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Some background
Collaborators

Colleagues: Alan Elcrat (WSU) and John Pfaltzgraff (UNC Chapel Hill)

MS/PhD students: Mark Horn, Noureddine Benchama, Lianju (Julian)
Wang, and Everett Kropf
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Introduction Some background

Conformal map w = f(z) from disk to target domain
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Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted

ellipse using 64 Fourier points. f'(z) # 0, so locally f(a+ h) ~ f(a) + f'(a)h

and f maps a small circle near z = ato a circle near f(a) magnified by |f'(a)|
and rotated by arg f'(a). Therefore curves intersecting at angle 4 at a will be

mapped to curves intersecting at angle 4 at f(a) and the map is
angle-preserving or conformal. Existence and uniquesness given by

Riemann Mapping Theorem with f(0) and f(1) fixed.
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Some background
Interior mult. conn. case—Kropf’s MS thesis (2009)
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Figure: Outer circle is unit circle. Map normalization fixes f(0) and f(1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Some background
Boundary correspondence

The boundary I of Q is parametrized by S (e.g., arclength or polar
angle), I : v(S),0 < S < L,v(0) = ~y(L). If S= S(0) or its inverse
0(S) = arg f~'(+(S)) is known, then the map is known for z € D or
w € Q by the Cauchy Integral Formula,

1 A(S))
—ﬁ/C—C_Z dc ()

w = f(2)

or

Z_f—1(W)_L/L(S)d (S)
N 27 Jry(S) - w =)
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Some background
Two classes of “traditional” methods

1. Find S = S(6) such that f(€"?) = ~(S(6)). We will discuss this
case. These methods solve a nonlinear integral equation for S(6)
by linearly convergent methods of successive approximation
(Picard-like iteration) such as Theodorsen’s method, or
quadratically convergent Newton-like methods such as Fornberg’s
or Wegmann’s methods. Cost: O(Nlog N) with FFTs.

2. Find 6 = 4(S) such that =" (v(S)) = €?(5). These methods solve
linear integral equations arising from potential theory for 6(S) or
6'(S). Cost: O(N?) operation counts, but can handle more highly
distorted regions.

Imperial College, June 20-21, 2013 8/
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Introduction Some background

MANY other methods exist, as we see at this meeting, based on ideas
from computational geometry, circle packing, Riemann-Hilbert
problems, orthogonalization, compositions of explicit maps
(Grassmann, Marshall),...

Imperial College, June 20-21, 2013 9./
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Introduction Some background

Key idea for this talk: Taylor/Laurent series = Fourier
series
For|z| < [¢|=1,¢ =€, d¢ = ie?dp

@ ~ /|<|_1 A(SE)

2ni (—z
1 z z\? dc
- — S0 1+—+(—> o |2
xel ( ())( ct\e > c
2w . .
1 Y(S0))(1 +ze7 " + 222" ... )db
27'[' 0
o 1 2r .
- Y (L / ~(S(6))e K0 dp | z¥
271' 0
k=0
= Zakzk,
k=0
Taylor coeff. = Fourier coeff. a; := 5~ " ~1(S(6))e_%0do
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Outline

0 Introduction

@ Numerical preview and gallery

@ Analyticity conditions
@ Linearization
@ Discretization by N-pt. trig. interp.

Imperial College, June 20-21, 2013

Tom DeLilloWichita State U Math Dept (Confc Numerical Conformal Mapping

12/
66



Introduction Numerical preview and gallery

Figure: Fornberg map from exterior of unt disk to exterior of spline
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Introduction Numerical preview and gallery

Simply-connected case: crowding=large
distortions=lll-conditioning

A T
S R

Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse
using 1024 Fourier points.
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Numerical preview and gallery
Map from annulus—D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus p < |z| < 1 to domain
between two ellipses a = .3, .6 with N = 64. Normalization fixes one
boundary point (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S;(6) and S = S,(0) along with the unique
p(=1/conformal modulus) must be computed numerically.
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Introduction Numerical preview and gallery

Exterior mult. conn. case—Benchama’s PhD thesis
(2003)

Figure: Fornberg map to the exterior of five curves.
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Introduction Numerical preview and gallery

Interior mult. conn. case—Kropf’s MS thesis (2009)

@ A target region (on the right) with an outer spline boundary which
is parametrized by arclength.
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Introduction

Radial slit map from Kropf’s PhD thesis (2012)

S =» 2 DA
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Introduction Numerical preview and gallery

Numerical Example

1 2
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@ Annulus with circular holes as a computational domain.
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Fornberg’s method for the disk (1980)
Conformal map w = f(z) from disk to target domain

AL
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Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
ellipse using 64 Fourier points. Normalization fixes three real parameters:

£(0) fixed and £(1) fixed.
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Some useful linear operators
For h = h(6), 2r-periodic, h(8) = 3> ___ cke™?

k=—o00

1 27
Jh(0) = o | h(6)do = ¢
P.h(0) = ) ce

k=1

0 .
P_h(6) = > cke"

k=—o00

Note that PZ = P. are projection operators onto subspaces of
L2[0, 2] whose nonpositive/positive indexed Fourier coefficients 0.
Also note

P.h = %(H—iK—J)h,
P.h = %(l—iKJrJ)h.

’ e . . Imperial College, June 20-21, 2013
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(Infinite) matrix form Fh :=

Tom DeLilloWichita State U Math Dept (Confc
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C_o

C1
Co
C1
Co

Numerical Conformal Mapping

C—1
= ¢ and Kh=F 'KFh

iC_2
ic_1
=F'| 0
—icy
— 102
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Condition for analytic extension of boundary values
Theorem

A function h € Lip(I') can be continued analytically into D* (i.e.,
f(t) = h(t),t € I') if and only if

] h(t)
f(z) .= i T
.

at=0, zeD,

or, equivalently, if

1 n . _
27”./t hi)dt =0, n=012,....
J

Proof.

Cauchy Integral Theorem and Sokhotskyi jump relations, f+ — f~ = h;
see, e.g., Henrici, ACCA, v. 3, Muskhelishvili, SIE.

om DelLilloWichita State U Math Dept (Confc
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Fornberg’s method for the disk (1980)
Condition for unit D=disk

Theorem

A function f € Lip(C) on the boundary C of the unit disk extends to an
analytic function in the interior of the disk with f(0) = 0 if and only if

P_f(e”) =0. (1)

That is, negative indexed coefficients are O.

Imperial College, June 20-21, 2013 26 /
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Linearization
Given the kth Newton iterate S = S*(#), find correction U%(#4), real,
such that

f(€”) = ~(8*(9) + UX(9)) = £(6) + €O U(6)

extends analytically to the interior of the unit disk with f(0) = 0, where
£(6) =~(8%(8)), (6) = arg+/(8¥)(9)), and

u(9) = |v/(S™(6)| UM (9) extends analytically to the interior of the
unit disk with f(0) = 0. The analyticity condition

2P f=(I-iK+J)f=0
implies that .
(I - iK + J)eP O U(p) = —2P_¢(6).

U real gives
(I+RU=r
where R = Re(e~'(J — iK)e'?) and r = —Re(e A(1 = iK + J)¢).

Imperial College, June 20-21, 2013 27/
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Fornberg’s method for the disk (1980)
R is a compact operator (Widlund, Wegmann)

RU(0) :=

1 pensin (8(0) - B(6) + %5°
2m / sin (‘9 ¢>

and for v sufficiently smooth R is a symmetric, compact operator on
L2

Imperial College, June 20-21, 2013 28/
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Discretization by N-pt. trig. interp.
With E = diag;(e’*(¥)), j=0,1,--- ,N — 1, discretization gives

AU = (In+Rn)U =r.

where the matrix

In+ Ry = %Re(EHFHPNFE)
(with Py := diag[1,0,...,0,1,...,1]) is symmetric and pos.(semi)def.
with eigenvalues well-grouped around 1 and conjugate gradient
converges superlinearly.
Matrix-vector multiplications costs O(N log N) with FFT.
The Newton update is given by

§(k+1) _ §(k) _i_g(k)7

with Up = 0 set to fix a boundary point

Imperial College, June 20-21, 2013 29/
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Fornberg-like method for the annulus (1998)
Outline
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Fornberg-like method for the annulus (1998)
Map from annulus—D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus p < |z| < 1 to domain
between two ellipses a = .3, .6 with N = 64. Normalization fixes one
boundary point (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S;(6) and S = S,(0) along with the unique
p(=1/conformal modulus) must be computed numerically.
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Analyticty conditions
Let Cy and C, denote the outer and inner boundaries, respectively, of
the annulus p < |z| < 1, and put C = Cy — Co..

Theorem
A function h € Lip(C) extends analytically to the annulus p < |z| < 1 if
and only if
h(z)zXdz= | h(z)z¥dz, keZ.
C1 C2
If we let

h(eie) _ Z akeik9 h(peie) _ Z bkeik9

k=—o00 k=—o0

then the above condition becomes p*ax = by, k € Z or (to prevent
overflow)
pfak = bi,ak = pkb i,k =0,1,2, ...

v

’ e . . Imperial College, June 20-21, 2013
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Mapping problem

Target region Q bounded by two smooth curves 'y : v¢1(S1) and
2 72(S2).

Problem: Find the boundary correspondences S;(0) and S,(6) and the
conformal modulus p such that f(z) is analytic in the annulus

p < |2] < 1 and f(e) = 71(S1(6)) and f(pe”) = 75(Sx(6)).

Imperial College, June 20-21, 2013 33/
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Fornberg-like method for the annulus (1998)
Linearization for Newton-like method

At each Newton step we want to compute corrections U;(6), Uz(0),
and op to 5¢(0), Sa2(0), and p. With S; arclength, o
Bi(0) == arg~;(S;(0)), &(0) :=(S)(0)), j = 1,2, ((0) := f'(pe")e" =
— i) dS,(0)/de/p, as in [LM] we linearize about Sy, S, and p,

V(Si(0) + Ui(0)) = v(Si(0)) +i(Si(0))Ui(0)), j = 1.2,

f((p+06p)e”) ~ f(pe”)+F(pe”)5pe”
giving
f(e®) ~ &(0)+ e U (o)
f(pe") ~ &(68) + €Uy () — ((6)dp.

We find Uy, Us, 6p to force these BVs to satisfy the analyticity
conditions for the annulus.

Imperial College, June 20-21, 2013 34/
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Fornberg-like method for the annulus (1996)
Linear system

Letting ax and by, now denote the N discrete Fourier coefficients and
using the N—periodicity ax, n = ax, we have with N = 2M

T T
g:(aOaa1a"°7aM7aM-|—17"'7aN—1) :(aOaa1a"'7aM7a—M+1a"'aa—1)

b is defined similarly. Next define the N x N matrices P; =
diag(1,p,...,pM"",1,...,1) and P, = —diag(1,...,1,1,pM=1, ... p).
If we set ayy = by as in [Fo2, eq. 6], we write the discrete form of our
analyticity conditions as

(29) Pia+ Psb=0.

Imperial College, June 20-21, 2013 35/
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Linear system
With E; := diag,_o _n_¢(€"%%), j = 1,2, our discrete linearizations
become

(30) Na= F¢, + FE U,

(31) Nb = F¢, + FEoU, — F(op.

Substituting these linearizations into the discrete analyticity conditions
gives our linear system for U;, U,, and dp,

(Cw)U = PyFE Uy + P2FEU, — PaF¢op = —PiFE, — PoFE, =:c.

where C = (P1FE; PoFEy) is a complex N x 2N matrix, w = —P>F( is
a complex N-vector, and a
U,
U= U2] .

op

Imperial College, June 20-21, 2013 36 /
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We have a system of N complex equations in 2N + 1 real unknowns,
U. To satisfy the normalization f(1) = ~1(0), we add the equation
q"U= Uy =0:=0,where g" = (1,0,...,0)" is a 2N + 1-vector. We

write
p_|¢ w _|€
=|vN g2 97 |s]-
and our system now becomes

DU=g,

a system of N complex equations and 1 real equation for the 2N + 1
real unknowns, U. Using the normal equations and U real, we have
2

2
AU = NRe(D D)U=r: NRe(D g)-

As in the simply connected case, we solve the system by the conjugate
gradient method using FFTs.

Imperial College, June 20-21, 2013 37/
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The matrix A is a discretization of the identity plus a compact operator
as in the disk case. We have the following 2N + 1 x 2N + 1-matrix

> A1 Ag2 w 1
A= NRe(DHD) =|AL, A»n w, |+5qq”
wi wy 2wfw/N
where Aj; = %Re(E,.HF”P,-F’jFI:',-) and w; = %RC(E,HFHP,-ﬂ), ihj=1,2.
Now it is easy to see that A4+ is a (low rank perturbation of) the
discretization of

2Re(e %1 (P_ + Iy%)e’®) = I+ Ry + Cy

with N—point trigonometric interpolation where

Ry = Re(e~"1(J — iK)€e'# is compact, * is convolution,

Iy (9) _ pzeie/(1 _ pzeie) — 2?21 p2keik9, and

Ci = 2Re(e P11y x (/1)) is the product of bounded operators and a
convolution and is, hence, compact.

Imperial College, June 20-21, 2013 38/
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Newton update

k+1 k k
s{H = s+ U

St — g 4 o
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Multiply connected Fornberg (bounded case, 2009)
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Multiply connected Fornberg (bounded case, 2009)
Interior mult. conn. case—Kropf’s MS thesis (2009)

-1 -0.5 [ 0.5 1 -3 -2 -1 [ 1 2 3

Figure: Outer circle is unit circle. Map normalization fixes f(0) and f(1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Computational Goal

w=f(z)

w0=f(z 0)

@ The goal is to compute the conformal map f: D — Q.
@ To do this we must calculate
@ the centers ¢, and radii p, of the circles C,, 2 < v < m, and
@ the boundary correspondences S, (6), where 0 < ¢ < 2,
such that f(¢c, + p,€"%) = ,(S,(0)), 1 <v < m.

Imperial College, June 20-21, 2013 42/
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Multiply connected Fornberg (bounded case, 2009)
Form of the Map

Theorem

The conformal map described above has the series representation

ZawzlJrZZa,,_,( C>j,

v=2 j=1

where for 1 < v < m andj > 0 the Fourier coefficients a, ; are defined

1 2 ) .
a,j =5 / f(c, + p.e%)e 1 do.
’ 2m 0

. Imperial College, June 20-21, 2013 43/
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Multiply connected Fornberg (bounded case, 2009)
Analytic Continuation

Theorem

Let C be a positively oriented, Lipschitz continuous curve with D the
region bounded by C and D~ the compliment of DU C. A function
f € Lip(C) can be continued analytically into D if and only if

L/ 1<) d(=0, VzeD .

2mi CC—Z

Now applied to multiply connected circle domain D.

’ e . . Imperial College, June 20-21, 2013
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Analyticity Conditions

Theorem

A function f € Lip(C) extends analytically into D if and only if for all

k>0

a4 —(k+1)_zz< )ﬂl+1 G ]au—(j-H)—O
v=2 j=0

and

o0
.
ZBk+1 JPECIat k+j — Aok
j=0

4
_E:ZZO(CV—C k+1 Bk””(c G, ) U T 0
V!

. — - . Imperial College, June 20-21, 2013 45/
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Multiply connected Fornberg (bounded case, 2009)
Note on Analyticity Conditions

For the analyticity conditions we need to define some binomial
coefficients.

Definition
For k >0and x,y € C,

(x +y)k = i (lj) xk=Jyl where (lj) = /I(kk—l/)l

Definition
Fork >0and |z| <1,

1 > .  k(k+1)-(k+j—1)
(1 — Z)k = Z; Bk’jZ/ where Bk,j = jl 5
l:

v

. — - . Imperial College, June 20-21, 2013 46 /
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Multiply connected Fornberg (bounded case, 2009)
Note on Proof of Analyticity Conditions

The proof involves

@ applying the above analytic continuation Theorem for an arbitrary
point z in each Dy, ..., Dpy,

@ expanding the function in the appropriate Laurent series, and
© setting the resulting series equal to 0.

’ e . . Imperial College, June 20-21, 2013
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Proof of Analyticity Conditions
(Outside Cy)

Proof.

For zin Dy we have |z| > 1 and |¢|/|z| < 1for{onany Cy,...,Cnp,
thus

1 f(<)

27i J¢o —zdc_ 27rl i9) Z()
_ —k—1i K g
- kgoz ori . fOckdc =0,

The last integral on the RHS must be zero for all k > 0.

Imperial College, June 20-21, 2013 48/
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Proof of Analyticity Conditions
(Outside Cy)

Proof.

_1 k _1 k _mi K
0—2—7”./Cf(C)C dC—2—7TI./C1 f(¢)¢* d¢ VZ_227Ti/CVf(C)C d¢

2 ) . .
= l/ f(ee1dp  (Note: ¢*=(c, + p,e?)
o 0
m K k 1 2
~y 3 (f pi—HCk—j_/ £(Gy + pve®) el 1o gy
. ] v v 27T 0
v=2 j=0
m Kk K\ '
= a4 —(k+1) — Z Z <j>ﬂ’y+1 Cffjau,f(m)-
v=2 j=0

v

’ e . . Imperial College, June 20-21, 2013
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Muttiply connected Fornberg (bounded case, 2009)
Map Normalization

@ The map is normalized by specifying three real conditions:
» f(1) =~(0) and

>
k
wo = f(20) = Za1kzo+ZZay’ (zo—c>'

v=2 k=1

Imperial College, June 20-21, 2013
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Multiply connected Fornberg (bounded case, 2009)
Linearization

We now write f(c, + p,€%) = ~,(S,(#)) as a linear problem.
@ For an initial guess S, (#) and 27 periodic correction U, (6),

Ww(Su(0) + Un(0)) = 7(S0(0)) + 7, (S.(0)) Un(6).

@ For an initial guess of ¢, and p, with corrections éc, and dp,,

(f+df)(cv +dc + (pv + 5PV)ei0)
~ (f+ 6f)(c, + p,€°) + f(c, + p,€%)(dc, + dp,.€”).

@ Setting the RHS of these approximations equal gives

(f+ 5f)(c, + p€"”) = 1(5.(8)) +,(5.(8)) Un(6)
— f'(c, + p.€?)(0c, + dp,€7).
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Multiply connected Fornberg (bounded case, 2009)
Linearization

More concisely

@ For convenience define
> §(0) = 1(S.(0)),
> 1, (0) = 7,(S.(0)), and
> G(0) = —f(c, + p.€°)€” = ip, 1, S,(6).
@ The linearization conditions can then be written
> (F+6f)(€7) = &(0) +m(0) Ui (0) ,
> (f + 5f)(cu + Puela) = 51/(9) + TIV(Q)UV(Q) + CV(G)(5pV + 501197’6)
for the updates around Cy and around C,, 2 <v < m,
respectively.
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Newton Updates

@ After the linear system has been solved, the updates are applied

at each step (n) as follows:

> 8(0) = 8T V(0) + USV(0)
for1 <v < m, and

> Cl(/n) _ Cl(,n_” +5C,(/n_1)

I N
for2 <v<m.

om DeLilloWichita State U Math Dept (Confc Numerical Conformal Mapping
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Multiply connected Fornberg (bounded case, 2009)
Discrete analyticity conditions

° ar,—(k+1) ZZ( )P’+1 cia, 1) =0,

v=2 j=0

M—1
By11,0f¢C) a1 k+j — Aok
j=0
° m M-1 k +1
- b Al G+1) =0
— k+1 > Vi v,— ’
s (e, — ) (ce—cv)
v#£L

Imperial College, June 20-21, 2013 54/
Tom DeLilloWichita State U Math Dept (Confc Numerical Conformal Mapping 66



Matrix Form

of the Analyticity and Normalization Conditions

@ The discrete system of equations can be written

0
& .

Pa=Pia -+ Pran =[Py - Prl| = | |=r
am Wo

Imperial College, June 20-21, 2013
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Multiply connected Fornberg (bounded case, 2009)
Discrete Linearization Conditions

@ We need to define the vectors and vector functions

> 0:=2(0,1,...,N-1)7,
> §y = &(0),
» and similarly for n, §,,1 and U,.

o If Fis the discrete Fourier transform matrix, £, := diag(n ),
q:= e, and « is the Hadamard product, then the linearization
conditions become

» Na, = F§1 + FE1U, and
> Na, = F¢ + FE,U, +dp,F¢ +0c,F(q+C ).

’ e . . Imperial College, June 20-21, 2013
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New Linear System

@ For ease of exposition, assume m = 3 for the rest of this section.

@ Combining the discrete system of equations for the analyticity and
normalization conditions with the discretized linear conditions
gives

P:FE; U,

+ Px(FE_U, + 5P2F§2 + (Redco + imdco) F(q * gz))
+ PS(FE2g3 + 5[)3/:&3 + (Redcz + ilm 503)F(g>{< QS))

= N[— P1 F§1 — P2F§2 — P3F§3 = g
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Multiply connected Fornberg (bounded case, 2009)
More Convenience Notation

@ lLetw, = PVFQV,

° wq = PVF(Q*QV),

°o W:= [ﬂZ ws wq, iwg, wq, iW_qs}’
@ andof course P:= [Py P> Ps].

@ Also define the real vector U :=

T
[gr Q2T g%- (5p2 (5p3 Redco, Imdco Re<503 Im(503
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The Matrix D

@ Combining all of this we now have

PU -

[Py Py Py W]

I
Il
IQ

F
0
0
0

oo mo
omoo
—~ooo
ocooMm
coMo
oMoo
—~ocoo
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Multiply connected Fornberg (bounded case, 2009)
The Matrix D

Through normalization

@ We add a row to this system to force U;(0) = 0 at every iteration.
@ This satisfies the normalization condition f(1) = ~1(0).
@ To do this define the vector v’ := (1,0,...,0), and then

b g
D := */TNVT and g:= [5]
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Multiply connected Fornberg (bounded case, 2009)
The Matrix A

@ Taking the “normal equations” and using the fact U is real,

_2 H _2 Hoy
AU = Re(D¥D)U = —Re (D"g) := b

@ This system can now be solved efficiently using the conjugate
gradient method.

. Imperial College, June 20-21, 2013
om DeLilloWichita State U Math Dept (Confc Numerical Conformal Mapping

61/
66



Multiply connected Fornberg (bounded case, 2009)
The Matrix A Decomposed

@ Define
> Ay = (2/N)Re(E,f’FHP£’PjFEj) and
> X = (2/N)Re(E,f’FHPk Ww).

@ Then A can be written

A1 Az Az X

Ay Axn Ax  Xo L
A3i Az Az X3
X7 xXI xI whw

A= %Re(DHD) =
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Multiply connected Fornberg (bounded case, 2009)
Eigenvalues of A

@ To understand the eigenvalues of A it suffices to examine the

submatrix
A1 Az Ags
A= |Axy Ax Ax
A3y Az Az

@ For the eigenvalues:
» The diagonal entries can be shown to be discretizations of the
identity plus a compact operator, and
» the off-diagonal entries can be shown to be discretizations of a
compact operator.
@ In effect Ais a low-rank perturbation of the identity, and the
eigenvalues cluster around 1.

@ This is the property which makes the conjugate gradient method
an efficient solver to use for this problem.
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Multiply connected Fornberg (bounded case, 2009)
Eigenvalues of A Cluster Around 1

Eigenvalue
w
T
1

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900
Index (1:914)

@ Thismaphad m=7and N = 128.
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Eigenvalues of A

All Al12 A13
3 2 2
2
1 1
1
0 0 0
0 100 200 0 100 200 0 100 200
A21 A22 A23
2 3 0.2
2
1 0.1
1
0 0 0
0 100 200 0 100 200 0 100 200
A31 A32 A33
2 0.2 3
2
1 0.1
1
0 0 0
0 100 200 0 100 200 0 100 200

@ This map had connectivity m = 3 with N = 256.
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Remarks and future work

@ The extensions of Fornberg’s original method are essentially
complete. I + compact inner systems carry over.

@ (The ellipse method was not presented here.)
@ The MATLAB codes need to be refined and integrated.
@ Further comparisons with Wegmann’s methods needs to be done

Imperial College, June 20-21, 2013 66 /
om DeLilloWichita State U Math Dept (Confc Numerical Conformal Mapping 66



	Introduction
	Some background
	Numerical preview and gallery

	Fourier series methods
	Fornberg's method for the disk (1980)
	Fornberg-like method for the annulus (1998)
	Multiply connected Fornberg (bounded case, 2009)

	Remarks and extra details

