all k ≥ 0.

Tom DeLilloWichita State U Math Dept (Conformal Geometry in Mapping, Imaging, and Sensing)Numerical Conformal Mapping
Imperial College, June 20-21, 2013 48 /

66



Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Outside C1)

Proof.

0 =
1

2πi

∫
C

f (ζ)ζk dζ =
1

2πi

∫
C1

f (ζ)ζk dζ −
m∑
ν=2

1
2πi

∫
Cν

f (ζ)ζk dζ

=
1

2π

∫ 2π

0
f (eiθ)ei(k+1)θ dθ (Note : ζk = (cν + ρνeiθ)k

−
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν

1
2π

∫ 2π

0
f (cν + ρνeiθ)ei(j+1)θ dθ

= a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Map Normalization

The map is normalized by specifying three real conditions:
I f (1) = γ1(0) and
I

w0 = f (z0) =
∞∑

k=0

a1,k zk
0 +

m∑
ν=2

∞∑
k=1

aν,−k

(
ρν

z0 − cν

)k

.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Linearization
We now write f (cν + ρνeiθ) = γν(Sν(θ)) as a linear problem.

For an initial guess Sν(θ) and 2π periodic correction Uν(θ),

γν(Sν(θ) + Uν(θ)) ≈ γν(Sν(θ)) + γ′ν(Sν(θ))Uν(θ).

For an initial guess of cν and ρν with corrections δcν and δρν ,

(f + δf )(cν + δcν + (ρν + δρν)eiθ)

≈ (f + δf )(cν + ρνeiθ) + f ′(cν + ρνeiθ)(δcν + δρνeiθ).

Setting the RHS of these approximations equal gives

(f + δf )(cν + ρνeiθ) = γν(Sν(θ)) + γ′ν(Sν(θ))Uν(θ)

− f ′(cν + ρνeiθ)(δcν + δρνeiθ).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Linearization
More concisely

For convenience define
I ξν(θ) := γν(Sν(θ)),
I ην(θ) := γ′ν(Sν(θ)), and
I ζν(θ) := −f ′(cν + ρνeiθ)eiθ = iρ−1

ν ηνS′ν(θ).
The linearization conditions can then be written

I (f + δf )(eiθ) = ξ1(θ) + η1(θ)U1(θ)
I (f + δf )(cν + ρνeiθ) = ξν(θ) + ην(θ)Uν(θ) + ζν(θ)(δρν + δcνe−iθ)

for the updates around C1 and around Cν , 2 ≤ ν ≤ m,
respectively.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Newton Updates

After the linear system has been solved, the updates are applied
at each step (n) as follows:

I S(n)
ν (θ) = S(n−1)

ν (θ) + U(n−1)
ν (θ)

for 1 ≤ ν ≤ m, and
I c(n)

ν = c(n−1)
ν + δc(n−1)

ν

I ρ
(n)
ν = ρ

(n−1)
ν + δρ

(n−1)
ν

for 2 ≤ ν ≤ m.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Discrete analyticity conditions

a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1) = 0,

M−1∑
j=0

Bk+1,jρ
k
` c j
`a1,k+j − a`,k

−
m∑
ν=2
ν 6=`

M−1∑
j=0

ρk
`

(cν − c`)k+1 Bk+1,j
ρj+1
ν

(c` − cν)j aν,−(j+1) = 0,

M−1∑
j=0

a1,jz
j
0 +

m∑
ν=2

M∑
j=1

aν,−j

(
ρν

z0 − cν

)j

= w0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Matrix Form
of the Analyticity and Normalization Conditions

The discrete system of equations can be written

Pa = P1a1 + · · ·+ Pmam = [P1 · · · Pm]

a1
...

am

 =


0
...
0

w0

 := r .
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Discrete Linearization Conditions

We need to define the vectors and vector functions
I θ := 2π

N (0,1, . . . ,N − 1)T ,
I ξ

ν
:= ξν(θ),

I and similarly for η
ν
, ζ

ν
, and Uν .

If F is the discrete Fourier transform matrix, Eν := diag(η
ν
),

q := e−iθ, and ∗ is the Hadamard product, then the linearization
conditions become

I Na1 = Fξ
1

+ FE1U1 and
I Naν = Fξ

ν
+ FEνUν + δρνFζ

ν
+ δcνF (q ∗ ζ

ν
).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

New Linear System

For ease of exposition, assume m = 3 for the rest of this section.
Combining the discrete system of equations for the analyticity and
normalization conditions with the discretized linear conditions
gives

P1FE1U1

+ P2(FE2U2 + δρ2Fζ2 + (Re δc2 + iIm δc2)F (q ∗ ζ2))

+ P3(FE2U3 + δρ3Fζ3 + (Re δc3 + iIm δc3)F (q ∗ ζ3))

= Nr − P1Fξ1 − P2Fξ2 − P3Fξ3 := g̃.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

More Convenience Notation

Let wν := PνFζ
ν
,

wq
ν

:= PνF (q ∗ ζ
ν
),

W :=
[
w2 w3 wq

2
iwq

2
wq

3
iwq

3

]
,

and of course P :=
[
P1 P2 P3

]
.

Also define the real vector U :=[
UT

1 UT
2 UT

3 δρ2 δρ3 Re δc2 Im δc2 Re δc3 Im δc3

]T
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix D̃

Combining all of this we now have

D̃U :=
[
P1 P2 P3 W

] 
F 0 0 0
0 F 0 0
0 0 F 0
0 0 0 I




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 I

U = g̃.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix D
Through normalization

We add a row to this system to force U1(0) = 0 at every iteration.
This satisfies the normalization condition f (1) = γ1(0).
To do this define the vector vT := (1,0, . . . ,0), and then

D :=

[
D̃√
N

2 vT

]
and g :=

[
g̃
0

]
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix A

Taking the “normal equations” and using the fact U is real,

AU :=
2
N

Re (DHD)U =
2
N

Re (DHg) := b.

This system can now be solved efficiently using the conjugate
gradient method.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix A Decomposed

Define
I Akj := (2/N)Re (EH

k F HPH
k PjFEj ) and

I Xk := (2/N)Re (EH
k F HPH

k W ).

Then A can be written

A =
2
N

Re (DHD) =


A11 A12 A13 X1
A21 A22 A23 X2
A31 A32 A33 X3
X T

1 X T
2 X T

3 W HW

+
1
2

vvT ,
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of A

To understand the eigenvalues of A it suffices to examine the
submatrix

Â =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 .
For the eigenvalues:

I The diagonal entries can be shown to be discretizations of the
identity plus a compact operator, and

I the off-diagonal entries can be shown to be discretizations of a
compact operator.

In effect Â is a low-rank perturbation of the identity, and the
eigenvalues cluster around 1.
This is the property which makes the conjugate gradient method
an efficient solver to use for this problem.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of A Cluster Around 1
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This map had m = 7 and N = 128.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of Â
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This map had connectivity m = 3 with N = 256.
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Remarks and extra details

Remarks and future work

The extensions of Fornberg’s original method are essentially
complete. I + compact inner systems carry over.
(The ellipse method was not presented here.)
The MATLAB codes need to be refined and integrated.
Further comparisons with Wegmann’s methods needs to be done
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