Fourier Series Methods for Numerical Conformal Mapping of Smooth Domains

Tom DeLillo Wichita State U Math Dept

Conformal Geometry in Mapping, Imaging, and Sensing

Imperial College, June 20-21, 2013

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Collaborators

Colleagues: Alan Elcrat (WSU) and John Pfaltzgraff (UNC Chapel Hill)
MS/PhD students: Mark Horn, Noureddine Benchama, Lianju (Julian) Wang, and Everett Kropf

Conformal map $w=f(z)$ from disk to target domain

Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted ellipse using 64 Fourier points. $f^{\prime}(z) \neq 0$, so locally $f(a+h) \approx f(a)+f^{\prime}(a) h$ and f maps a small circle near $z=a$ to a circle near $f(a)$ magnified by $\left|f^{\prime}(a)\right|$ and rotated by $\arg f^{\prime}(a)$. Therefore curves intersecting at angle θ at a will be mapped to curves intersecting at angle θ at $f(a)$ and the map is angle-preserving or conformal. Existence and uniquesness given by Riemann Mapping Theorem with $f(0)$ and $f(1)$ fixed.

Interior mult. conn. case-Kropf's MS thesis (2009)

Figure: Outer circle is unit circle. Map normalization fixes $f(0)$ and $f(1)$. $m=4$ boundary correspondences and centers and radii of inner circles (unique "conformal moduli") must be computed.

Boundary correspondence

The boundary Γ of Ω is parametrized by S (e.g., arclength or polar angle), $\Gamma: \gamma(S), 0 \leq S \leq L, \gamma(0)=\gamma(L)$. If $S=S(\theta)$ or its inverse $\theta(S)=\arg f^{-1}(\gamma(S))$ is known, then the map is known for $z \in D$ or $w \in \Omega$ by the Cauchy Integral Formula,

$$
w=f(z)=\frac{1}{2 \pi i} \int_{C} \frac{\gamma(S(\theta))}{\zeta-z} d \zeta(\theta)
$$

or

$$
z=f^{-1}(w)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{i \theta(S)}}{\gamma(S)-w} d \gamma(S)
$$

Two classes of "traditional" methods

1. Find $S=S(\theta)$ such that $f\left(e^{i \theta}\right)=\gamma(S(\theta))$. We will discuss this case. These methods solve a nonlinear integral equation for $S(\theta)$ by linearly convergent methods of successive approximation (Picard-like iteration) such as Theodorsen's method, or quadratically convergent Newton-like methods such as Fornberg's or Wegmann's methods. Cost: $O(N \log N)$ with FFTs.
2. Find $\theta=\theta(S)$ such that $f^{-1}(\gamma(S))=e^{i \theta(S)}$. These methods solve linear integral equations arising from potential theory for $\theta(S)$ or $\theta^{\prime}(S)$. Cost: $O\left(N^{2}\right)$ operation counts, but can handle more highly distorted regions.

MANY other methods exist, as we see at this meeting, based on ideas from computational geometry, circle packing, Riemann-Hilbert problems, orthogonalization, compositions of explicit maps (Grassmann, Marshall),...

A few general references

[1.] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel mapping, Cambridge U. Press, 2002.
[2.] D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer, 1964.
[3.] X. D. Gu and S.-T. Yau, Computational Conformal Geometry, International Press, 2008.
[4.] P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Wiley, 1986.
[5.] K. Stephenson, Introduction to Circle Packing, Cambridge, 2005.
[6.] R. Wegmann, Methods for Numerical Conformal Mapping, survey article in Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, R. Kühnau, ed., Elsevier, 2005, pp. 351-477.

Key idea for this talk: Taylor/Laurent series = Fourier

 seriesFor $|z|<|\zeta|=1, \zeta=e^{i \theta}, d \zeta=i e^{i \theta} d \theta$

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{\gamma(S(\theta))}{\zeta-z} d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=1} \gamma(S(\theta))\left(1+\frac{z}{\zeta}+\left(\frac{z}{\zeta}\right)^{2}+\cdots\right) \frac{d \zeta}{\zeta} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \gamma(S(\theta))\left(1+z e^{-i \theta}+z^{2} e^{-2 i \theta}+\cdots\right) d \theta \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \gamma(S(\theta)) e^{-i k \theta} d \theta\right) z^{k} \\
& =\sum_{k=0}^{\infty} a_{k} z^{k}
\end{aligned}
$$

Taylor coeff. $=$ Fourier coeff. $\left.a_{k}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \gamma(S(\theta))\right)_{\text {Imperial }}^{-i k \theta} d \theta$.

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Figure: Fornberg map from exterior of unt disk to exterior of spline

Simply-connected case: crowding=large distortions=1II-conditioning

Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse using 1024 Fourier points.

Map from annulus-D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus $\rho<|z|<1$ to domain between two ellipses $\alpha=.3$, 6 with $N=64$. Normalization fixes one boundary point $f(1)$ to fix rotation of annulus. The inner and outer boundary correspondences $S=S_{1}(\theta)$ and $S=S_{2}(\theta)$ along with the unique $\rho(=1 /$ conformal modulus) must be computed numerically.

Exterior mult. conn. case-Benchama's PhD thesis (2003)

Figure: Fornberg map to the exterior of five curves.

Interior mult. conn. case-Kropf's MS thesis (2009)

- A target region (on the right) with an outer spline boundary which is parametrized by arclength.

Radial slit map from Kropf's PhD thesis (2012)

- A target region with $m=7$.

Numerical Example

- Annulus with circular holes as a computational domain.

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Conformal map $w=f(z)$ from disk to target domain

Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted ellipse using 64 Fourier points. Normalization fixes three real parameters: $f(0)$ fixed and $f(1)$ fixed.

Some useful linear operators

For $h=h(\theta), 2 \pi$-periodic, $h(\theta)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k \theta}$

$$
\begin{aligned}
\operatorname{Jh}(\theta) & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(\theta) d \theta=c_{0} \\
P_{+} h(\theta) & :=\sum_{k=1}^{\infty} c_{k} e^{i k \theta} \\
P_{-} h(\theta) & :=\sum_{k=-\infty}^{0} c_{k} e^{i k \theta}
\end{aligned}
$$

Note that $P_{ \pm}^{2}=P_{ \pm}$are projection operators onto subspaces of $L^{2}[0,2 \pi]$ whose nonpositive/positive indexed Fourier coefficients 0. Also note

$$
\begin{aligned}
P_{+} h & =\frac{1}{2}(I+i K-J) h, \\
P_{-} h & =\frac{1}{2}(I-i K+J) h
\end{aligned}
$$

(Infinite) matrix form $F h:=\left[\begin{array}{c}\vdots \\ c_{-2} \\ c_{-1} \\ c_{0} \\ c_{1} \\ c_{2} \\ \vdots\end{array}\right]=: \underline{c} \quad$ and $\quad K h=F^{-1} \hat{K} F h$

Condition for analytic extension of boundary values

Theorem
A function $h \in \operatorname{Lip}(\Gamma)$ can be continued analytically into D^{+}(i.e., $f(t)=h(t), t \in \Gamma)$ if and only if

$$
f(z):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{h(t)}{t-z} d t=0, \quad z \in D^{-},
$$

or, equivalently, if

$$
\frac{1}{2 \pi i} \int_{\Gamma} t^{n} h(t) d t=0, \quad n=0,1,2, \ldots
$$

Proof.

Cauchy Integral Theorem and Sokhotskyi jump relations, $f^{+}-f^{-}=h$; see, e.g., Henrici, ACCA, v. 3, Muskhelishvili, SIE.

Condition for unit $D=$ disk

Theorem

A function $f \in \operatorname{Lip}(C)$ on the boundary C of the unit disk extends to an analytic function in the interior of the disk with $f(0)=0$ if and only if

$$
\begin{equation*}
P_{-} f\left(e^{i \theta}\right)=0 . \tag{1}
\end{equation*}
$$

That is, negative indexed coefficients are 0.

Linearization

Given the k th Newton iterate $S=S^{k}(\theta)$, find correction $U^{k}(\theta)$, real, such that

$$
f\left(e^{i \theta}\right)=\gamma\left(S^{k}(\theta)+U^{k}(\theta)\right) \approx \xi(\theta)+e^{i \beta(\theta)} U(\theta)
$$

extends analytically to the interior of the unit disk with $f(0)=0$, where $\xi(\theta)=\gamma\left(S^{(k)}(\theta)\right), \beta(\theta)=\arg \gamma^{\prime}\left(S^{(k)}(\theta)\right)$, and $U(\theta):=\mid \gamma^{\prime}\left(S^{(k)}(\theta) \mid U^{(k)}(\theta)\right.$ extends analytically to the interior of the unit disk with $f(0)=0$. The analyticity condition

$$
2 P_{-} f=(I-i K+J) f=0
$$

implies that

$$
(I-i K+J) e^{i \beta(\theta)} U(\theta)=-2 P_{-} \xi(\theta) .
$$

U real gives

$$
(I+R) U=r
$$

where $R=\operatorname{Re}\left(e^{-i \beta}(J-i K) e^{i \beta}\right)$ and $r=-\operatorname{Re}\left(e^{-i \beta}(I-i K+J) \xi\right)$.

R is a compact operator (Widlund, Wegmann)

$$
R U(\theta):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sin \left(\beta(\phi)-\beta(\theta)+\frac{\theta-\phi}{2}\right)}{\sin \left(\frac{\theta-\phi}{2}\right)} U(\phi) d \phi,
$$

and for γ sufficiently smooth $R^{\text {in }}$ is a symmetric, compact operator on L^{2}.

Discretization by N-pt. trig. interp.

With $E=\operatorname{diag}_{j}\left(e^{i \beta\left(\theta_{j}\right)}\right), j=0,1, \cdots, N-1$, discretization gives

$$
A \underline{U}=\left(I_{N}+R_{N}\right) \underline{U}=\underline{r} .
$$

where the matrix

$$
I_{N}+R_{N}=\frac{2}{N} \operatorname{Re}\left(E^{H} F^{H} P_{N} F E\right)
$$

(with $P_{N}:=\operatorname{diag}[1,0, \ldots, 0,1, \ldots, 1]$) is symmetric and pos.(semi)def.
with eigenvalues well-grouped around 1 and conjugate gradient converges superlinearly.
Matrix-vector multiplications costs $O(N \log N)$ with FFT.
The Newton update is given by

$$
\underline{S}^{(k+1)}=\underline{S}^{(k)}+\underline{U}^{(k)},
$$

with $U_{0}=0$ set to fix a boundary point

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Map from annulus-D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus $\rho<|z|<1$ to domain between two ellipses $\alpha=.3$, 6 with $N=64$. Normalization fixes one boundary point $f(1)$ to fix rotation of annulus. The inner and outer boundary correspondences $S=S_{1}(\theta)$ and $S=S_{2}(\theta)$ along with the unique $\rho(=1 /$ conformal modulus) must be computed numerically.

Analyticty conditions

Let C_{1} and C_{2} denote the outer and inner boundaries, respectively, of the annulus $\rho<|z|<1$, and put $C=C_{1}-C_{2}$.

Theorem

A function $h \in \operatorname{Lip}(C)$ extends analytically to the annulus $\rho<|z|<1$ if and only if

$$
\int_{C_{1}} h(z) z^{k} d z=\int_{C_{2}} h(z) z^{k} d z, \quad k \in \mathbf{Z} .
$$

If we let

$$
h\left(e^{i \theta}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{i k \theta} \quad h\left(\rho e^{i \theta}\right)=\sum_{k=-\infty}^{\infty} b_{k} e^{i k \theta}
$$

then the above condition becomes $\rho^{k} a_{k}=b_{k}, \quad k \in \mathbf{Z}$ or (to prevent overflow)

$$
\rho^{k} a_{k}=b_{k}, a_{-k}=\rho^{k} b_{-k}, k=0,1,2, \ldots
$$

Mapping problem

Target region Ω bounded by two smooth curves $\Gamma_{1}: \gamma_{1}\left(S_{1}\right)$ and $\Gamma_{2}: \gamma_{2}\left(S_{2}\right)$.

Problem: Find the boundary correspondences $S_{1}(\theta)$ and $S_{2}(\theta)$ and the conformal modulus ρ such that $f(z)$ is analytic in the annulus $\rho<|z|<1$ and $f\left(e^{i \theta}\right)=\gamma_{1}\left(S_{1}(\theta)\right)$ and $f\left(\rho e^{i \theta}\right)=\gamma_{2}\left(S_{2}(\theta)\right)$.

Linearization for Newton-like method

At each Newton step we want to compute corrections $U_{1}(\theta), U_{2}(\theta)$, and $\delta \rho$ to $S_{1}(\theta), S_{2}(\theta)$, and ρ. With S_{j} arclength, $\beta_{j}(\theta):=\arg \gamma_{j}^{\prime}\left(S_{j}(\theta)\right), \xi_{j}(\theta):=\gamma_{j}\left(S_{j}(\theta)\right), j=1,2, \zeta(\theta):=f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta}=$ $-i e^{i \beta_{2}(\theta)} d S_{2}(\theta) / d \theta / \rho$, as in [LM] we linearize about S_{1}, S_{2}, and ρ,

$$
\begin{aligned}
\gamma_{j}\left(S_{j}(\theta)+U_{j}(\theta)\right) & \left.\approx \gamma_{j}\left(S_{j}(\theta)\right)+\gamma_{j}^{\prime}\left(S_{j}(\theta)\right) U_{j}(\theta)\right), j=1,2, \\
f\left((\rho+\delta \rho) e^{i \theta}\right) & \approx f\left(\rho e^{i \theta}\right)+f^{\prime}\left(\rho e^{i \theta}\right) \delta \rho e^{i \theta}
\end{aligned}
$$

giving

$$
\begin{aligned}
f\left(e^{i \theta}\right) & \approx \xi_{1}(\theta)+e^{i \beta_{1}(\theta)} U_{1}(\theta) \\
f\left(\rho e^{i \theta}\right) & \approx \xi_{2}(\theta)+e^{i \beta_{2}(\theta)} U_{2}(\theta)-\zeta(\theta) \delta \rho
\end{aligned}
$$

We find $U_{1}, U_{2}, \delta \rho$ to force these BV to satisfy the analyticity conditions for the annulus.

Linear system

Letting a_{k} and b_{k} now denote the N discrete Fourier coefficients and using the N-periodicity $a_{k+N}=a_{k}$, we have with $N=2 M$
$\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{M}, a_{M+1}, \ldots, a_{N-1}\right)^{T}=\left(a_{0}, a_{1}, \ldots, a_{M}, a_{-M+1}, \ldots, a_{-1}\right)^{T}$
\underline{b} is defined similarly. Next define the $N \times N$ matrices $P_{1}=$ $\operatorname{diag}\left(1, \rho, \ldots, \rho^{M-1}, 1, \ldots, 1\right)$ and $P_{2}=-\operatorname{diag}\left(1, \ldots, 1,1, \rho^{M-1}, \ldots, \rho\right)$. If we set $a_{M}=b_{M}$ as in [Fo2, eq. 6], we write the discrete form of our analyticity conditions as
(29)

$$
P_{1} \underline{a}+P_{2} \underline{b}=0 .
$$

Linear system

With $E_{j}:=\operatorname{diag}_{l=0, \ldots, N-1}\left(e^{i \beta_{j}\left(\theta_{l}\right)}\right), j=1,2$, our discrete linearizations become

$$
\begin{equation*}
N \underline{a}=F \underline{\xi}_{1}+F E_{1} \underline{U}_{1} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
N \underline{b}=F \underline{\xi}_{2}+F E_{2} \underline{U}_{2}-F \underline{\zeta} \delta \rho . \tag{31}
\end{equation*}
$$

Substituting these linearizations into the discrete analyticity conditions gives our linear system for $\underline{U}_{1}, \underline{U}_{2}$, and $\delta \rho$,

$$
(C \underline{w}) \underline{U}=P_{1} F E_{1} \underline{U}_{1}+P_{2} F E_{2} \underline{U}_{2}-P_{2} F \underline{\zeta} \delta \rho=-P_{1} F \underline{\xi}_{1}-P_{2} F \underline{\xi}_{2}=: \underline{c} .
$$

where $C=\left(P_{1} F E_{1} P_{2} F E_{2}\right)$ is a complex $N \times 2 N$ matrix, $\underline{w}=-P_{2} F \underline{\zeta}$ is a complex N-vector, and

$$
\underline{U}=\left[\begin{array}{l}
\underline{U}_{1} \\
\underline{U}_{2} \\
\delta \rho
\end{array}\right] .
$$

We have a system of N complex equations in $2 N+1$ real unknowns, \underline{U}. To satisfy the normalization $f(1)=\gamma_{1}(0)$, we add the equation $\underline{q}^{T} \underline{U}=U_{0}=\delta:=0$, where $\underline{q}^{T}=(1,0, \ldots, 0)^{T}$ is a $2 N+1$-vector. We write

$$
D=\left[\begin{array}{cc}
C & \frac{w}{\sqrt{N}} \\
\sqrt{N} & \underline{q}^{T} / 2
\end{array}\right], \underline{g}:=\left[\frac{c}{\delta}\right] .
$$

and our system now becomes

$$
D \underline{U}=\underline{g},
$$

a system of N complex equations and 1 real equation for the $2 N+1$ real unknowns, \underline{U}. Using the normal equations and \underline{U} real, we have

$$
A \underline{U}=\frac{2}{N} \operatorname{Re}\left(D^{H} D\right) \underline{U}=\underline{r}:=\frac{2}{N} \operatorname{Re}\left(D^{H} \underline{g}\right) .
$$

As in the simply connected case, we solve the system by the conjugate gradient method using FFTs.

The matrix A is a discretization of the identity plus a compact operator as in the disk case. We have the following $2 N+1 \times 2 N+1$-matrix

$$
A=\frac{2}{N} \operatorname{Re}\left(D^{H} D\right)=\left[\begin{array}{ccc}
A_{11} & A_{12} & \underline{w}_{1} \\
A_{12}^{T} & A_{22} & \underline{w}_{2} \\
\underline{w}_{1}^{H} & \underline{w}_{2}^{H} & 2 \underline{w}^{H} \underline{w} / N
\end{array}\right]+\frac{1}{2} \underline{q q^{T}}
$$

where $A_{i j}=\frac{2}{N} \operatorname{Re}\left(E_{i}^{H} F^{H} P_{i} P_{j} F E_{j}\right)$ and $\underline{w}_{i}=\frac{2}{N} \operatorname{Re}\left(E_{i}^{H} F^{H} P_{i} \underline{w}\right), i, j=1,2$. Now it is easy to see that A_{11} is a (low rank perturbation of) the discretization of

$$
2 \operatorname{Re}\left(e^{-i \beta_{1}}\left(P_{-}+l_{1} *\right) e^{i \beta_{1}}\right)=I+R_{1}+C_{1}
$$

with N-point trigonometric interpolation where $R_{1}=\operatorname{Re}\left(e^{-i \beta_{1}}(J-i K) e^{i \beta_{1}}\right.$ is compact, $*$ is convolution, $I_{1}(\theta)=\rho^{2} e^{i \theta} /\left(1-\rho^{2} e^{i \theta}\right)=\sum_{k=1}^{\infty} \rho^{2 k} e^{i k \theta}$, and
$C_{1}=2 \operatorname{Re}\left(e^{-i \beta_{1}} I_{1} *\left(e^{i \beta_{1}}\right)\right)$ is the product of bounded operators and a convolution and is, hence, compact.

Newton update

$$
\begin{aligned}
& \underline{S}_{1}^{(k+1)}=\underline{S}_{1}^{(k)}+\underline{U}_{1}^{(k)} \\
& \underline{S}_{2}^{(k+1)}=\underline{S}_{2}^{(k)}+\underline{U}_{2}^{(k)} \\
& \rho^{(k+1)}=\rho^{(k)}+\delta \rho^{(k)} .
\end{aligned}
$$

Outline

(1) Introduction

- Some background
- Numerical preview and gallery
(2) Fourier series methods
- Fornberg's method for the disk (1980)
- Analyticity conditions
- Linearization
- Discretization by N-pt. trig. interp.
- Fornberg-like method for the annulus (1998)
- Multiply connected Fornberg (bounded case, 2009)
(3) Remarks and extra details

Interior mult. conn. case-Kropf's MS thesis (2009)

Figure: Outer circle is unit circle. Map normalization fixes $f(0)$ and $f(1)$. $m=4$ boundary correspondences and centers and radii of inner circles (unique "conformal moduli") must be computed.

Computational Goal

$$
\xrightarrow[w_{0}=f\left(z_{0}\right)]{w=f(z)}>
$$

- The goal is to compute the conformal map $f: D \rightarrow \Omega$.
- To do this we must calculate
(1) the centers C_{ν} and radii ρ_{ν} of the circles $C_{\nu}, 2 \leq \nu \leq m$, and
(2) the boundary correspondences $S_{\nu}(\theta)$, where $0 \leq \theta \leq 2 \pi$,
such that $f\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)=\gamma_{\nu}\left(S_{\nu}(\theta)\right), 1 \leq \nu \leq m$.

Form of the Map

Theorem

The conformal map described above has the series representation

$$
f(z)=\sum_{j=0}^{\infty} a_{1, j} z^{j}+\sum_{\nu=2}^{m} \sum_{j=1}^{\infty} a_{\nu,-j}\left(\frac{\rho_{\nu}}{z-c_{\nu}}\right)^{j},
$$

where for $1 \leq \nu \leq m$ and $j>0$ the Fourier coefficients $a_{\nu, j}$ are defined

$$
a_{\nu, j}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right) e^{-i j \theta} d \theta .
$$

Analytic Continuation

Theorem

Let C be a positively oriented, Lipschitz continuous curve with D the region bounded by C and D^{-}the compliment of $D \cup C$. A function $f \in \operatorname{Lip}(C)$ can be continued analytically into D if and only if

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta=0, \quad \forall z \in D^{-} .
$$

Now applied to multiply connected circle domain D.

Analyticity Conditions

Theorem
A function $f \in \operatorname{Lip}(C)$ extends analytically into D if and only if for all $k \geq 0$

$$
a_{1,-(k+1)}-\sum_{\nu=2}^{m} \sum_{j=0}^{k}\binom{k}{j} \rho_{\nu}^{j+1} c_{\nu}^{k-j} a_{\nu,-(j+1)}=0
$$

and

$$
\begin{aligned}
& \sum_{j=0}^{\infty} B_{k+1, j} \rho_{\ell}^{k} c_{\ell}^{j} a_{1, k+j}-a_{\ell, k} \\
& \quad-\sum_{\substack{\nu=2 \\
\nu \neq \ell}}^{m} \sum_{j=0}^{\infty} \frac{\rho_{\ell}^{k}}{\left(c_{\nu}-c_{\ell}\right)^{k+1}} B_{k+1, j} \frac{\rho_{\nu}^{j+1}}{\left(c_{\ell}-c_{\nu}\right)^{j}} a_{\nu,-(j+1)}=0 .
\end{aligned}
$$

Note on Analyticity Conditions

For the analyticity conditions we need to define some binomial coefficients.

Definition

For $k>0$ and $x, y \in \mathbb{C}$,

$$
(x+y)^{k}=\sum_{j=0}^{k}\binom{k}{j} x^{k-j} y^{j} \quad \text { where } \quad\binom{k}{j}:=\frac{k!}{j!(k-j)!} .
$$

Definition

For $k>0$ and $|z|<1$,

$$
\frac{1}{(1-z)^{k}}=\sum_{j=0}^{\infty} B_{k, j} z^{j} \quad \text { where } \quad B_{k, j}:=\frac{k(k+1) \cdots(k+j-1)}{j!} .
$$

Note on Proof of Analyticity Conditions

The proof involves
(1) applying the above analytic continuation Theorem for an arbitrary point z in each D_{1}, \ldots, D_{m},
(2) expanding the function in the appropriate Laurent series, and
(3) setting the resulting series equal to 0 .

Proof of Analyticity Conditions

(Outside C_{1})

Proof.

For z in D_{1} we have $|z|>1$ and $|\zeta| /|z|<1$ for ζ on any C_{1}, \ldots, C_{m}, thus

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta & =-\frac{1}{2 \pi i} \int_{C} f(\zeta) \frac{1}{z} \sum_{k=0}^{\infty}\left(\frac{\zeta}{z}\right)^{k} d \zeta \\
& =-\sum_{k=0}^{\infty} z^{-k-1} \frac{1}{2 \pi i} \int_{C} f(\zeta) \zeta^{k} d \zeta=0 .
\end{aligned}
$$

The last integral on the RHS must be zero for all $k \geq 0$.

Proof of Analyticity Conditions

(Outside C_{1})

Proof.

$$
\begin{aligned}
0= & \frac{1}{2 \pi i} \int_{C} f(\zeta) \zeta^{k} d \zeta=\frac{1}{2 \pi i} \int_{C_{1}} f(\zeta) \zeta^{k} d \zeta-\sum_{\nu=2}^{m} \frac{1}{2 \pi i} \int_{C_{\nu}} f(\zeta) \zeta^{k} d \zeta \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{i(k+1) \theta} d \theta \quad\left(\text { Note }: \quad \zeta^{k}=\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)^{k}\right. \\
& -\sum_{\nu=2}^{m} \sum_{j=0}^{k}\binom{k}{j} \rho_{\nu}^{j+1} c_{\nu}^{k-j} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(C_{\nu}+\rho_{\nu} e^{i \theta}\right) e^{i(j+1) \theta} d \theta \\
= & a_{1,-(k+1)}-\sum_{\nu=2}^{m} \sum_{j=0}^{k}\binom{k}{j} \rho_{\nu}^{j+1} C_{\nu}^{k-j} a_{\nu,-(j+1) .}
\end{aligned}
$$

Map Normalization

- The map is normalized by specifying three real conditions:
- $f(1)=\gamma_{1}(0)$ and

$$
w_{0}=f\left(z_{0}\right)=\sum_{k=0}^{\infty} a_{1, k} z_{0}^{k}+\sum_{\nu=2}^{m} \sum_{k=1}^{\infty} a_{\nu,-k}\left(\frac{\rho_{\nu}}{z_{0}-c_{\nu}}\right)^{k} .
$$

Linearization

We now write $f\left(C_{\nu}+\rho_{\nu} e^{i \theta}\right)=\gamma_{\nu}\left(S_{\nu}(\theta)\right)$ as a linear problem.

- For an initial guess $S_{\nu}(\theta)$ and 2π periodic correction $U_{\nu}(\theta)$,

$$
\gamma_{\nu}\left(S_{\nu}(\theta)+U_{\nu}(\theta)\right) \approx \gamma_{\nu}\left(S_{\nu}(\theta)\right)+\gamma_{\nu}^{\prime}\left(S_{\nu}(\theta)\right) U_{\nu}(\theta) .
$$

- For an initial guess of c_{ν} and ρ_{ν} with corrections δc_{ν} and $\delta \rho_{\nu}$,

$$
\begin{aligned}
& (f+\delta f)\left(c_{\nu}+\delta c_{\nu}+\left(\rho_{\nu}+\delta \rho_{\nu}\right) e^{i \theta}\right) \\
& \quad \approx(f+\delta f)\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)+f^{\prime}\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)\left(\delta c_{\nu}+\delta \rho_{\nu} e^{i \theta}\right) .
\end{aligned}
$$

- Setting the RHS of these approximations equal gives

$$
\begin{aligned}
(f+\delta f)\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)=\gamma_{\nu}\left(S_{\nu}(\theta)\right) & +\gamma_{\nu}^{\prime}\left(S_{\nu}(\theta)\right) U_{\nu}(\theta) \\
& -f^{\prime}\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)\left(\delta c_{\nu}+\delta \rho_{\nu} e^{i \theta}\right) .
\end{aligned}
$$

Linearization

More concisely

- For convenience define
- $\xi_{\nu}(\theta):=\gamma_{\nu}\left(S_{\nu}(\theta)\right)$,
- $\eta_{\nu}(\theta):=\gamma_{\nu}^{\prime}\left(S_{\nu}(\theta)\right)$, and
- $\zeta_{\nu}(\theta):=-f^{\prime}\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right) e^{i \theta}=i \rho_{\nu}^{-1} \eta_{\nu} S_{\nu}^{\prime}(\theta)$.
- The linearization conditions can then be written

$$
\begin{aligned}
& (f+\delta f)\left(e^{i \theta}\right)=\xi_{1}(\theta)+\eta_{1}(\theta) U_{1}(\theta) \\
& \\
& (f+\delta f)\left(c_{\nu}+\rho_{\nu} e^{i \theta}\right)=\xi_{\nu}(\theta)+\eta_{\nu}(\theta) U_{\nu}(\theta)+\zeta_{\nu}(\theta)\left(\delta \rho_{\nu}+\delta c_{\nu} e^{-i \theta}\right)
\end{aligned}
$$

for the updates around C_{1} and around $C_{\nu}, 2 \leq \nu \leq m$, respectively.

Newton Updates

- After the linear system has been solved, the updates are applied at each step (n) as follows:
- $S_{\nu}^{(n)}(\theta)=S_{\nu}^{(n-1)}(\theta)+U_{\nu}^{(n-1)}(\theta)$
for $1 \leq \nu \leq m$, and
- $c_{\nu}^{(n)}=c_{\nu}^{(n-1)}+\delta c_{\nu}^{(n-1)}$
- $\rho_{\nu}^{(n)}=\rho_{\nu}^{(n-1)}+\delta \rho_{\nu}^{(n-1)}$
for $2 \leq \nu \leq m$.

Discrete analyticity conditions

$$
a_{1,-(k+1)}-\sum_{\nu=2}^{m} \sum_{j=0}^{k}\binom{k}{j} \rho_{\nu}^{j+1} c_{\nu}^{k-j} a_{\nu,-(j+1)}=0
$$

$$
\sum_{j=0}^{M-1} B_{k+1, j} \rho_{\ell}^{k} c_{\ell}^{j} a_{1, k+j}-a_{\ell, k}
$$

$$
\begin{aligned}
& -\sum_{\substack{\nu=2 \\
\nu \neq \ell}}^{m} \sum_{j=0}^{M-1} \frac{\rho_{\ell}^{k}}{\left(c_{\nu}-c_{\ell}\right)^{k+1}} B_{k+1, j} \frac{\rho_{\nu}^{j+1}}{\left(c_{\ell}-c_{\nu}\right)^{j}} a_{\nu,-(j+1)}=0 \\
& \sum_{j=0}^{M-1} a_{1, j} z_{0}^{j}+\sum_{\nu=2}^{m} \sum_{j=1}^{M} a_{\nu,-j}\left(\frac{\rho_{\nu}}{z_{0}-c_{\nu}}\right)^{j}=w_{0}
\end{aligned}
$$

Matrix Form

of the Analyticity and Normalization Conditions

- The discrete system of equations can be written

$$
P \underline{a}=P_{1} \underline{a}_{1}+\cdots+P_{m} \underline{a}_{m}=\left[\begin{array}{lll}
P_{1} & \cdots & P_{m}
\end{array}\right]\left[\begin{array}{c}
\underline{a}_{1} \\
\vdots \\
\underline{a}_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
w_{0}
\end{array}\right]:=\underline{r} .
$$

Discrete Linearization Conditions

- We need to define the vectors and vector functions
- $\underline{\theta}:=\frac{2 \pi}{N}(0,1, \ldots, N-1)^{T}$,
- $\underline{\xi}_{\nu}:=\xi_{\nu}(\underline{\theta})$,
- and similarly for $\underline{\eta}_{\nu}, \underline{\zeta}_{\nu}$, and \underline{U}_{ν}.
- If F is the discrete Fourier transform matrix, $E_{\nu}:=\operatorname{diag}\left(\underline{\eta}_{\nu}\right)$, $\underline{q}:=e^{-i \underline{\theta}}$, and $*$ is the Hadamard product, then the linearization conditions become
- $N \underline{a}_{1}=F \underline{\xi}_{1}+F E_{1} \underline{U}_{1}$ and
- $N \underline{a}_{\nu}=F \underline{\underline{\xi}}_{\nu}+F E_{\nu} \underline{\underline{U}}_{\nu}+\delta \rho_{\nu} F \underline{\zeta}_{\nu}+\delta \boldsymbol{c}_{\nu} F\left(\underline{q} * \underline{\zeta}_{\nu}\right)$.

New Linear System

- For ease of exposition, assume $m=3$ for the rest of this section.
- Combining the discrete system of equations for the analyticity and normalization conditions with the discretized linear conditions gives

$$
\begin{aligned}
& P_{1} F E_{1} \underline{U}_{1} \\
& \quad+P_{2}\left(F E_{2} \underline{U}_{2}+\delta \rho_{2} F \underline{\zeta}_{2}+\left(\operatorname{Re} \delta c_{2}+i \operatorname{Im} \delta c_{2}\right) F\left(\underline{q} * \underline{\zeta}_{2}\right)\right) \\
& +P_{3}\left(F E_{2} \underline{U}_{3}+\delta \rho_{3} F \underline{\zeta}_{3}+\left(\operatorname{Re} \delta c_{3}+i \operatorname{Im} \delta c_{3}\right) F\left(\underline{q} * \underline{\zeta}_{3}\right)\right) \\
& \quad=N \underline{r}-P_{1} F \underline{\xi}_{1}-P_{2} F \underline{\xi}_{2}-P_{3} F \underline{\xi}_{3}:=\underline{\tilde{g}} .
\end{aligned}
$$

More Convenience Notation

- Let $\underline{w}_{\nu}:=P_{\nu} F \underline{\zeta}_{\nu}$,
- $\underline{w q}_{\nu}:=P_{\nu} F\left(\underline{q} * \underline{\zeta}_{\nu}\right)$,
- $W:=\left[\begin{array}{llllll}\underline{w}_{2} & \underline{w}_{3} & \underline{w q}_{2} & \underline{i w q}_{2} & \underline{w q}_{3} & \underline{i w q}_{3}\end{array}\right]$,
- and of course $P:=\left[\begin{array}{lll}P_{1} & P_{2} & P_{3}\end{array}\right]$.
- Also define the real vector $\underline{U}:=$

$$
\left[\begin{array}{lllllllll}
\underline{U}_{1}^{T} & \underline{U}_{2}^{T} & \underline{U}_{3}^{T} & \delta \rho_{2} & \delta \rho_{3} & \operatorname{Re} \delta c_{2} & \operatorname{Im} \delta c_{2} & \operatorname{Re} \delta c_{3} & \operatorname{Im} \delta c_{3}
\end{array}\right]^{T} .
$$

The Matrix \tilde{D}

- Combining all of this we now have

$$
\tilde{D} \underline{U}:=\left[\begin{array}{llll}
P_{1} & P_{2} & P_{3} & W
\end{array}\right]\left[\begin{array}{llll}
F & 0 & 0 & 0 \\
0 & F & 0 & 0 \\
0 & 0 & F & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
E_{1} & 0 & 0 & 0 \\
0 & E_{2} & 0 & 0 \\
0 & 0 & E_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \underline{U}=\underline{\tilde{g}} .
$$

The Matrix D
 Through normalization

- We add a row to this system to force $U_{1}(0)=0$ at every iteration.
- This satisfies the normalization condition $f(1)=\gamma_{1}(0)$.
- To do this define the vector $\underline{v}^{\top}:=(1,0, \ldots, 0)$, and then

$$
D:=\left[\begin{array}{c}
\tilde{D} \\
\frac{\sqrt{N}}{2} \underline{v}^{T}
\end{array}\right] \quad \text { and } \quad \underline{g}:=\left[\begin{array}{c}
\tilde{g} \\
0
\end{array}\right] .
$$

The Matrix A

- Taking the "normal equations" and using the fact \underline{U} is real,

$$
A \underline{U}:=\frac{2}{N} \operatorname{Re}\left(D^{H} D\right) \underline{U}=\frac{2}{N} \operatorname{Re}\left(D^{H} \underline{g}\right):=\underline{b} .
$$

- This system can now be solved efficiently using the conjugate gradient method.

The Matrix A Decomposed

- Define
- $A_{k j}:=(2 / N) \operatorname{Re}\left(E_{k}^{H} F^{H} P_{k}^{H} P_{j} F E_{j}\right)$ and
- $X_{k}:=(2 / N) \operatorname{Re}\left(E_{k}^{H} F^{H} P_{k}^{H} W\right)$.
- Then A can be written

$$
A=\frac{2}{N} \operatorname{Re}\left(D^{H} D\right)=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & X_{1} \\
A_{21} & A_{22} & A_{23} & X_{2} \\
A_{31} & A_{32} & A_{33} & X_{3} \\
X_{1}^{T} & X_{2}^{T} & X_{3}^{T} & W^{H} W
\end{array}\right]+\frac{1}{2} \underline{v v^{T}},
$$

Eigenvalues of A

- To understand the eigenvalues of A it suffices to examine the submatrix

$$
\hat{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] .
$$

- For the eigenvalues:
- The diagonal entries can be shown to be discretizations of the identity plus a compact operator, and
- the off-diagonal entries can be shown to be discretizations of a compact operator.
- In effect \hat{A} is a low-rank perturbation of the identity, and the eigenvalues cluster around 1.
- This is the property which makes the conjugate gradient method an efficient solver to use for this problem.

Eigenvalues of A Cluster Around 1

- This map had $m=7$ and $N=128$.

Eigenvalues of \hat{A}

- This map had connectivity $m=3$ with $N=256$.

Remarks and future work

- The extensions of Fornberg's original method are essentially complete. I + compact inner systems carry over.
- (The ellipse method was not presented here.)
- The MATLAB codes need to be refined and integrated.
- Further comparisons with Wegmann's methods needs to be done

