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Abstract. In this paper we build a geometric model for the renormalisation of irra-
tionally indifferent fixed points. The geometric model incorporates the fine arithmetic
properties of the rotation number at the fixed point. Using this model for the renor-
malisation, we build a topological model for the dynamics of a holomorphic map near an
irrationally indifferent fixed point. We also explain the topology of the maximal invariant
set for the model, and also explain the dynamics of the map on the maximal invariant
set.

1. Introduction

Let f be a holomorphic map defined on a neighbourhood of 0 in the complex plane C,
and assume that 0 is an irrationally indifferent fixed point of f , that is, f is of the form
e2πiαz + O(z2) near 0 with α ∈ R \ Q. It is well-known that such systems exhibit highly
non-trivial dynamical behaviour which depends on the arithmetic properties of α, see for
instance [Sie42, Brj71, Yoc95b, McM98, GS03, PZ04, Zha11]. When the system is unstable
near 0, the local dynamics remains mysterious, even for simple looking non-linear maps such
as the quadratic polynomials e2πiαz + z2.

A powerful tool for the study of irrationally indifferent fixed points is renormalisation.
A renormalisation scheme consists of a class of maps (dynamical systems), and an op-
erator which preserves that class of maps. The operator assigns a new dynamical system
to a given dynamical system, using suitable iterates of the original system. A fundamental
renormalisation scheme for the systems with an irrationally indifferent fixed point is the
sector renormalisation of Yoccoz, illustrated in Figure 1. In this renormalisation, the new
system is obtained from considering the return map to a sector landing at 0, and the sector is
identified with a neighbourhood of 0 using a change of coordinate. A remarkable semi-local
version of the local Yoccoz renormalisation is built by Inou and Shishikura in [IS06], which is
defined on a sector uniformly large in size, and hence captures more dynamical information
about the original system.

A main technical issue with employing a renormalisation method for irrationally indifferent
fixed points is the highly distorting nature of the changes of coordinates that appear in
successive applications of the renormalisation. One is lead to analysing the local and global
distorting behaviours of the successive changes of coordinates in conjunction with the fine
arithmetic features of α.

In this paper with build a geometric model for the (semi-local version of the) renormali-
sation of irrationally indifferent fixed points.

Date: November 9, 2023.
2010 Mathematics Subject Classification. 37F50 (Primary), 37F10, 46T25 (Secondary).

1



2 DAVOUD CHERAGHI

0

f

return map

uniformisation (z ∼ f(z))

renormalisation of f

Figure 1. In the left hand picture, the (canonically defined) sector landing
at 0 is bounded by a curve landing at 0, the image of that curve by f , and a
line segment connecting the end points of those curves. By glueing the sides
of the sector according to f , one obtains a Riemann surface, isomorphic to
a punctured disk.

Theorem A (Renormalisation model). There exists a class of maps

F =
{

Tα : Mα → Mα

}

α∈R\Q

and a renormalisation operator Rm : F → F satisfying the following properties:

(i) for every α ∈ R \Q, Mα ⊂ C is a compact star-like set with {0,+1} ⊂ Mα,
(ii) for every α ∈ R \Q, Tα : Mα → Mα is a homeomorphism which acts as rotation by

2πα in the tangential direction,
(iii) for α ∈ (−1/2, 1/2) \Q,

Rm (Tα : Mα → Mα) =
(

T−1/α : M−1/α → M−1/α

)

,

(iv) for every α ∈ R \Q and every integer k with 0 ≤ k ≤ 1/|α|,
C−1

1 + min{k, |α|−1 − k} ≤ |T◦k
α (+1)| ≤ C

1 + min{k, |α|−1 − k} ,

for some constant C independent of k and α.
(v) for every α ∈ R \Q, Mα+1 = Mα, Tα+1 = Tα, M−α = s(Mα), and T−α = s ◦Tα ◦ s,

where s denotes the complex conjugation map,
(vi) Mα depends continuously on α ∈ R \Q, in the Hausdorff topology.

The map Tα is a topological model for the map f(z) = e2πiαz + O(z2). The set Mα is a
topological model for the maximal invariant set of f at 0 on which f is injective. The model
for the renormalisation, Rm, is defined using the return map of Tα to a cone of angle 2πα
landing at 0; with a change of coordinate which preserves rays landing at 0, while exhibiting
the non-linear behaviour of the actual change of coordinate for the sector renormalisation
of f . As in the sector renormalisation, Rm induces the Gauss map α 7→ −1/α on the
asymptotic rotation numbers at 0.

The point +1 is the largest real number which belongs to Mα. It plays the role of a certain
critical point of f , which we will explain in a moment. The geometry of the orbit of +1 under
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Figure 2. Computer simulations for the three topologies in Theorem B;
from left to right, a Jordan curve, a hairy Jordan curve, and a Cantor
bouquet.

Tα, for one return of the dynamics, is explained in part (iv) of Theorem A. This form of
geometry is ubiquitous for maps with an irrationally indifferent fixed point; it requires a non-
zero second derivative at 0. For instance, it holds for the quadratic polynomials e2πiαz+ z2.

By employing the renormalisation scheme (Rm,F), we build a topological model for the
dynamics near an irrationally indifferent fixed point, as we explain below.

By the classic work of Fatou [Fat19] and Mane [Mañ87], when f is a polynomial or
a rational function of the Riemann sphere, there is a recurrent critical point of f which
“interacts” with the fixed point at 0. The topological boundary of Mα,

Aα = ∂Mα,

is equal to the closure of the orbit of +1 for the iterates of Tα. The set Aα is a topological
model for the closure of the orbit of that recurrent critical point of f , which is the measure
theoretic attractor of f for the orbits that remain near 0.

We explain the topology of the sets Aα in terms of the arithmetic nature of α.

Theorem B (Trichotomy of the maximal invariant set). For every α ∈ R \ Q one of the
following statements hold:

(i) α is a Herman number and Aα is a Jordan curve,
(ii) α is a Brjuno but not a Herman number, and Aα is a one-sided hairy Jordan curve,
(iii) α is not a Brjuno number, and Aα is a Cantor bouquet.

The arithmetic class of Brjuno was discovered by Siegel-Brjuno [Sie42, Brj71] in their now
classic work on the study of the linearisation problem for irrationally indifferent fixed points.
It is the set of α such that the denominators qn of the best rational approximants of α satisfy

∑∞
n=1q

−1
n log qn+1 < +∞.

The arithmetic class of Herman was discovered by Herman-Yoccoz [Her79, Yoc02] in their
landmark study of the analytic linearisation problem for analytic diffeomorphisms of the
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circle. The set of Herman numbers is more complicated to characterise in terms of the
arithmetic of α, see Section 6. It forms an Fσ,δ subset of R. However, any Herman number
is a Brjuno number, the set of Herman numbers has full measure in R, while the set of non-
Brjuno numbers is topologically generic in R. The arguments presented in this paper do not
rely on the optimality properties of the Brjuno and Herman numbers for the linearisation
problems. These arithmetic conditions naturally emerge in the study of the model Aα.

A Cantor bouquet is a compact subset of C which has empty interior, consists of a
collection of Jordan arcs only meeting at 0, and every arc is accumulated from both sides by
arcs. A (one-sided) hairy Jordan curve is a similar object consisting of a collection of Jordan
arcs all attached to (one side of) a Jordan arc. See Section 8.1 for the precise definitions
of these objects. While one-sided hairy Jordan curves and Cantor bouquets are universal
topological objects, our construction is geometric, featuring delicate metric properties. That
is, the models for dissimilar values of non-Brjuno numbers, and also for dissimilar values of
Brjuno but non-Herman numbers, have very distinct metric properties.

The maps Tα : Aα → Aα exhibit peculiar dynamical behaviour, especially when α is
not a Herman number. Every point in Aα is topologically recurrent. There are points in
Aα with dense orbits. There are uncountably many distinct closed fully invariant sets. In
contrast to the linearisable examples where an invariant set consists of disjoint unions of
closed analytic curves, here there is only a one-parameter family of closed invariant sets.
The set of accumulation points of the orbit of a point z ∈ Aα, denoted by ω(z), is a notable
example of a closed invariant set. It turns out that these are the only ones, as we state
below.

Define rα ∈ [0, 1] according to

[rα, 1] = {z ∈ Aα | Im z = 0,Re z ≥ 0}.
Theorem C (Topological dynamics). For every α ∈ R \Q the map Tα : Aα → Aα satisfies
the following properties:

(i) the map Tα : Aα → Aα is topologically recurrent.
(ii) the map

ω : [rα, 1] → {X ⊆ Aα | X is non-empty, closed and invariant}
is a homeomorphism with respect to the Hausdorff metric on the range.

(iii) the map ω on [rα, 1] is strictly increasing with respect to the inclusion.
(iv) if α is a Brjuno number, for every t ∈ (rα, 1], ω(t) is a hairy Jordan curve.
(v) if α is not a Brjuno number, for every t ∈ (rα, 1], ω(t) is a Cantor bouquet.

Based on the above results for the model, we propose the following conjecture.

Conjecture (Trichotomy of the irrationally indifferent attractors). Let f be a rational func-

tion of the Riemann sphere Ĉ of degree at least 2, with f(0) = 0, f ′(0) = e2πiα, and α ∈ R\Q.
There exists a critical point of f , such that the closure of its orbit, denoted by Λ(f), satisfies
the following:

(i) if α is a Herman number, Λ(f) is a Jordan curve,
(ii) if α is a Brjuno but not a Herman number, Λ(f) is a one-sided hairy Jordan curve,
(iii) if α is not a Brjuno number, Λ(f) is a Cantor bouquet.
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Moreover, in cases (i) and (ii), f preserves the connected component of Ĉ \Λ(f) containing
0, and in case (iii), Λ(f) contains 0.

The above conjecture immediately implies a number of important conjectures in the study
of irrationally indifferent fixed points for rational functions. Notably, it implies the optimality
of the Brjuno condition for the linearisability of irrationally indifferent fixed points (Douady-
Yoccoz conjecture 1986), the optimality of the Herman condition for the presence of a critical
point on the boundary of the Siegel disk (Herman conjecture 1985), the Siegel disk are Jordan
domains (Douady-Sullivan conjecture 1987). On the other hand, for rational functions, the
invariant Siegel-compacta and hedgehogs introduced by Perez-Marco [PM97] are contained
in the post-critical set, and hence their topology may be completely explained by the above
conjecture.

In a counterpart paper [Che17], we employ the topological model in Theorem A, and
the near-parabolic renormalisation scheme of Inou and Shishikura [IS06], to prove the above
conjecture for a class of maps and rotation numbers. Indeed, we present some sufficient
condition for a renormalisation scheme in order to conclude the above conjecture. In order
to explain this relation, we briefly outline the construction of the model. Here we take
an upside-down approach to the renormalisation. In contrast to defining renormalisation
for a given map defined on a domain, we start by building the changes of coordinates for
the renormalisation, one for each rotation number. Repeatedly applying the Gauss map
to a fixed α, one obtains a sequence of rotation numbers, and the corresponding changes
of coordinates. Then, there is a maximal set on which the infinite chain of the changes of
coordinates is defined. Finally we build the map Tα on the maximal set so that its return
map via the change of coordinate becomes TG(α). The advantage of this approach is that
any given renormalisation scheme for irrationally indifferent fixed points may be compared
to the model (Rm,F) by comparing the corresponding changes of coordinates. This provides
a streamlined approach to the study of the dynamics of irrationally indifferent fixed points.
It is also unified, in the sense that one does not need to reconsider the role of the arithmetic
properties in a given renormalisation scheme. In the counterpart paper [Che17], we show
that if a renormalisation scheme consists of a change of coordinate which is sufficiently close
to the change of coordinate for the renormalisation model, then the corresponding maps are
topologically conjugate on the corresponding maximal domain of renormalisations. See also
[SY18] for partial progress towards the above conjecture.

An alternative construction for Mα was suggested by Buff and Chéritat in 2009 [BC09].
Our thought in this direction was influenced and motivated by their construction based on
employing toy models for the changes of coordinates. In contrast to the conformal changes of
coordinates considered by those authors, the models for the changes of coordinates presented
here are not conformal, but preserve straight rays landing at 0, while maintaining the correct
nonlinear behaviour in the radial directions. This flexibility allows us to incorporate some
remarkable functional relations, which in turn allow us to avoid taking Hausdorff limits in
the construction. The explicit construction presented here allow us to promote the models
for Mα to build the maps Tα, and a renormalisation scheme on those maps.



6 DAVOUD CHERAGHI

Contents

1. Introduction 1
2. The changes of coordinates for the renormalisation Rm 7
2.1. Explicit formula for the changes of coordinates 7
2.2. Uniform contraction of the changes of coordinates 8
2.3. Remarkable functional relations for the changes of coordinates 10
3. The sets Mα 10
3.1. Successive rotation numbers αn and signs εn 10
3.2. Successive changes of coordinates 11
3.3. Equivariant tiling of the tower 11
3.4. The sets Mα 13
4. The map Tα on Mα 15
4.1. Definition of the lift of Tα 16
4.2. The continuity 16
4.3. The map Tα, and its properties 23
5. The renormalisation operator Rm 25
5.1. Definition of Rm 25
5.2. Invariance of the class of maps under the renormalisation operator 27
6. Arithmetic classes of Brjuno and Herman 29
6.1. Standard continued fraction 29
6.2. Modified continued fraction, and the equivalent form of Herman numbers 32
7. Elementary properties of the change of coordinates 41
8. Topology of the sets Aα 47
8.1. Cantor bouquets and hairy Jordan curves 47
8.2. Height functions 48
8.3. Accumulation of the hairs 49
8.4. The Brjuno condition in the renormalisation tower 54
8.5. The Herman condition in the renormalisation tower 56
8.6. Hairs, or no hairs 59
8.7. Proof of Theorem B 62
9. Dynamics of Tα on Aα 64
9.1. Topological recurrence 64
9.2. Closed invariant subsets 65
9.3. Closures of orbits 67
9.4. Topology of the closed invariant subsets 69
9.5. Dependence on the parameter 70
Acknowledgement 71
References 71



MODEL FOR RENORMALISATION OF IRRATIONALLY INDIFFERENT FIXED POINTS 7

2. The changes of coordinates for the renormalisation Rm

In this section we introduce a one-parameter (r ∈ (0, 1/2]) family of real analytic diffeo-
morphisms. When we set the parameter as a rotation number, the diffeomorphism becomes
the change of coordinate for the renormalisation of a map with that asymptotic rotation
number at 0. These are the toy models for the change of coordinates in the toy model for
the renormalisation scheme.

2.1. Explicit formula for the changes of coordinates. Consider the set

H′ = {w ∈ C | Imw > −1}.
For r ∈ (0, 1/2], we define the map Yr : H′ → C as 1

Yr(w) = rRew +
i

2π
log

∣

∣

∣

e−3πr − e−πrie−2πriw

e−3πr − eπri

∣

∣

∣
.

Evidently, Yr maps a vertical line in H′ to a vertical line. Also, one can see that Yr(0) = 0 and
that Yr(1/(2r)− i) is uniformly close to 1/2+ i(log 1/r)/(2π). Figure 3 shows the behaviour
of Yr on horizontal and vertical lines.

Figure 3. The nearly horizontal curves are the images of the horizontal
lines y = −1, 0, 1, . . . , 8 under Yr. The vertical lines, from left to right, are
the images of the vertical lines Rew = −1, Rew = 0, and Rew = 1/α,
under Yr. Here, r = 1/(10 + 1/(1 + 1/(1 + 1/(1 + . . . )))).

Lemma 2.1. For every r ∈ (0, 1/2], Yr : H′ → H′ is well-defined, real-analytic in Rew and
Imw, and is injective. Moreover, for every r ∈ (0, 1/2) and every y ≥ 0, we have

Hr ({w ∈ C | Imw ≥ y − 1}) ⊂ {w ∈ C | Imw ≥ ImHr(iy)− 1}.
Proof. The proof is based on some elementary calculations. Note that

10 ≤ 1 + (12/5) + (12/5)2/2! + · · ·+ (12/5)5/5! ≤ e12/5.

1X denotes the topological closure of a given set X.
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Using 0 ≤ r ≤ 1/2, 3 ≤ π ≤ 4, and the above inequality, we obtain

log(4 + 3πr) + 2πr ≤ log(e12/5) + π ≤ log e4π/5 + π ≤ 9π/5.

This implies that for all r ∈ [0, 1/2], e9π/5 ≥ (4 + 3πr)e2πr, and therefore,

πeπr(e9π/5 − (4 + 3πr)e2πr)) ≥ 0.

Fix r ∈ [0, 1/2]. Integrating the above inequality from 0 to r, we conclude that

e9π/5(eπr − 1)− (πr + 1)e3πr + 1 ≥ 0.

This implies that for all r ∈ (0, 1/2], we have

(2.1)
eπr − 1

(πr + 1)e3πr − 1
≥ e−9π/5.

On the other hand, for w ∈ H′, by the triangle inequality,

|e−3πr − e−πrie−2πriw| ≥ |e−πrie−2πriw| − |e−3πr| ≥ e−2πr − e−3πr,

and

|e−3πr − eπri| ≤ |e−3πr − 1|+ |1− eπri| ≤ (1− e−3πr) + πr.

Combining the above two inequalities with Equation (2.1) we obtain
∣

∣

∣

∣

e−3πr − e−πrie−2πriw

e−3πr − eπri

∣

∣

∣

∣

≥ e−2πr − e−3πr

πr + 1− e−3πr
=

eπr − 1

(πr + 1)e3πr − 1
≥ e−9π/5.

The above inequality implies that for all w ∈ H′ we have

ImYr(w) ≥
1

2π
log e−9π/5 > −1.

In particular, Yr is well-defined, and maps H′ into H′. This also implies that Yr is real-
analytic in Rew and Imw, for w in H′.

To prove that Yr is injective, assume that w1 and w2 are two distinct points in H′. If
Rew1 6= Rew2, then ReYr(w1) 6= ReYr(w2). If Rew1 = Rew2 but Imw1 6= Imw2, then

|e−3πr − e−πrie−2πriw1 | 6= |e−3πr − e−πrie−2πriw2 |.
This implies that ImYr(w1) 6= ImYr(w2).

One may employ similar elementary calculations to derive the latter part of the lemma. �

2.2. Uniform contraction of the changes of coordinates. A key property of the maps
Yr is stated in the following lemma.

Lemma 2.2. For every r ∈ (0, 1/2], and every w1, w2 in H′, we have

|Yr(w1)− Yr(w2)| ≤ 0.9|w1 − w2|.

The precise contraction factor 0.9 in the above lemma is not crucial, any constant strictly
less than 1 suffices.
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Proof. Let g(w) = (e−3πr− e−πrie−2πriw)(e−3πr− eπrie2πriw). Then, g(w) is of the form ζζ,
for some ζ ∈ C, and hence it produces positive real values for w ∈ H′. We have

∂g(w)/∂w = 2πrie−πrie−2πriw(e−3πr − eπrie2πriw),

and

∂g(w)/∂w = −2πrieπrie2πriw(e−3πr − e−πrie−2πriw).

Therefore, by the complex chain rule,

∂

∂w

(

log g(w)
)

=
1

g(w)

∂g

∂w
=

2πrie−πrie−2πriw

e−3πr − e−πrie−2πriw
=

2πri

e−3πreπrie2πriw − 1
,

and
∂

∂w

(

log g(w)
)

=
1

g(w)

∂g

∂w
=

−2πrieπrie2πriw

e−3πr − eπrie2πriw
=

−2πri

e−3πre−πrie−2πriw − 1
.

We rewrite Yr in the following form

Yr(w) = r · w + w

2
+

i

2π
· 1
2
log g(w)− i

2π
log |e−3πr − eπri|.

Then, by the above calculations,

∂Yr
∂w

(w) =
r

2
+

i

4π
· 2πri

e−3πreπrie2πriw − 1
=
r

2

(

1− 1

e−3πreπrie2πriw − 1

)

,

and

∂Yr
∂w

(w) =
r

2
+

i

4π
· −2πri

e−3πre−πrie−2πriw − 1
=
r

2

(

1 +
1

e−3πre−πrie−2πriw − 1

)

.

Let ξ = e−3πreπrie2πriw. For w ∈ H′, |ξ| ≤ e−πr. For the maximum size of the directional
derivative of Yr we have

max
θ∈[0,2π]

∣

∣DYr(w) · eiθ
∣

∣ =
∣

∣

∣

∂Yr
∂w

(w)
∣

∣

∣
+
∣

∣

∣

∂Yr
∂w

(w)
∣

∣

∣

≤ r

2
·
∣

∣

∣
1− 1

ξ − 1

∣

∣

∣
+
r

2
·
∣

∣

∣
1 +

1

ξ − 1

∣

∣

∣

≤ r

2
· 2 + e−πr

1− e−πr
+
r

2
· e−πr

1− e−πr
= r · e

πr + 1

eπr − 1
.

For r ≥ 0, eπr − 1 ≥ πr + π2r2/2, (the first two terms of the Taylor series with positive
terms). This gives us

r · e
πr + 1

eπr − 1
= r

(

1 +
2

eπr − 1

)

≤ r

(

1 +
2

πr + π2r2/2

)

=
2πr + π2r2 + 4

2π + π2r
.

The last function in the above equation is increasing on (0, 1/2), because it has a non-
negative derivative (4πr + π2r2)/(2 + πr)2. Then, it is bounded by its value at 1/2, which,
using π ≥ 3, gives us

2πr + π2r2 + 4

2π + π2r
≤ π + π2/4 + 4

2π + π2/2
=

1

2
+

4

2π + π2/2
≤ 1

2
+

4

6 + 4
=

9

10
. �



10 DAVOUD CHERAGHI

2.3. Remarkable functional relations for the changes of coordinates. The maps Yr
satisfy two crucial functional relations, one at a large scale, and one at a small scale, both
of which are illustrated in Figure 3. We present these properties in the following lemma.

Lemma 2.3. For every r ∈ (0, 1/2], we have

(i) for every w ∈ H′,

Yr(w + 1/r) = Yr(w) + 1

(ii) for every t ≥ −1,

Yr(it+ 1/r − 1) = Yr(it) + 1− r.

Proof. Part (i) of the lemma readily follows from the formula defining Yr.
To prove part (ii) of the lemma, first note that

∣

∣e−3πr − e−πrie−2πri(it+1/r−1)
∣

∣ =
∣

∣e−3πr − e−πrie2πrte2πri
∣

∣

=
∣

∣e−3πr − eπrie2πrt
∣

∣ =
∣

∣e−3πr − e−πrie2πrt
∣

∣.

Above, the first and second “=” are simple multiplications of complex numbers, while for
the third “=” we have used that |x− z| = |x− z|, for real numbers x and complex numbers
z. Thus,

Yr(it+ 1/r − 1) = r(1/r − 1) +
i

2π
log

∣

∣

∣

e−3πr − e−πrie2πrt

e−3πr − eπri

∣

∣

∣
= (1− r) + Yr(it). �

3. The sets Mα

In this section we build the sets Mα introduced in Section 1. These sets are defined by
successively applying the changes of coordinates Yr, for a sequence of parameters r.

3.1. Successive rotation numbers αn and signs εn. For x ∈ R, define d(x,Z) =
mink∈Z |x − k|. Let us fix an irrational number α ∈ R. Define the numbers αn ∈ (0, 1/2),
for n ≥ 0, according to

(3.1) α0 = d(α,Z), αn+1 = d(1/αn,Z).

Then, there are unique integers an, for n ≥ −1, and εn ∈ {+1,−1}, for n ≥ 0, such that

(3.2) α = a−1 + ε0α0, 1/αn = an + εn+1αn+1.

Evidently, for all n ≥ 0,

(3.3) 1/αn ∈ (an − 1/2, an + 1/2), an ≥ 2,

and

(3.4) εn+1 =

{

+1 if 1/αn ∈ (an, an + 1/2),

−1 if 1/αn ∈ (an − 1/2, an).

In order to streamline our notations in this paper, we let α−1 = +1. See Section 6, in
particular Section 6.2, for more details about this notion of continued fraction algorithm
(known as nearest integer continued fraction).
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3.2. Successive changes of coordinates. Recall that s(w) = w denotes the complex
conjugation map. For n ≥ 0 we define

(3.5) Yn(w) =

{

Yαn(w) if εn = −1

−s ◦ Yαn(w) if εn = +1.

Each Yn is either orientation preserving or reversing, depending on the sing of εn. For n ≥ 0,
we have2

(3.6) Yn(i[−1,+∞)) ⊂ i(−1,+∞), and Yn(0) = 0.

Lemma 2.2 implies that for all n ≥ 0 and all w1, w2 in H′, we have

(3.7) |Yn(w1)− Yn(w2)| ≤ 0.9|w1 − w2|.
It follows from Lemma 2.3 that for all n ≥ 0 and all w ∈ H′,

(3.8) Yn(w + 1/αn) =

{

Yn(w) + 1 if εn = −1,

Yn(w) − 1 if εn = +1.

Also, by the same lemma, for all n ≥ 0, and all t ≥ −1,

(3.9) Yn(it+ 1/αn − 1) =

{

Yn(it) + (1 − αn) if εn = −1,

Yn(it) + (αn − 1) if εn = +1.

3.3. Equivariant tiling of the tower. For n ≥ 0 let

(3.10)

I0n = {w ∈ H′ | Rew ∈ [0, 1/αn]},
J0
n = {w ∈ I0n | Rew ∈ [1/αn − 1, 1/αn]},
K0

n = {w ∈ I0n | Rew ∈ [0, 1/αn − 1]}.
We inductively defined the sets Ijn, J

j
n, and K

j
n, for j ≥ 1 and n ≥ 0. Assume that for some

j and all n ≥ 0, Ijn, J
j
n and Kj

n are defined. We define Ij+1
n , Jj+1

n and Kj+1
n for n ≥ 0 as

follows. Fix an arbitrary n ≥ 0. If εn+1 = −1, let

(3.11) Ij+1
n =

an−2
⋃

l=0

(

Yn+1(I
j
n+1) + l

)

⋃

(

Yn+1(K
j
n+1) + an − 1

)

.

If εn+1 = +1, let

(3.12) Ij+1
n =

an
⋃

l=1

(

Yn+1(I
j
n+1) + l

)

⋃

(

Yn+1(J
j
n+1) + an + 1

)

.

Regardless of the sign of εn+1, define

Jj+1
n = {w ∈ Ij+1

n | Rew ∈ [1/αn − 1, 1/αn]},
Kj+1

n = {w ∈ Ij+1
n | Rew ∈ [0, 1/αn − 1]}.

Figure 4 presents two generations of these domains. We summarise the basic features of
these sets in the following lemma.

2For a given set X ⊆ C, we define iX = {ix | x ∈ X}.
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K0
n J0

n K0
n J0

n

Yn Yn Yn + an−1 − 1 Yn Yn Yn + an−1 + 1

Figure 4. The left hand picture is for εn = −1 and the right hand picture
is for εn = +1. The sets K0

n and J0
n are on the lower row, and the set I1n−1

is on the upper row.

Lemma 3.1. For all n ≥ 0 and j ≥ 0, the sets Ijn, J
j
n and Kj

n are closed and connected
subsets of C, and each of ∂Ijn, ∂J

j
n and ∂Kj

n is a piece-wise analytic curve. Moreover,

(i) {Rew | w ∈ Ijn} = [0, 1/αn];
(ii) if εn+1 = −1, we have

(3.13)
{w ∈ Ijn | Rew = 0} ⊆ Yn+1(i[−1,∞)),

{w ∈ Ijn | Rew = 1/αn} ⊆ Yn+1(i[−1,∞) + 1/αn+1 − 1) + an − 1;

(iii) if εn+1 = +1, we have

(3.14)
{w ∈ Ijn | Rew = 0} ⊆ Yn+1(i[−1,∞) + 1/αn) + 1,

{w ∈ Ijn | Rew = 1/αn} ⊆ Yn+1(i[−1,∞) + 1/αn+1 − 1) + an + 1.
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Proof. The proof is elementary and is left to the reader. One only needs to follow the basic
arithmetic relations among αn, an and εn+1 in (3.1)-(3.3), and use the functional relations
in (3.8) and (3.9). �

Lemma 3.2. For every n ≥ 0 and j ≥ 0, the following hold:

(i) for all w ∈ H′, we have w ∈ Ijn if and only if w + 1 ∈ Ijn;
(ii) for all t ∈ R, we have it ∈ Ijn if and only if it+ 1/αn ∈ Ijn.

Proof. We shall prove both parts at once by an inductive argument on j. Clearly, both
statements hold for j = 0 and all n ≥ 0. Assume that both parts of the lemma hold for some
j ≥ 0 and all n ≥ 0.

Part (ii) for j and Equation (3.8) together imply that for real values of t, it ∈ Ij+1
n if and

only if it+1 ∈ Ij+1
n . Then, by the definition of Ij+1

n in (3.11) and (3.12), one concludes part
(i) for j + 1 and all n ≥ 0.

To prove part (ii) of the lemma for j+1 and all n ≥ 0 we need to consider two cases. First
assume that εn+1 = −1. By (3.9) and (3.2), for t and t′ in [−1,+∞) satisfying Yn+1(it

′) = it,
we have

Yn+1(it
′ + 1/αn+1 − 1) + an − 1 = Yn+1(it

′) + (1− αn+1) + an − 1 = it+ 1/αn.

If it ∈ Ij+1
n , then by Equation (3.11), there is it′ ∈ Ijn+1 with Yn+1(it

′) = it. By the

induction hypotheses (part (i) and (ii) for j and all n ≥ 0), it′ + 1/αn+1 − 1 ∈ Ijn+1. Then,

it′ + 1/αn+1 − 1 ∈ Kj
n+1. Therefore, by the above equation and (3.11), it+ 1/αn ∈ Ij+1

n .

On the other hand, if it + 1/αn ∈ Ij+1
n , then by (3.11) and the induction hypotheses,

there is it′ ∈ Ijn+1 such that it′ + 1/αn+1 − 1 ∈ Kj
n+1 and

Yn+1(it
′ + 1/αn+1 − 1) + (an − 1) = it+ 1/αn.

Again, by (3.9) and (3.2), this implies that it + 1/αn = Yn+1(it
′) + 1/αn. Hence, it =

Yn+1(it
′), which implies that it ∈ Ij+1

n .
The proof when εn+1 = +1 is similar, using (3.12) and (3.9). �

Recall that α−1 = +1. Let I0−1 = {w ∈ H′ | Rew ∈ [0, 1/α−1]}, and for j ≥ 1, consider
the sets

(3.15) Ij−1 = Y0(I
j−1
0 ) + (ε0 + 1)/2.

By Lemma 2.1, I1n ⊂ I0n, for n ≥ −1. By an inductive argument, this implies that for all
n ≥ −1 and all j ≥ 0,

(3.16) Ij+1
n ⊂ Ijn.

3.4. The sets Mα. For n ≥ −1, we define

In = ∩j≥1I
j
n.

Each In consists of closed half-infinite vertical lines with unbounded imaginary parts. How-
ever, In may or may not be connected. We note that Re I−1 ⊂ [0, 1]. Indeed, by Lemma 3.2,
for real t, it ∈ I−1 if and only if (it+ 1) ∈ I−1. Thus, we may define

(3.17) Mα = {s(e2πiw) | w ∈ I−1} ∪ {0}.
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Remark 3.3. There may be alternative (simpler) approaches to build the set Mα using the
maps Yn. For the sake of applications, here we have selected an approach which closely
mimics a construction in the renormalisation scheme. However, it is worth noting that one
cannot simply define the domains Ijn, and subsequently Mα, by first extending the maps
Yn 1/αn-periodically onto H′, and then iterating them on H′. That is because, such a
construction would lead to a set in the limit which is periodic under translations by +1 and
some irrational number. It would follow that the interior of that set must be the region
above a horizontal line, which cannot be the case for arbitrary α.

Proposition 3.4. For every α ∈ R \Q we have the following:3

(i) Mα is a compact set which is star-like about 0, +1 ∈ Mα, and Mα ∩ (1,∞) = ∅;
(ii) Mα+1 = Mα and s(Mα) = M−α.

Proof. Since every map Yn sends vertical lines to vertical lines, each of Ijn is the region above
the graph of a function. This implies that for every n ≥ −1, In consists of some half-infinite
vertical lines. Thus, Mα is star-like about 0. Also, Mα is bounded and closed, hence a
compact set. On the other hand, for all n ≥ −1, 0 ∈ In, which implies that +1 ∈ Mα.
Indeed, by the uniform contraction of the maps Yn, Equation (3.7), +1 is an end point of a
ray in Mα, that is, for every δ > 0, 1 + δ /∈ Mα.

Recall that in order to define Mα, which only depends on α, we first define the sequences
(αn)n≥0, (an)n≥0, and (εn)n≥0. These fully determine the sequence of maps (Yn)n≥0, and
hence the set Mα. The irrational numbers α and α+1 produce the same sequences (αn)n≥0,
(an)n≥0 and (εn)n≥0. Therefore, the sequence of the maps Yn are the same for both α and
α+ 1. This implies that Mα+1 = Mα.

To determine M−α, we need to compare the corresponding sequences (αn)n≥0, (an)n≥0

and (εn)n≥0 for α and −α. Let us denote the corresponding objects for −α using the same
notations as the ones for α but with a prime, that is, α′

n, a
′
n, ε

′
n, Y′

n, I
′
n, K

′
n, J

′
n, etc.

Using α = a−1 + ε0α0, we note that a′−1 = −a−1, α
′
0 = α0, ε

′
0 = −ε0. These imply that

Y′
0 = −s ◦Y0. However, since α

′
0 = α0, we conclude that for all n ≥ 1 we have a′n−1 = an−1,

α′
n = αn, ε

′
n = εn. Thus, for all n ≥ 1, Y′

n = Yn. These imply that I0 = I ′0. In particular,
in the definition of M−α, the only difference with the definition of Mα is that Y0 changes to
−s ◦ Y0. Therefore, using Equation (3.15),

I ′−1 = Y′
0(I

′
0) +

1 + ǫ′0
2

= −s ◦ Y0(I
′
0) +

1− ǫ0
2

= −s
(

Y0(I0) +
1 + ǫ0

2

)

+ 1 = −s(I−1) + 1.

Comparing to Equation (3.17), we have

M−α = {s(e2πiw) | w ∈ I ′−1} ∪ {0}
= {s(e2πiw) | w ∈ −s(I−1)} ∪ {0}
= {s ◦ s(e2πiw) | w ∈ I−1} ∪ {0}
= s

(

{s(e2πiw) | w ∈ I−1}
)

∪ {0} = s(Mα). �

3A set M ⊆ C is called star-like about 0 if for every z ∈ M and every r ∈ [0, 1], rz ∈ M .
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Lemma 3.5. For every α ∈ R \Q we have the following:

(i) if α ∈ (0, 1/2), M1/α = {s(e2πiw) | w ∈ I0} ∪ {0},
(ii) if α ∈ (−1/2, 0), M−1/α = {s(e2πiw) | w ∈ I0} ∪ {0}.

Proof. For α, let (αn)n≥0, (an)n≥0 and (εn)n≥0 denote the sequences defined in Section 3.1.
Define α′ = ε1α1. Let us use the notations (α′

n)n≥0, (a
′
n)n≥0 and (ε′n)n≥0 for the sequences

(αn)n≥0, (an)n≥0 and (εn)n≥0 corresponding to α′. We have α′
0 = α1, and then

ε1α1 = α′ = a′−1 + ε′0α
′
0 = a′−1 + ε′0α1.

As α′ ∈ (−1/2, 1/2), we must have a′−1 = 0, and hence ε′0 = ε1. To determine Y′
0, we

consider two cases. If ε′0 = ε1 = −1, we have Y′
0 = Yα′

0
= Yα1 = Y1, and if ε′0 = ε1 = +1,

we have Y′
0 = −s ◦ Yα′

0
= −s ◦ Yα1 = Y1.

The relation α′
0 = α1 implies that for all n ≥ 1 we have α′

n = αn+1, a
′
n = an+1 and

ε′n = εn+1. Hence, for all n ≥ 1, Y′
n = Yn+1. These imply that I ′−1 = I0. Therefore,

according to Equation (3.17), we must have

(3.18) Mε1α1 = Mα′ = {s(e2πiw) | w ∈ I ′−1} ∪ {0} = {s(e2πiw) | w ∈ I0} ∪ {0}.
If α ∈ (0, 1/2), we have 1/α = 1/α0 = a−1 + ε1α1, which using Lemma 3.4-(ii), we obtain

M1/α = Ma−1+ε1α1 = Mε1α1 .

If α ∈ (−1/2, 0), we have −1/α = 1/α0 = a−1 + ε1α1, and hence, using Lemma 3.4-(ii), we
get

M−1/α = Ma−1+ε1α1 = Mε1α1 .

Combining the above equations, we obtain the desired properties in parts (i) and (ii). �

4. The map Tα on Mα

In this section we define the map

(4.1) Tα : Mα → Mα,

where Mα is the topological model defined in Section 3.
The topological description of Mα, which is presented in Section 8, does not employ the

map Tα in any ways. However, the topological description can be used to identify the map
Tα as follows. When Aα is a Jordan curve, it is the graph of a function of the argument.
Thus, there is a unique homeomorphism of Aα which acts as rotation by 2πα in the tangential
direction. Similarly, when, Aα is a hairy Jordan curve, there is a unique homeomorphism of
the base Jordan curve which acts as rotation by 2πα. This map can be extended onto the
end points of the Jordan arcs attached to the Jordan curve by matching the corresponding
end points. Since the set of end points of those arcs is dense in Aα, there may be a unique
homeomorphism of Aα which acts as rotation by 2πα on the base Jordan curve. However, it
is not clear if this map continuously extents to the whole hairy Cantor set. Similarly, there
may be a unique homeomorphism of a Cantor bouquet Aα which acts as rotation by 2πα
in the tangential direction. Here we take a different approach to build Tα on Mα. We give
a presentation which is aligned with the action of the map on the renormalisation tower;
compare with [Che13, AC18]. This helps us later when describing the dynamics of Tα on
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Aα, and may also be employed to link the toy renormalisation scheme we build here to an
actual renormalisation scheme.

4.1. Definition of the lift of Tα. Let us fix α ∈ R \Q, and let In, for n ≥ −1, be the sets
in Section 3.3. Given w−1 ∈ I−1, we inductively identify the integers li and then the points
wi+1 ∈ Ii+1 so that

0 ≤ Re(wi − li) < 1, if εi+1 = −1; −1 < Re(wi − li) ≤ 0, if εi+1 = +1;

and
Yi+1(wi+1) + li = wi.

It follows that for all n ≥ 0, we have

(4.2) w−1 = (Y0 + l−1) ◦ (Y1 + l0) ◦ · · · ◦ (Yn + ln−1)(wn).

Also, by the definition of Ii in (3.11) and (3.12), for all i ≥ 0,

(4.3) 0 ≤ li ≤ ai + εi+1, and 0 ≤ Rewi < 1/αi.

We refer to the sequence (wi; li)i≥−1 as the trajectory of w−1, with respect to α, or simply,
as the trajectory of w−1, when it is clear from the context what irrational number is used.

We define the map

(4.4) T̃α : I−1 → I−1,

as follows. Let w−1 be an arbitrary point in I−1, and let (wi; li)i≥−1 denote the trajectory
of w−1. Then,

(i) if there is n ≥ 0 such that wn ∈ Kn, and for all 0 ≤ i ≤ n− 1, wi ∈ Ii \Ki, then

T̃α(w−1) =

(

Y0 +
ε0 + 1

2

)

◦
(

Y1 +
ε1 + 1

2

)

◦ · · · ◦
(

Yn +
εn + 1

2

)

(wn + 1);

(ii) if for all n ≥ 0, wn ∈ In \Kn, then

T̃α(w−1) = lim
n→+∞

(

Y0 +
ε0 + 1

2

)

◦
(

Y1 +
ε1 + 1

2

)

◦ · · · ◦
(

Yn +
εn + 1

2

)

(wn + 1− 1/αn).

It might not be clear that the limit in case (ii) exists. We look into this within the proof of
Lemma 4.1.

4.2. The continuity.

Lemma 4.1. For every α ∈ R\Q, the map T̃α : I−1 → I−1 induces a well-defined, continuous
and injective map 4

T̃α : I−1/Z → I−1/Z.

The main idea of the proof for the above statement is to partition the set I−1 into infinitely
many pieces, where the map is continuous on each piece. Then, we show that the maps on
the pieces match at the boundary points. Below we introduce the partition pieces.

For w−1 ∈ I−1, let (wi; li)i≥−1 denote the trajectory of w−1. For each n ≥ 0, let

Wn = {w−1 ∈ I−1 | for all 0 ≤ i ≤ n− 1, wi ∈ Ii \Ki, and wn ∈ Kn},
4Here, Z acts on I

−1 by horizontal translations by integers.
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V n = {w−1 ∈ I−1 | for all 0 ≤ i ≤ n,wi ∈ Ii \Ki}.
We set V∞ = ∩n≥0V

n. Evidently, we have

(4.5) I−1 = ∪n≥0W
n ∪ V∞.

It is also convenient to use some simplified notations for the compositions of the maps
which appear in the definition of Tα. That is, for m ≥ n, let 5

Xn−1
n = id, Xm

n =

(

Yn +
εn + 1

2

)

◦
(

Yn+1 +
εn+1 + 1

2

)

◦ · · · ◦
(

Ym +
εm + 1

2

)

.

We break the proof of Lemma 4.1 into several lemmas.

Lemma 4.2. For all n ≥ 1, the map w−1 7→ wn is continuous and injective on the sets Wn

and V n. In particular, for all n ≥ 1, T̃α :Wn → I−1 is continuous and injective.

Proof. For each i ≥ 0, if wi ∈ Ii \Ki and wi+1 ∈ Ki+1, then li = ai+(εi+1−1)/2. Similarly,
if wi ∈ Ii \Ki and wi+1 ∈ Ii+1 \Ki+1, then li = ai + (3εi+1 − 1)/2. These imply that for all
n ≥ 1 and all w−1 ∈Wn, the entries (li)

n−1
i=−1 in the trajectory of w−1 is independent of w−1.

Similarly, for all n ≥ 1 the entries (li)
n−1
i=−1 in the trajectory of w−1 ∈ V n is independent of

w−1. In particular, the map w−1 7→ wn is continuous and injective on each of Wn and V n.

As each Yj is continuous and injective, we conclude that T̃α is continuous and injective
on Wn. �

Lemma 4.3. The map T̃α is well-defined, continuous and injective on V∞.

Proof. We know from Lemma 4.2 that for every n ≥ 0, the map w−1 7→ wn is continuous and
injective on V n. The image of this map covers (1/αn − 1, 1/αn) ∩ In, due to the choice we
made in Equation (4.3). Since the inverse map wn 7→ w−1 is also continuous and injective
on (1/αn − 1, 1/αn) ∩ In, it follows that V n is relatively open in I−1. It is possible that
for some values of α, the nest ∩n≥0V

n is empty (for instance when εi = −1, for all i ≥ 0).
Below we assume that V∞ is not empty.

For each n ≥ 0 and 0 ≤ i ≤ n, we define the sets V n
i as the set of wi, for w−1 ∈ V n.

Then, define V∞
i = ∩n≥iV

n
i . It follows that w−1 7→ wi is continuous and injective from V∞

to V∞
i , for all i ≥ 0. Moreover, by the uniform contraction of the map Yj , each V∞

i is a
closed half-infinite vertical line.

For n ≥ 0 and m ≥ n, we define the map Em
n : V m

n → In as follows

(4.6) Em
n (wn) = Xm

n+1(wm + 1− 1/αm).

By the above paragraphs, this is a continuous and injective map on V m
n .

Note that for wn ∈ In \Kn we have

|Yn+1(wn+1) + (εn+1 + 1)/2− (wn + 1− 1/αn)| ≤ 1.

This is because, ImYn+1(wn+1) = Imwn, Rewn + 1 − 1/αn ∈ [0, 1], and ReYn+1(wn+1) +
(εn+1 + 1)/2 belongs to [0,+1].

5id denotes the identity map.
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By Equation (3.8), Yn+1(w− 1/αn+1) = Yn+1(w) + εn+1, and by Lemma 2.2, |Yn+1(w+
1) − Yn+1(w)| ≤ 0.9. Combining with the above inequality, we conclude that for all wn ∈
V n+1
n ,

|En+1
n (wn)− En

n(wn)| = |Yn+1(wn+1 + 1− 1/αn+1) + (εn+1 + 1)/2− (wn + 1− 1/αn)|
≤ |Yn+1(wn+1) + εn+1 + (εn+1 + 1)/2− (wn + 1− 1/αn)|+ 0.9

= |εn+1|+ 1 + 0.9 ≤ 3.

Therefore, using the uniform contraction of Yj in Lemma 2.2, we conclude that for all
m ≥ n+ 2, and all wn ∈ Vm+1

n , we have

(4.7) |Em+1
n (wn)− Em

n (wn)| = |Xm
n+1 ◦ Em+1

m (wm)−Xm
n+1 ◦ Em

m(wm)| ≤ (0.9)m−n · 3.
In particular, for wn ∈ V∞

n , the above inequality holds for all m ≥ n, and hence Em
n forms

a uniformly Cauchy sequence. Thus, the map

(4.8) En = lim
m→∞

Em
n : V∞

n → In

is well-define, and continuous. In particular, since T̃α(w−1) = (Y0 +(ε0+1)/2) ◦E0(w0), we

conclude that T̃α is continuous on V∞.
In order to show that T̃α is injective, it is enough to show that E0 is injective. To this

end, we first note that for all n ≥ 0 and all wn ∈ V∞
n , we have

(4.9) |En(wn)− (wn + 1− 1/αn)| ≤
∞
∑

j=n

|Ej+1
n (wn)− Ej

n(wn)| ≤ 3
∞
∑

j=n

0.9j−n ≤ 30.

Also, for m ≥ n+ 1, we may rewrite Equation (4.6) as

(4.10) Em
n (wn) = (Yn+1 + (εn+1 + 1)/2) ◦ Em

n+1(wn+1),

and then take limits as m→ ∞ to obtain

(4.11) En(wn) = (Yn+1 + (εn+1 + 1)/2) ◦ En+1(wn+1).

The above relation holds for all n ≥ 0 and all wn+1 ∈ V∞
n+1.

Let w−1 and w′
−1 be distinct elements in V∞. Let (wi; li)i≥−1 and (w′

i; li)i≥−1 denote the
trajectories of w−1 and w′

−1, respectively. Then, for each n ≥ 0, both wn and w′
n belong to

V∞
n . By the uniform contraction of Yj , there is n ≥ 0 such that |wn − w′

n| ≥ 61. By virtue
of the uniform bound in Equation (4.9), En(wn) 6= En(w

′
n). Inductive using (4.11), and the

injectivity of Yj , we conclude that En(wn) 6= En(w
′
n), for all n ≥ 0. In particular, E0 is

injective. �

Lemma 4.4. For all n ≥ 1, T̃α :Wn → I−1/Z is continuous.

Proof. Fix an arbitrary n ≥ 1. By definition, Wn ⊂ V n−1. Recall from the proof of
Lemma 4.3 that the map w−1 7→ wn−1 is a homeomorphism from V n−1 onto (1/αn−1 −
1, 1/αn−1) ∩ In−1. Thus, V n−1 is relatively open in I−1. Indeed, for w−1 ∈ V n−1, the map
Rew−1 → Rewn−1 is a translation independent of w−1.

We have

(4.12)
{wn−1 | w−1 ∈Wn} = {w ∈ In−1 | Rew ∈ [an−1 − 1, 1/αn−1)}, if εn = −1;

{wn−1 | w−1 ∈Wn} = {w ∈ In−1 | Rew ∈ (1/αn−1 − 1, an−1]}, if εn = +1.



MODEL FOR RENORMALISATION OF IRRATIONALLY INDIFFERENT FIXED POINTS 19

Combining with the above paragraph, we conclude that there are real numbers xn and yn
such that either Wn = {w ∈ I−1 | Rew ∈ (xn, yn]} or Wn = {w ∈ I−1 | Rew ∈ [xn, yn)}.

Let (wi)i≥0 be a sequence in Wn converging to some w ∈ Wn. If w ∈Wn, the continuity

at w follows from Lemma 4.2. So, below we assume that w ∈ Wn \Wn. Note that either
Rewi < Rew or Rewi > Rew holds for all i ≥ 0.

Let (wj ; lj)j≥−1 denote the trajectory of w, and for each i ≥ 0, let (wi
j , l

i
j)j≥−1 denote

the trajectory of wi. By (4.12), either εn = +1 and Rewi
n−1 ց 1/αn−1 − 1, or εn = −1 and

Rewi
n−1 ր 1/αn−1.

6 We consider two cases based on these scenarios.

(i) εn = −1 and Rewi
n−1 ր 1/αn−1, as i → ∞. For integers j with −1 ≤ j ≤ n − 3,

limi→∞ Rewi
j /∈ Z. That is because, if there is j with 0 ≤ j ≤ n− 3 and limi→∞ Rewi

j ∈ Z

then we must have limi→∞ Rewi
j+1 = 1/αj+1, then limi→∞ Rewi

j+2 = 1/αj+2− 1, and then

limi→∞ Rewi
n−1 = 1/αn−1 − 1. The last property is not possible in this case. Similarly, if

limi→∞ Rewi
−1 ∈ Z then we must have limi→∞ Rewi

0 = 1/α0, then limi→∞ Rewi
1 = 1/α1−1,

and then limi→∞ Rewi
n−1 = 1/αn−1 − 1. The same contradiction.

By the previous paragraph, lij = lj , for all −1 ≤ j ≤ n − 3. This implies that for

−1 ≤ j ≤ n− 2, limi→∞ wi
j = wj .

The integer n − 1 is the smallest integer with wn−1 ∈ Kn−1. To see this, first note that
either εn−1 = −1 and Rewi

n−2 ր an−2 − 1, or εn−1 = +1 and Rewi
n−2 ց an−2. Thus,

Rewn−2 = limi→∞ Rewi
n−2 ∈ Z. Hence, Rewn−1 = 0. On the other hand, for 0 ≤ j ≤ n−3,

Rewj 6= 1/αj − 1, since otherwise Rewn−1 = 1/αn−1− 1. With this paragraph, we conclude
that

T̃α(w) = Xn−1
0 (wn−1 + 1).

Let w′
n−1 = limi→∞ wi

n−1 and w′
n = limi→∞ wi

n. We must have Rew′
n−1 = 1/αn−1 and

Rew′
n = 1/αn − 1. By Equation (3.8), we have w′

n−1 = wn−1 + 1/αn−1, and then using
Equation (3.9), we get w′

n + 1 = wn + 1/αn. Therefore,

lim
i→∞

T̃α(w
i) = lim

i→∞
Xn

0 (w
i
n + 1) = Xn

0 (w
′
n + 1) = Xn−1

0 ◦ Yn(w
′
n + 1)

= Xn−1
0 ◦ Yn(wn + 1/αn)

= Xn−1
0 (Yn(wn) + 1) = Xn−1

0 (wn−1 + 1).

This completes the proof in this case.
(ii) εn = +1 and Rewi

n−1 ց 1/αn−1 − 1, as i → ∞. Let us first assume that for all

1 ≤ j ≤ n− 1 we have εj = −1. This implies that Rewi
j ց 1/αj − 1, for all 0 ≤ j ≤ n− 1.

In particular, Rewj = 1/αj − 1, for all j ≥ 0.
For 0 ≤ j ≤ n, choose tj ≥ −1 such that wj = 1/αj − 1 + itj . Then, by Equation (3.8),

T̃α(w) =

(

Y0 +
ε0 + 1

2

)

(w0 + 1) = Y0(1/α0 + it0) +
ε0 + 1

2
= Y0(it0)− ε0 +

ε0 + 1

2
.

On the other hand, by (3.9),

ImYj(itj) = ImYj(itj + 1/αj − 1) = ImYj(wj) = Imwj−1 = tj−1,

6We use the notation xi ց x to mean that the sequence xi converges to x and Rexi > x. Similarly,
xi ր x means that the sequence xi converges to x and Rexi < x.
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and hence Yj(itj) = itj−1. Therefore,

lim
i→∞

T̃α(w
i) = lim

i→∞
Xn

0 (w
i
n + 1) = Xn

0 (wn + 1)

= Y0 ◦ · · · ◦ Yn−1 ◦ (Yn + 1)(1/αn + itn) +
ε0 + 1

2

= Y0 ◦ · · · ◦ Yn−1 ◦ (Yn(itn)) +
ε0 + 1

2

= Y0(it0) +
ε0 + 1

2
.

By the above equations, limi→∞ T̃α(w
i)/Z = T̃α(w)/Z.

Now assume that there is 1 ≤ m ≤ n − 1 with εm = +1. Assume that m is the largest
integer with 1 ≤ m ≤ n − 1 and εm = +1. As in the above paragraph, we note that for
all j with m ≤ j ≤ n − 1 we have Rewi

j ց 1/αj − 1. Since εm = +1, we must have

Rewi
m−1 ր 1/αm−1. As in case (i), this implies that for 0 ≤ j ≤ m− 3, limi→∞ Rewi

j /∈ Z.

Hence, for −1 ≤ j ≤ m− 2, wj = limi→∞ wi
j . Moreover, limi→∞ Rewi

m−2 ∈ Z.
By the above paragraph, Rewm−1 = 0, and m − 1 is the smallest positive integer with

wm−1 ∈ Km−1. Then,

T̃α(w) = Xm−1
0 (wm−1 + 1).

For m − 1 ≤ j ≤ n, let w′
j = limi→∞ wi

j . We have wj = w′
j + 1 − 1/αj. Then, as in the

previous cases, we note that

lim
i→∞

T̃α(w
i) = lim

i→∞
Xn

0 (w
i
n + 1)

= Xn
0 (w

′
n + 1)

= Xm−1
0 ◦ (Ym + 1) ◦ Ym+1 · · · ◦ Yn−1 ◦ (Yn + 1)(w′

n + 1)

= Xm−1
0 ◦ (Ym + 1) ◦ Ym+1 · · · ◦ Yn−1 ◦ (Yn + 1)(wn + 1/αn)

= Xm−1
0 ◦ (Ym + 1) ◦ Ym+1 · · · ◦ Yn−1(wn−1)

= Xm−1
0 (wm−1 + 1).

This completes the proof in this case. �

Lemma 4.5. The set W 0 is closed, and T̃ : W 0/Z → I−1/Z is well-defined, continuous,
and injective.

Proof. This is straightforward and is left to the reader. �

Proof of Lemma 4.1. First we prove the injectivity. For n ≥ 1, each equivalence class
in Wn/Z consists of a single element, because the horizontal width of Wn is at most

α0α1 . . . αn−1 ≤ 1/2. Also, the width of T̃α(W
n) is at most 1/2, which implies that

each equivalence class in T̃α(W
n)/Z consists of a single element. Then, by Lemma 4.2,

T̃α : Wn/Z → I−1/Z is injective. By Lemma 4.5, T̃α : W 0/Z → I−1/Z is injective. Simi-
larly, V∞ consists of a single half-infinite vertical line which is mapped to a single half-infinite
vertical line by T̃α. Thus, by Lemma 4.3, T̃α : V∞/Z → V∞/Z is injective. on the other



MODEL FOR RENORMALISATION OF IRRATIONALLY INDIFFERENT FIXED POINTS 21

hand, for 0 ≤ n < m, the sets T̃α(W
n), T̃α(W

m) and T̃α(V
∞), are pairwise disjoint. There-

fore, T̃α : I−1/Z → I−1/Z is injective.
Now we prove the continuity. Let (wi)i≥0 be a convergent sequence in I−1/Z. Without

loss of generality, we may assume that (wi)i≥0 converges in I−1. By Lemmas 4.3 and 4.4,

if a subsequence of this sequence lies in some Wn or in V∞, then T̃α is continuous along
that subsequence. Therefore, it is enough to deal with the case of wi ∈W ji , with ji → +∞
as i → +∞. Without loss of generality (in order to simplify the notations) we may assume
that wi ∈W i+1, for i ≥ 0.

Let w = limi→∞ wi. Below, we consider three cases, based on the location of w.
Case 1: w ∈ V∞. Let (wj ; lj)j≥−1 denote the trajectory of w, and for i ≥ 0, let

(wi
j ; l

i
j)j≥−1 denote the trajectory of wi. Recall from the proof of Lemma 4.3 that

T̃α(w−1) = (Y0 + (ε0 + 1)/2) ◦ E0(w0),

and Em
0 → E0, uniformly on V∞

0 .
Fix an arbitrary ε > 0. Let us choose an integer m ≥ 5 such that for all i ≥ m we have

|E0(w0)− Ei
0(w0)| ≤ ε/2, 63 · (0.9)m ≤ ε/2.

For i ≥ m, wi ∈ W i+1 ⊂ V i ⊂ V m, and w ∈ V∞ ⊂ V m. Then, by Lemma 4.2, wi
m → wm,

as i → ∞. In particular, there is N ≥ 0 such that for all i ≥ N we have |wm − wi
m| ≤ 1.

Below we assume that i ≥ max{N,m}, and we aim to show Equation (4.14).
Since both wi

m and wm belong to V i
m, we may employ the estimate in Equation (4.7), to

obtain

(4.13)

|Ei
m(wm)− Ei

m(wi
m)|

≤
i−1
∑

l=m

|El+1
m (wm)− El

m(wm)|+ |wm − wi
m|+

i−1
∑

l=m

|El+1
m (wi

m)− El
m(wi

m)|

≤ 2 · 3
∞
∑

l=m

(0.9)l−m + |wm − wi
m| ≤ 60 + 1 = 61.

Note that
∣

∣

∣

∣

(wi
i + 1− 1/αi)−

(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1)

∣

∣

∣

∣

≤ 1.

Combining the above inequality with the uniform contraction in Lemma 2.2, we obtain
∣

∣

∣

∣

Ei
i(w

i
i)−

(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1 + 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

(wi
i + 1− 1/αi)−

(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1)

+

(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1)−

(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1 + 1)

∣

∣

∣

∣

≤ 1 + 0.9 · 1 ≤ 2.

Using the uniform contraction one more time, this give us

∣

∣Ei
m(wi

m)−X i+1
m+1(w

i
i+1+1)

∣

∣ =

∣

∣

∣

∣

X i
m+1 ◦ Ei

i(w
i
i)−X i

m+1 ◦
(

Yi+1 +
εi + 1

2

)

(wi
i+1 + 1)

∣

∣

∣

∣

≤ 2.
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Combining the above bound with the bound in Equation (4.13), we conclude that
∣

∣Ei
m(wm)−X i+1

m+1(w
i
i+1 + 1)

∣

∣ ≤ 61 + 2 = 63.

Using the relation in Equation (4.10) several times, we note that (Y0 + (ε0 + 1)/2) ◦
Ei

0(w0) = Xm−1
0 ◦ Ei

m(wm). Thus, using the above equation with m = 0, we obtain

(4.14)

|T̃α(w) − T̃α(w
i)| =

∣

∣(Y0 + (ε0 + 1)/2) ◦ E0(w0)−Xm−1
0 ◦X i+1

m (wi
i+1 + 1)

∣

∣

≤ |(Y0 + (ε0 + 1)/2) ◦ E0(w0)− (Y0 + (ε0 + 1)/2) ◦ Ei
0(w0)|

+ |Xm−1
0 ◦ Ei

m(wm)−Xm−1
0 ◦X i+1

m (wi
i+1 + 1)|

≤ (0.9) · ε/2 + (0.9)m · (63) ≤ ε.

This completes the proof in Case 1.
Case 2: w ∈ Wn for some n ≥ 1. Recall from the proof of Lemma 4.3, that there are real

numbers xn and yn such that either Wn = {w ∈ I−1 | Rew ∈ [xn, yn)} or Wn = {w ∈ I−1 |
Rew ∈ (yn, xn]}. Since, Wn and W i+1 are pairwise disjoint, for i+ 1 > n, and wi ∈ W i+1,
we must have Rew = xn.

Note that for integers j with 0 ≤ j ≤ n− 2, Rewj /∈ Z. This implies that wi
n−1 → wn−1,

as i → ∞. It follows from Equation (4.12) that Rewn−1 ∈ Z. Hence, Rewn = 0. Below we
consider two scenarios.

Case 2-i: εn = −1. Since wi
n /∈ Kn, for large i, we must have Rewi

n−1 ր Rewn−1. It

follows that Rewi
n ր 1/αn + wn. Let us define w′

n = 1/αn + wn. For i ≥ n, let (w′
i; l

′
i)i≥n

denote the trajectory of w′
n, defined in the same fashion according to Equation (4.3). We

must have Rew′
i = 1/αi − 1, for all i ≥ n + 1, and by Equation (3.9), wi = w′

i + 1 − 1/αi,
for all i ≥ n.

If εn+1 = −1, then we must have Rewi
n+1 ր 1/αn+1 − 1. This is a contradiction, since

this implies that wi ∈ Wn+1, for sufficiently large i. Therefore, we have εn+1 = +1 and
Rewi

n+1 ց 1/αn+1−1. Indeed, for the same reason, we must have εi = −1, for all i ≥ n+2.
Assume that i ≥ n. We have

∣

∣

∣

∣

(wi −
(

Yi+1 +
εi+1 + 1

2

)

(wi
i+1)

∣

∣

∣

∣

≤ 1.

Therefore, applying X i
n+1, we obtain

∣

∣wn −X i+1
n+1(w

i
i+1 + 1)

∣

∣ ≤ 1 · (0.9)i−n.

Then,
∣

∣

∣
T̃α(w) − T̃α(w

i)
∣

∣

∣
=

∣

∣Xn
0 (wn)−X i+1

0 (wi
i+1 + 1)

∣

∣

≤
∣

∣Xn
0 (wn)−Xn

0 ◦X i+1
n+1(w

i
i+1 + 1)

∣

∣ ≤ 1 · (0.9)i+1.

This completes the proof in this case.
Case 2-ii: εn = +1. Here, we must have Rewi

n−1 ց Rewn−1. It follows that wi
n ր

1/αn+wn. Let w
′
n = 1/αn+wn. Let (w

′
i; l

′
i)i≥n denote the trajectory of w′

n. We must have
εn+1 = +1, otherwise, Rewi

n+1 ր 1/αn+1 − 1 and hence wi ∈ Wn for sufficiently large i.
For the same reason, we must have εi = −1, for all i ≥ n + 2. As in the previous case, we
obtain T̃α(w

i) → T̃α(w).
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Case 3: w ∈ W0. If ε0 = −1, either Rewi ր 1 and hence Rewi
0 ր 1/α0, or Rewi ց

1 − α0 and hence Rewi
0 ց 1/α0 − 1. Similarly, if ε0 = +1, either Rewi ր α0 and hence

Rewi
0 ց 1/α0 − 1, or Rewi ց 0 and hence Rewi

0 ր 1/α0. All these scenarios may be dealt
with as in Case 2. �

4.3. The map Tα, and its properties.

Proposition 4.6. For every α ∈ R \Q, the map T̃α : I−1 → I−1 induces a homeomorphism

Tα : Mα → Mα,

via the projection w 7→ s(e2πiw), that is, s(e2πiT̃α(w)) = Tα(s(e
2πiw)) for all w ∈ I−1.

Moreover, Tα acts as rotation by 2πα in the tangential direction, that is, there is a function
gα such that

Tα(re
2πiθ) = gα(r, θ)e

2πi(θ+α)

for every re2πiθ ∈ Mα.

Proof. By Lemma 4.1, T̃α : I−1/Z → I−1/Z induces a continuous and injective map Tα of
the set {s(e2πiw) | w ∈ I−1}. From the construction, we note that as Im z → ∞ in I−1/Z,

Im T̃α(z) → +∞. This implies that we may continuously extend Tα onto 0 by setting
Tα(0) = 0. Since Mα is compact, and Tα : Mα → Mα is continuous and injective, it must
be a homeomorphism.

In order to show that Tα acts as rotation by 2πα in the tangential direction, it is enough
to show that T̃α acts as translation by −α on ∪n≥0W

n ∪ V∞. However, because V∞ has

empty interior, by the continuity of T̃α, it is enough to prove this on the setsWn. The latter
property follows from the definition of T̃α and the functional relation in Equation (3.8). We
present the details below.

For w−1 ∈W 0, we have

w−1 = (Y0 + (1 + ǫ0)/2)(w0), T̃α(w1) = (Y0 + (1 + ǫ0)/2)(w0 + 1).

Thus, by the definition of Y0,

Re(Y0 + (1 + ǫ0)/2)(w0 + 1) = Rew−1 − ǫ0α0.

Therefore,

arg
(

Tα(s(e
2πiw−1))

)

= arg(s(e2πiw−1 )) + ǫ0α0 = arg(s(e2πiw−1 )) + α.

Now, fix an arbitrary n ≥ 1, and let w−1 ∈ Wn be an arbitrary point with trajectory
(wi, li)i≥−1. For j = n, n− 1, n− 2, . . . ,−1, let us define the points ξj = Xn

j+1(wn + 1). We
note that in this case we must have εn = −1, and εi = +1 for all i = n − 1, n − 2, . . . , 1.
Then, using 1/αn−1 = an−1 − αn and Equation (3.11), we obtain

Rewn−1 − Re ξn−1 = (Re(Yn(wn)) + an−1 − 1)− Re(Yn(wn + 1))

= (an−1 − 1)− αn

=

(

1

αn−1
+ αn − 1

)

− αn =
1

αn−1
− 1.
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For the next step, we have 1/αn−2 = an−2 + αn−1, and use Equation (3.12), to obtain

Rewn−2 − Re ξn−2 = −αn−1

(

1

αn−1
− 1

)

+ an−2 =
1

αn−2
− 1.

Repeating the above process for levels n− 3, n− 4, . . . , 0, we end up with

Rew0 − Re ξ0 =
1

α0
− 1.

In the last stage we apply the map Y0 + (1 + ε0)/2, to obtain,

Rew−1 − Re ξ−1 = −ε0α0

(

1

α0
− 1

)

= −ε0 + ε0α0.

Thus, T̃α acts as translation by −ε0α0 which is the same as −α modulo Z. This completes
the argument for the set Wn. �

Proposition 4.7. For every α ∈ R \Q, we have s ◦ Tα ◦ s = T−α on M−α.

Proof. Recall that by Proposition 3.4, we have s(Mα) = M−α. Thus both of the maps T−α

and s ◦ Tα ◦ s are defined on M−α and map into M−α.
When α changes to −α, ε0 changes to −ε0, but all the remaining numbers αi and εi+1,

for i ≥ 0, remain the same. Let I−1 and I ′−1 denote the corresponding sets for α and −α,
respectively. We have −s(I ′−1) = I−1; see proof of Proposition 3.4. From the definition of

the maps T̃α and T̃−α, we can see that (−s) ◦ T̃α ◦ (−s) = T̃−α on I ′−1. Projecting onto M−α

via w 7→ s(e2πiw) we obtain the desired relation. �

Proposition 4.8. There is a constant C such that for every α ∈ (−1/2, 1/2) \Q and every
integer k satisfying 0 ≤ k < 1/|α|, we have

C−1

1 + min{k, |α|−1 − k} ≤ |T◦k
α (+1)| ≤ C

1 + min{k, |α|−1 − k} .

Proof. By virtue of Proposition 4.7, it is enough to show this for α ∈ (0, 1/2) \ Q. In that
case, we have α0 = α, ε0 = +1, and Y0 = −s ◦ Yα0 . The point +1 may be lifted under the
projection w 7→ s(e2πiw) to the point +1 in I−1. In the trajectory of +1, we have l−1 = +1

and w0 = 0. Therefore, by the definition of T̃α, for all integers k satisfying 0 ≤ k < 1/α, we

have T̃ ◦k
α (+1) = Y0(k) + (1 + ε0)/2 = Y0(k) + 1. This implies that

|T◦k
α (+1)| =

∣

∣

∣
s
(

e2πiY0(k)
)∣

∣

∣
=

∣

∣

∣

e−3πα − eπαi

e−3πα − e−παie−2παik

∣

∣

∣
.

We need to estimate the right hand side of the above equation. The numerator of that
formula is proportional to α; see Equations (7.1) and (7.2) for a more precise estimate on
this. For the denominator we have,

∣

∣e−3πα − e−παie−2παik
∣

∣ ≤
∣

∣e−3πα − 1
∣

∣+
∣

∣1− e−παi
∣

∣+
∣

∣e−παi − e−παie−2παik
∣

∣

≤ 3πα+ πα+ 2παmin{k, α−1 − k}
≤ 4πα

(

1 + min{k, α−1 − k}
)

.
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To give a lower bound on the left hand side of the above equation, let us consider two cases.
If k ≤ 5, or α−1 − k ≤ 5, we have

∣

∣e−3πα − e−παie−2παik
∣

∣ ≥
∣

∣e−3πα − 1
∣

∣

≥ α

≥ α

6

(

1 + min{k, α−1 − k}
)

.

If k satisfies 5 ≤ k ≤ α−1 − 5, by the triangle inequality, we have
∣

∣e−3πα − e−παie−2παik
∣

∣ ≥
∣

∣e−παie−2παik − e−παi
∣

∣−
∣

∣e−παi − e−3πα
∣

∣

≥ 2παmin{k, α−1 − k} − (πα + 3πα)

≥ 2πα
(

min{k, α−1 − k} − 2
)

≥ πα
(

min{k, α−1 − k}+ 1
)

.

Combining the above inequalities, we obtain the desired estimate in the proposition for a
suitable constant C. �

The estimate of the sizes of the orbit presented in Proposition 4.8 widely holds for holo-
morphic map of the from e2πiαz + a2z

2 + . . . , with a2 6= 0. More precisely, for a fixed
nonlinearity (higher order terms), and a choice of a point close enough to the fixed point at
0, there is a constant C such that the upper and lower bounds in the estimate hold for those
integers. The constant C is independent of the rotation number α and the number of iterates
k. For large values of α, this mostly follows from continuity of the map. For smaller values
of α, one employs the existence of perturbed Fatou-coordinates, and elementary estimates
on their behaviour. See [Shi00] for more details on this.

5. The renormalisation operator Rm

In this section we define the renormalisation of Tα : Mα → Mα using a suitable return
map to a fundamental set in Mα. This construction is in the spirit of the sector renormal-
isation, qualitatively presented by Douady and Ghys [Dou87], and quantitatively employed
by Yoccoz in the study of the small divisors problem in complex dimension one [Yoc95b].
Our construction of renormalisation relies on the model for the changes of coordinates we
defined in Section 2.

5.1. Definition of Rm. Fix an arbitrary α ∈ R \ Q. Since Mα+1 = Mα and Tα+1 = Tα,
we may assume that α ∈ (−1/2, 1/2). Let us first assume that α ∈ (0, 1/2).

Consider the set

Sα = {z ∈ Mα \ {0} | arg z ∈ ([0, 2πα) + 2πZ)}.
This consists of all the non-zero points in Mα which lie in a “sector” of angle 2πα at 0.
Because Tα acts as rotation by 2πα in the tangential direction, Proposition 4.6, for every
z ∈ Sα, there is the smallest integer kz ≥ 2 such that T◦kz

α (z) ∈ Sα. Indeed, for every z ∈ S,
either kz is equal to the integer part of 1/α or kz is equal to the integer part of 1/α plus 1.
The map T◦kz

α is the first return map to Sα in the dynamical system Tα : Mα → Mα.



26 DAVOUD CHERAGHI

Recall that Y0(w + 1/α0) = Y0(w) + (1 + ε0)/2 = Y0 + 1. Let us consider the map

ψα : H′ → C \ {0}
defined as

ψα(w) = s
(

e2πiY0(w)
)

= s
(

e2πi(−s◦Yα0 (w))
)

=
∣

∣

∣

e−3πα − eπαi

e−3πα − e−παie−2παiw

∣

∣

∣
e2πiαRew.

We note that

(5.1) Sα ⊂ ψα ({w ∈ H′ | Rew ∈ [0, 1)}) .
The map ψα is continuous and injective on {w ∈ H′ | Rew ∈ [0, 1)}, and it sends half-infinite
vertical lines in that set to straight rays landing at 0.

There is a continuous inverse branch of ψα defined on Sα, that is,

(5.2) φα : Sα → {w ∈ H′ | Rew ∈ [0, 1)}.
The above map is continuous and injective. (This map is the analogue of the perturbed
Fatou coordinate for Tα)

The return map T◦kz
α : Sα → Sα induces a map

hα : φα(Sα) → φα(Sα)

via ψα and φα, that is,

hα(w) = φα ◦ T◦kψα(w)
α ◦ ψα(w).

Using the projection w 7→ e2πiw, the map hα projects to a map Eα, defined on e2πiφα(Sα) ⊂
C \ {0}. That is, e2πihα(w) = Eα(e

2πiw) for all w ∈ φα(Sα). We may extend Eα onto 0 by
letting it map 0 to 0. We call the map Eα, and its domain of definition, the renormalisation
of Tα : Mα → Mα, and denote it by Rm(Tα : Mα → Mα).

Remark 5.1. In the above definition, one may replace the set Sα by any set of the form

Sη
α = {z ∈ Mα \ {0} | arg z ∈ ([2πη, 2πη + 2πα) + 2πZ)}

for a fixed η ∈ R, and use the return map of Tα on Sη
α to define the renormalisation of

Tα : Mα → Mα in the same fashion. The definition of renormalisation is independent of the
choice of η. That is, one obtains the same map defined on the same set of points. We avoid
considering this generality for the sake of simplicity, although, the independence from η will
become evident from the proof of Proposition 5.2.

Also, when projecting the map hα to obtain Eα we have used the projection map w 7→
e2πiw for the sake of consistency with how the sector renormalisation is defined. This may
appear in contrast to the projection map w 7→ s

(

e2πiw
)

used in the definition of the sets Mα.
Due to the properties in Proposition 3.4 and Lemma 3.5, this does not cause any problems.
See the proof of 5.2 for more details.

The above process defines the renormalisation of Tα : Mα → Mα when α ∈ (0, 1/2). For
α ∈ (−1/2, 0), we first use dynamical conjugation via the complex conjugation map so that
the rotation number of the map becomes −α ∈ (0, 1/2) and then repeat the above process.
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By Proposition 3.4, we have s(Mα) = M−α and by Proposition 4.7 we have s◦Tα ◦ s = T−α.
Therefore, for α ∈ (−1/2, 0), we define

(5.3)
Rm(Tα : Mα → Mα) = s

(

Rm

(

s ◦ Tα ◦ s : s (Mα) → s (Mα)
)

)

= s
(

Rm(T−α : M−α → M−α)
)

,

where the complex conjugation s on the right hand side of the above equation means that we
consider the dynamical conjugate of the map and its domain of definition using the complex
conjugation map. More precisely, in terms of our notations, that means

s(f : X → Y ) = (s ◦ f ◦ s : s(X) → s(Y )) .

5.2. Invariance of the class of maps under the renormalisation operator.

Proposition 5.2. For every α ∈ (−1/2, 1/2) \Q we have

Rm(Tα : Mα → Mα) = (T−1/α : M−1/α → M−1/α).

Proof. Let us first assume that α ∈ (0, 1/2) \ Q. Recall the numbers (αn)n≥0 and (εn)n≥0

defined in Section 3.1. We shall also use the notations In, Kn and Jn introduced in Sec-
tion 3.3.

Let us consider the set
Ŝα = {w ∈ I0 | Rew ∈ [0, 1)}.

By the definition of Mα in Section 3, in particular Equations (3.15) and (3.17), we have
ψα(I0) ∪ {0} = Mα, and

ψα(Ŝα) = Sα.

Indeed, ψα : Ŝα → Sα is a homeomorphism. This implies that

φα : Sα → Ŝα

is a homeomorphism as well. Therefore, we have

hα : Ŝα → Ŝα.

Because α ∈ (0, 1/2) and I0 is periodic of period +1, by Proposition 3.4 and Lemma 3.5, we
have

{e2πiw | w ∈ Ŝα} ∪ {0} = s(M1/α) = M−1/α.

This shows that the map hα projects to the map Eα defined on M−1/α, via the projection

w 7→ e2πiw. In other words, the domain of definition of Rm(Tα : Mα → Mα) is M−1/α. Now,
we need to show that Eα = T−1/α.

We continue to assume that α ∈ (0, 1/2). Let us consider the set

S̃α = {w ∈ I−1 | Rew ∈ (1− α, 1].

The map w 7→ s(e2πiw) is a homeomorphism from S̃α to Sα. We also have the homeomor-
phism

Y0 + 1 : Ŝα → S̃α.

Recall from Section 4, that Tα on Mα is induced from T̃α on I−1, via the projection w 7→
s(e2πiw). Therefore, the return map of Tα : Mα → Mα on Sα corresponds to the return map

of T̃α : I−1 → I−1 on S̃α.
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The map Y0 + (1 + ε0)/2 = Y0 + 1 : I0 → I−1 is a homeomorphism. Let us consider the
map

T̂α = (Y0 + 1)−1 ◦ T̃α ◦ (Y0 + 1) : I0 → I0.

Then, through the conjugacy Y0 + 1, the return map of T̃α : I−1 → I−1 on S̃α corresponds

to the return map of T̂α : I0 → I0 on Ŝα. Because Ŝα = φα(Sα), by the definition of

renormalisation, the return map of T̂α : I0 → I0 on Ŝα projects via w 7→ e2πiw to the map
Eα. Below, we investigate this return map in more details.

Let w ∈ I−1 be an arbitrary point, and let (wi; li)i≥−1 denote the trajectory of w defined

in Section 4.1. By the definition of T̃α, if w0 ∈ K0 we have T̃α(w−1) = (Y0 + 1)((Y0 +

1)−1(w−1) + 1). This implies that for w ∈ K0, T̂α(w) = w + 1. On the other hand, if

w0 ∈ I0 \K0, T̂α(w0) is defined as follows:

(i) if there is n ≥ 1 such that wn ∈ Kn, and for all 1 ≤ i ≤ n− 1, wi ∈ Ii \Ki, then

T̂α(w0) =

(

Y1 +
ε1 + 1

2

)

◦
(

Y2 +
ε2 + 1

2

)

◦ · · · ◦
(

Yn +
εn + 1

2

)

(wn + 1);

(ii) if for all i ≥ 1, wi ∈ Ii \Ki, then

T̃α(w0) = lim
n→+∞

(

Y1 +
ε1 + 1

2

)

◦
(

Y2 +
ε2 + 1

2

)

◦ · · · ◦
(

Yn +
εn + 1

2

)

(wn + 1− 1/αn).

Combining the above together, we conclude that the return map of T̂α : I0 → I0 on the set

Ŝα consists of a finite number of translations by +1 which take a point in Ŝα to a point
in I0 \ K0, and then one iterate of either the map in item (i) or the the map in item (ii),
depending on which scenario takes place.

Since any point in I0 and its integer translations are sent by w 7→ s(e2πiw) to the same
point, each translation by +1 onK0 induce the identity map via the projection w 7→ s(e2πiw).

Thus, by the above paragraph, the rerun map of T̂α : I0 → I0 on the set Ŝα and the map
T̂α : I0 \K0 → Ŝα induce the same map via the projection w 7→ s(e2πiw). On the other hand,

by the definition in Section 4.1, the map specified in items (i) and (ii) is T̃ε1α1 : I0/Z → I0/Z.

Therefore, the rerun map of T̂α : I0 → I0 on the set Ŝα, and the map T̃ε1α1 : I0/Z → I0/Z
induce the same map via the projection w 7→ s(e2πiw).

By the definition in Section 4.1, T̃ε1α1 : I0/Z → I0/Z induces Tε1α1 : Mε1α1 → Mε1α1

via the projection w 7→ s(e2πiw). If we project via w 7→ e2πiw, T̃ε1α1 induces s ◦ Tε1α1 ◦ s
on s(Mε1α1). By Proposition 3.4, s(Mε1α1) = M−ε1α1 = M−1/α0

= M−1/α and by Proposi-
tion 4.7, s ◦ Tε1α1 ◦ s = T−ε1α1 = T−1/α. Note that here we have used α ∈ (0, 1/2), which
implies that α0 = α and 1/α0 = −ε1α1, mod Z.

Now assume that α ∈ (−1/2, 0). By the definition of renormalisation for α ∈ (−1/2, 0),
we have

Rm(Tα : Mα → Mα) = s (Rm(T−α : M−α → M−α))

= s
(

T1/α : M1/α → M1/α

)

= s ◦ T1/α◦ : s(M1/α) → s(M1/α)

= T−1/α : M−1/α → M−1/α. �
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6. Arithmetic classes of Brjuno and Herman

In this section we define the arithmetic classes of Brjuno and Herman. This requires the
action of the modular group PGL(2,Z) on the real line, which produces continued fraction
type representation of irrational numbers. To study the action of this group, one may
choose a fundamental interval for the action of z 7→ z + 1 and study the action of z 7→ 1/z
on that interval. When the interval (0, 1) is chosen, one obtains the standard representation
(continued fraction).

Because of the nature of the renormalisation, we work with the fundamental interval
(−1/2, 1/2) for the translation. This is partly due to the symmetry of the renormalisation
scheme {Tα,Mα} with respect to the rotation stated in part (v) of Theorem A. This choice of
the fundamental interval leads to a modified representation (continued fraction) of irrationals,
also known as nearest integer continued fraction.

The modified continued fraction was used by Yoccoz in [Yoc88, Yoc95b] to characterise
the Brjuno numbers. He also studied the relation between the Brjuno functions (see below)
in terms of the standard and the modified continued fractions. A systematic in-depth study
of the Brjuno condition, its properties, and its dependence on the choice of the continued
fraction is carried out by Marmi, Moussa and Yoccoz in [MMY97, MMY01, MMY06]. A key
point in those papers is that the Brjuno function is a cocycle under the action of PGL(2,Z).

In [Yoc02], Yoccoz uses the standard continued fraction to identify the arithmetic class
H (see Definition 6.2). The main aim of this section is to identify the equivalent form of
the Herman condition in terms of the modified (nearest integer) continued fraction. Some of
our technical arguments may be found in, or may follow from, [MMY97, MMY01, MMY06].
We present a quick route to the equivalent form of the Herman condition in terms of the
modified continued fractions.

We shall only use the modified representation beyond this section. For basic properties
of continued fractions one may consult [Khi64].

6.1. Standard continued fraction. For x ∈ R, let 〈x〉 ∈ (0, 1) denote the fractional part
of x, that is, x ∈ Z+ 〈x〉. For α ∈ R \Q, we may define the numbers α̃n ∈ (0, 1) as α̃0 = 〈α〉
and α̃n+1 = 〈1/α̃n〉, for n ≥ 0. Then we identify the unique integers ãn, for n ≥ −1,
according to

(6.1) α = ã−1 + α̃0, 1/α̃n = ãn + α̃n+1.

These may be combined to obtain

α = ã−1 +
1

ã0 +
1

.. . +
1

ãn + α̃n+1

, for n ≥ −1.
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The n-th convergent of α is define as

p̃n
q̃n

= ã−1 +
1

ã0 +
1

.. . +
1

ãn

, for n ≥ −1.

Then,
α = (p̃n + p̃n−1α̃n+1)/(q̃n + q̃n−1α̃n+1), for n ≥ −1,

which implies

(6.2) αn+1 = −(αq̃n − p̃n)/(αq̃n−1 − p̃n−1), for n ≥ −1.

In [Brj71], see also [Che64], Brjuno introduced the important series
∑+∞

n=−1 q̃
−1
n log q̃n+1.

In [Yoc95b], Yoccoz defines a closely related series which enjoys remarkable equivariant
properties with respect to the action of PGL(2,Z). To define that, we need to introduce the
numbers

β̃−2 = α, β̃−1 = +1, β̃n =

n
∏

i=0

α̃i, for n ≥ 0.

In terms of the convergents, Equation (6.2) gives us

(6.3) β̃n = (−1)n(αq̃n−1 − p̃n−1), for n ≥ −1.

Define the (standard Brjuno) function B̃ : R \Q → (0,+∞) ∪ {+∞} as

(6.4) B̃(α) =
+∞
∑

n=−1

β̃n log
1

α̃n+1
=

+∞
∑

n=−1

(−1)n(αq̃n−1 − p̃n−1) log
αq̃n−1 − p̃n−1

p̃n − αq̃n
.

This is a highly irregular function; B̃(α) = +∞ for generic choice of α ∈ R. One may refer to
[MMY97, MMY01, JM18], and the extensive list of references therein, for detailed analysis
of the regularity properties of this function. In this paper we are not concerned with the
regularity, but only exploit the equivariant properties of the Brjuno function with respect to
the action of PGL(2,Z).

Definition 6.1. An irrational number α is called a Brjuno number if B̃(α) < +∞.

The function B̃ satisfies the remarkable relations

(6.5) B̃(α) = B̃(α+ n), B̃(α) = αB̃(1/α) + log(1/α),

for all α ∈ (0, 1) and all n ∈ Z. These show that the set of Brjuno numbers is PGL(2,Z)-
invariant.

Let B denote the set of Brjuno numbers. The definition of the Brjuno numbers given
in the introduction is consistent with the one given in Definition 6.1. That is because,
|∑+∞

n=−1 q̃
−1
n log q̃n+1 − B̃(α)| is uniformly bounded from above.

The set of Herman numbers is defined in a different fashion. To that end, we need to
consider the diffeomorphisms hr : R → (0,+∞), for r ∈ (0, 1):

hr(y) =

{

r−1(y − log r−1 + 1) if y ≥ log r−1,

ey if y ≤ log r−1.
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Each hr satisfies

(6.6)

hr(log r
−1) = h′r(log r

−1) = r−1,

ey ≥ hr(y) ≥ y + 1, ∀y ∈ R,

h′r(y) ≥ 1, ∀y ≥ 0.

Following Yoccoz [Yoc02], we give the following definition.

Definition 6.2. An irrational number α is of Herman type, if for all n ≥ 0 there is m ≥ n
such that

hα̃m−1 ◦ · · · ◦ hα̃n(0) ≥ B̃(α̃m).

In the above definition, the composition hα̃m−1 ◦ · · · ◦ hα̃n is understood as the identity
map when m = n, and as hα̃n when m = n+ 1. The set of Herman numbers is denoted by
H . It follows from the definition that7

H ⊂ B.

That is because, if α /∈ B, then B̃(α̃) = B̃(α̃0) = +∞. Repeatedly using the functional

equations in Equation (6.5), one concludes that B̃(α̃m) = +∞ for all m ≥ 0. In particular,
the inequality in the above definition never holds.

In Definition 6.2, one may only require that for large n there is m such that the inequality
holds. That is because, if m′ works for some n′, then the same m′ works for all n ≤ n′. This
shows that α̃0 ∈ H if and only if α̃1 ∈ H . On the other hand, since α and α+ 1 produce
the same sequence of α̃i, we see that H is invariant under z 7→ z + 1. These show that H

is invariant under the action of PGL(2,Z).
Recall that α is a Diophantine number, if there are τ ≥ 0 and c > 0 such that for all

p/q ∈ Q with q ≥ 1 we have |α − p/q| ≥ c/q2+τ . Any Diophantine number is of Herman
type. Since the set of Diophantine numbers has full Lebesgue measure in R, the sets H and
B have full Lebesgue measure in R.

Lemma 6.3. The set B \ H is dense in R.

Proof. Let α be an irrational number such that there is an integer k ≥ 0 such that ãk = 1,
and for all i ≥ k we have eãi ≤ ãi+1 ≤ e2ãi − 1. Evidently, the set of such irrational numbers
is dense in R. Below we show that any such α belongs to B \ H .

For integers i ≥ k,

β̃i log(1/α̃i+1) ≤ β̃i log(ãi+1 + 1) ≤ β̃i2ãi ≤ 2β̃i−1.

Then,

B̃(α) = ∑k−1
i=−1 β̃i log(1/α̃i+1) +

∑+∞
i=k β̃i log(1/α̃i+1)

≤ ∑k−1
i=−1 β̃i log(1/α̃i+1) + 2

∑+∞
i=k β̃i−1 ≤ ∑k−1

i=−1 β̃i log(1/α̃i+1) + 8.

This proves that α belongs to B.

7In this paper we do not make a distinction between “⊂” and “⊆”. If strict inclusion is meant, we use
“(”.
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On the other hand, for all i ≥ k + 1,

ãi−1 ≤ log ãi ≤ log(1/α̃i) ≤ B̃(α̃i).

Then, by an inductive argument, for all i ≥ k+1, hα̃i−1 ◦ · · · ◦ hα̃k(0) ≤ ãi−1. Therefore, for
all integers m ≥ n ≥ k + 1,

hα̃m−1 ◦ · · · ◦ hα̃n(0) ≤ hα̃m−1 ◦ · · · ◦ hα̃n(hα̃n−1 ◦ · · · ◦ hα̃k(0)) ≤ ãm−1 ≤ B̃(α̃m).

This shows that α /∈ H . �

By classical results of Siegel [Sie42] and Brjuno [Brj71], if α ∈ B, then every germ of
holomorphic map f(z) = e2πiαz + O(z2) is locally conformally conjugate to the rotation by
2πα near 0. On the other hand, Yoccoz in [Yoc88, Yoc95b] proved that this condition is
optimal in the quadratic family e2πiαz+ z2, i.e. if α /∈ B then e2πiαz+ z2 is not linearisable
near 0. His approach is geometric, and avoids formidable calculations one encounters in the
study of small-divisors. The optimality of this condition has been (re)confirmed for several
classes of maps [PM93, Gey01, BC04, Oku04, Oku05, FMS18, Che19], but in its general form
for rational functions remains a significant challenge in the field of holomorphic dynamics.
In this paper we do not rely on the optimality of this condition in any class of maps.

In [Her79], Herman carried out a comprehensive study of the problem of linearisation of
orientation-preserving diffeomorphisms of the circle R/Z with irrational rotation number. In
particular, he presented a rather technical arithmetic condition which guaranteed the lin-
earisation of such analytic diffeomorphisms. Although the linearisation problem for analytic
circle diffeomorphisms close to rotations was successfully studied earlier by Arnold [Arn61],
no progress had been made in between. Enhancing the work of Herman, Yoccoz identified the
optimal arithmetic condition H for the analytic linearisation of analytic diffeomorphisms of
the circle, [Yoc95a, Yoc02]. The name, Herman numbers, for the class H was suggested by
Yoccoz in honour of the work of Herman on this problem. Similarly, in this paper we do not
use this form of the optimality of the condition H .

6.2. Modified continued fraction, and the equivalent form of Herman numbers.

Let us recall the modified continued fraction algorithm we mentioned in Section 3.1. For
x ∈ R, define d(x,Z) = mink∈Z |x − k|. Let us fix an irrational number α ∈ R. Define the
numbers αn ∈ (0, 1/2), for n ≥ 0, according to

(6.7) α0 = d(α,Z), αn+1 = d(1/αn,Z),

Then, there are unique integers an, for n ≥ −1, and εn ∈ {+1,−1}, for n ≥ 0, such that

(6.8) α = a−1 + ε0α0, 1/αn = an + εn+1αn+1.

Evidently, for all n ≥ 0,

(6.9) 1/αn ∈ (an − 1/2, an + 1/2), an ≥ 2,

and

(6.10) εn+1 =

{

+1 if 1/αn ∈ (an, an + 1/2),

−1 if 1/αn ∈ (an − 1/2, an).

We also defined α−1 = +1.
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The sequences {an} and {εn} provide us with the infinite continued fraction

α = a−1 +
ε0

a0 +
ε1

a1 +
ε2

a2 + . . .

.

Consider the numbers

β−2 = α, β−1 = +1, βn = βn(α) =
∏n

i=0 αi, for n ≥ 0.

In [Yoc95b], Yoccoz defines the arithmetic series

(6.11) B(α) = ∑∞
n=0 βn−1 logα

−1
n ,

and calls it the Brjuno function. This function is defined on the set of irrational numbers,
and takes values in (0,+∞]. One may extend B onto Q, by setting B(p/q) = +∞, for all
p/q ∈ Q.

The Brjuno function satisfies the remarkable relations

(6.12)
B(α) = B(α+ 1) = B(−α), for α ∈ R,

B(α) = αB(1/α) + log(1/α), for α ∈ (0, 1/2).

These show that one may think of the Brjuno function as a PGL(2,Z)-cocycle. This point
of view drives some of the technical arguments we present later in the paper, notably in
Section 8.5. See [MMY97, MMY01] for a systematic approach to employing this mechanism.

One may formally define the arithmetic classes of B and H using the modified continued
fraction and the modified function B in the same fashion. The following two propositions
guarantee that through this we identify the same classes of irrational numbers.

Proposition 6.4. For all α ∈ R \ Q we have |B(α) − B̃(α)| ≤ 29. In particular, α is a
Brjuno number if and only if B(α) < +∞.

In [MMY97], the authors go very far in this direction, by showing the remarkable property

that the difference B(α)− B̃(α) extends to a 1/2-holder continuous function over all of R.

Proposition 6.5. An irrational number α is a Herman number if and only if for all n ≥ 0
there is m ≥ n such that

hαm−1 ◦ · · · ◦ hαn(0) ≥ B(αm).

Although the criterion in the above proposition appears identical to the one given in
Definition 6.2, the value of m for a given n may be different. As before, here hαm−1 ◦· · ·◦hαn
is understood as the identity map when m = n, and as hαn when m = n+ 1.

The remaining of this section is devoted to the proof of the above two propositions. The
main reason here is that the sequences {α̃n} and {αn} are closely related, and it is possible
to identify one from the other using an algorithm.

Let us define the sequence

c(−1) = −1, c(n) = −1 +
∑n

i=0(3− εi)/2, for n ≥ 0.

That is, c(n) is obtained from c(n − 1) by adding +2 if εn = −1 or adding +1 if εn = +1.
Clearly, n 7→ c(n) is strictly monotone with c(n) → +∞ as n → +∞. For more general
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properties of c(n), and its dependence on the choice of the continued fraction, one may refer
to [MMY97] (where c(n) is denoted as k1/2(n)).

Lemma 6.6. For all n ≥ −1, the following hold:

(i) if εn+1 = −1, αn+1 = 1− α̃c(n)+1, and if εn+1 = +1, αn+1 = α̃c(n)+1;

(ii) αn+1 =
∏c(n+1)

c(n)+1 α̃i;

(iii) β̃c(n) = βn;
(iv) B(α̃c(n)+1) = B(αn+1).

Proof. We prove (i) by induction on n. We start with n = −1. If ε0 = +1, α0 = α̃0 =
α̃c(−1)+1. If ε0 = −1, α0 = 1 − α̃0 = 1 − α̃c(−1)+1. Now assume that the assertion in (i) is
true for n− 1. To prove it for n, we consider two cases:

First assume that εn = +1. By the induction hypothesis for n−1, αn = α̃c(n−1)+1 = α̃c(n).
Hence, 1/αn = 1/α̃c(n). Now, if εn+1 = +1, 1/αn = 1/α̃c(n) leads to αn+1 = α̃c(n)+1. If
εn+1 = −1, 1/αn = 1/α̃c(n) leads to αn+1 = 1− α̃c(n)+1.

Now assume that εn = −1. By the induction hypothesis, αn = 1−α̃c(n−1)+1 = 1−α̃c(n)−1.
As αn ∈ (0, 1/2), α̃c(n)−1 ∈ (1/2, 1). Then, α̃c(n) = 1/α̃c(n)−1 − 1 = 1/(1 − αn) − 1 =
αn/(1 − αn). Hence, 1/α̃c(n) = 1/αn − 1. Now, if εn+1 = +1, 1/α̃c(n) = 1/αn − 1 leads to
α̃c(n)+1 = αn+1. If εn+1 = −1, 1/α̃c(n) = 1/αn − 1 leads to 1− α̃c(n)+1 = αn+1.

Part (ii): If εn+1 = +1, by Part (i), αn+1 = α̃c(n)+1 = α̃c(n+1). If εn+1 = −1, by Part (i),
αn+1 = 1 − α̃c(n)+1. As αn+1 ∈ (0, 1/2) we conclude that α̃c(n)+1 ∈ (1/2, 1), which implies
that α̃c(n)+2 = 1/α̃c(n)+1 − 1. Therefore,

α̃c(n+1)α̃c(n)+1 = α̃c(n)+2α̃c(n)+1 = 1− α̃c(n)+1 = αn+1.

Part (iii): By the formula in Part (ii), and the definition of c(n),

βn =
∏n

m=0 αm =
∏n

m=0

(

∏c(m)
i=c(m−1)+1 α̃i

)

=
∏c(n)

i=0 α̃i = β̃c(n).

Part (iv): If εn+1 = +1, by Part (i), αn+1 = α̃c(n)+1, and hence B(α̃c(n)+1) = B(αn+1).
If εn+1 = −1, by Part (i), αn+1 = 1− α̃c(n)+1. Using Equation (6.12),

B(αn+1) = B(1− α̃c(n)+1) = B(−α̃c(n)+1) = B(α̃c(n)+1). �

Proof of Proposition 6.4. Fix n ≥ 0. If εn = +1 then c(n) = c(n−1)+1, and by Lemma 6.6-
(iii),

(6.13) βn−1 log βn = β̃c(n−1) log β̃c(n−1)+1 = β̃c(n)−1 log β̃c(n).

If εn = −1 then c(n) = c(n− 1) + 2, and by Lemma 6.6-(iii),

β̃c(n)−1 = β̃c(n−1)+1 = β̃c(n−1)α̃c(n−1)+1 = βn−1(1− αn) = βn−1 − βn.

and therefore

(6.14)

(

β̃c(n−1) log β̃c(n−1)+1 + β̃c(n)−1 log β̃c(n)
)

− βn−1 log βn

=
(

βn−1 log(βn−1 − βn) + (βn−1 − βn) log βn
)

− βn−1 log βn

= βn−1 log(βn−1 − βn)− βn log βn
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Combing (6.13) and (6.14), and using βn−1 − βn = βn−1(1 − αn), we conclude that for all
m ≥ 0 we have

∑c(m)
i=0 β̃i−1 log β̃i −

∑m
n=0 βn−1 log βn

=
∑m

n=0

(

∑c(n)
i=c(n−1)+1(β̃i−1 log β̃i)− βn−1 log βn

)

=
∑m

n=0 ; εn=−1 (βn−1 log βn−1 + βn−1 log(1− αn)− βn log βn) .

On the other hand,
∑m

n=0 βn−1 log(1/αn) +
∑m

n=0 βn−1 log βn =
∑m

n=0 βn−1 log βn−1,

and similarly,

−∑c(m)
i=0 β̃i−1 log β̃i −

∑c(m)
i=0 β̃i−1 log(1/α̃i) = −∑c(m)

i=0 β̃i−1 log β̃i−1.

Recall that β̃−1 = β−1 = 1. Adding the above three equations, we conclude that

|∑m
n=0 βn−1 log(1/αn) −

∑c(m)
i=0 β̃i−1 log(1/α̃i)

∣

∣

∣

≤ 3
∑+∞

n=0 |βn log βn|+
∑+∞

n=0 |βn−1 log(1 − αn)|+
∑+∞

i=0 |β̃i log β̃i|

Since |x log x| ≤ 2
√
x for x ∈ (0, 1),

(6.15)

∑+∞
n=0 |β̃n log β̃n|≤ 2

∑+∞
n=0(β̃n)

1/2≤ 2
∑+∞

n=0(β̃2n)
1/2 + 2

∑+∞
n=0(β̃2n+1)

1/2

≤ 2(β̃0)
1/2

∑+∞
n=0 2

−n/2 + 2
∑+∞

n=1 2
−n/2

≤ 6 + 4 · 21/2.

On the other hand, βn ≤ 2−n−1, for all n ≥ 0. Using |x log x| ≥ 2
√
x, for x ∈ (0, 1),

αj ∈ (0, 1/2), we obtain

∑k
n=0 |βn log βn| ≤ 2

∑+∞
n=0

√
βn ≤ 2

∑+∞
n=0 1/2

(n+1)/2 = 2 + 2
√
2,

and
∑+∞

n=0 |βn−1 log(1− αn)| ≤ log 2
∑+∞

n=0 βn−1 = 2 log 2.

This completes the proof of the proposition. �

Lemma 6.7. We have,

(i) for all r ∈ (0, 1),

hr(B(r)) ≥ B(1/r) + 1, hr(B̃(r)) ≥ B̃(1/r) + 1.

(ii) if there are m ≥ n ≥ 0 satisfying hα̃m−1 ◦ · · · ◦ hα̃n(0) ≥ B̃(α̃m), then

lim
m→+∞

hα̃m−1 ◦ · · · ◦ hα̃n(0)− B̃(α̃m) = +∞.

(iii) if there are m ≥ n ≥ 0 satisfying hαm−1 ◦ · · · ◦ hαn(0) ≥ B(αm), then

lim
m→+∞

hαm−1 ◦ · · · ◦ hαn(0)− B(αm) = +∞.
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Proof. Note that for all r ∈ (0, 1) and all y ∈ R,

hr(y) ≥ r−1y + r−1 log r + 1.

If y ≥ log r−1, hr(y) = r−1y + r−1 log r + r−1 ≥ r−1y + r−1 log r + 1. Using the inequality
x ≥ 1+ log x, for x > 0, we note that rey ≥ 1+ log(rey) = y+ log r+1 ≥ y+ log r+ r. This
implies the above inequality for y < log r−1.

By the above inequality, as well as (6.5) and (6.12), we obtain

hr(B(r)) ≥ r−1B(r)+ log r+1 = B(1/r)+ 1, hr(B̃(r)) ≥ r−1B̃(r) + log r+1 = B̃(1/r)+ 1.

If the inequalities in (ii) and (iii) hold, we may use the inequality in (i) and hr(y + 1) ≥
hr(y) + 1 in Equation (6.6), to obtain

hα̃m+j−1 ◦ · · · ◦ hα̃n(0) ≥ B̃(α̃m+j) + j, hαm+j−1 ◦ · · · ◦ hαn(0) ≥ B(αm+j) + j. �

Lemma 6.8. Let r1 ∈ (1/2, 1), r2 = 1/r1 − 1 ∈ (0, 1), and r = r1r2 ∈ (0, 1/2). Then, for
all y ≥ e2 we have

∣

∣h−1
r (y)− h−1

r1 ◦ h−1
r2 (y)

∣

∣ ≤ 1 + e−1.

Proof. The inverse map h−1
r : (0,+∞) → R is given by the formula

h−1
r (y) =

{

ry + log r−1 − 1 if y ≥ 1/r,

log y if 0 < y ≤ 1/r.

Since y ≥ e2, one can see that h−1
r2 (y) ≥ 1 + r2 = 1/r1. Thus, h−1

r1 ◦ h−1
r2 (y) = r1h

−1
r2 (y) +

log r−1
1 − 1. Using r2 = 1/r1 − 1 and the elementary inequality |x log x| ≤ 1/e, for x ∈ (0, 1),

we have

(1− r1) log(1/r2) = (r2/(1 + r2)) log r
−1
2 ≤ e−1/(1 + r2) ≤ e−1.

We consider three cases:
(1) y ≤ 1/r2: Since 1/r2 ≤ 1/r, we get

∣

∣h−1
r (y)− h−1

r1 ◦ h−1
r2 (y)

∣

∣ =
∣

∣ log y − (r1 log y + log r−1
1 − 1)

∣

∣

≤ (1 − r1) log y +
∣

∣1− log r−1
1

∣

∣

≤ (1 − r1) log r
−1
2 +

∣

∣1− log r−1
1

∣

∣ ≤ e−1 + 1.

(2) 1/r2 ≤ y ≤ 1/r: Then,

h−1
r (y)− h−1

r1 ◦ h−1
r2 (y) = log y − (r1(r2y + log r−1

2 − 1) + log r−1
1 − 1)

= log(yr1)− r1 log r
−1
2 + r1(1− r2y) + 1.

On the other hand, we have

−1/2 ≤ r1 − 1 ≤ r1 − ry = r1 − r1r2y = r1(1− r2y) ≤ 0,

and, using yr1r2 = yr ≤ 1, we get

log yr1 − r1 log r
−1
2 ≤ log r−1

2 − r1 log r
−1
2 = (1− r1) log r

−1
2 ≤ e−1,

and, using y ≥ 1/r2,

log yr1 − r1 log r
−1
2 ≥ log(r1/r2)− r1 log r

−1
2 = log r1 + (1− r1) log r

−1
2 ≥ log r1 ≥ − log 2.
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Combining the above inequalities we get

−1− e−1 ≤ 1− 1/2− log 2 ≤ h−1
r (y)− h−1

r1 ◦ h−1
r2 (y) ≤ 1 + e−1.

(3) y ≥ 1/r: Using r1r2 = r, we get
∣

∣h−1
r (y)− h−1

r1 ◦ h−1
r2 (y)

∣

∣ =
∣

∣ry + log r−1 − 1− (r1(r2y + log r−1
2 − 1) + log r−1

1 − 1)
∣

∣

= (1− r1) log r
−1
2 + r1 ≤ e−1 + 1.

This completes the proof of the lemma. �

Lemma 6.9. Let m > n ≥ 0 and y ≥ e2. Assume that at least one of the following holds:

(i) h−1
αn ◦ h−1

αn+1
◦ · · · ◦ h−1

αm(y) is defined and is at least e2,

(ii) h−1
α̃c(n−1)+1

◦ h−1
α̃c(n−1)+2

◦ · · · ◦ h−1
α̃c(m)

(y) is defined and is at least e2.

Then,
∣

∣h−1
αn ◦ h−1

αn+1
◦ · · · ◦ h−1

αm(y)− h−1
α̃c(n−1)+1

◦ h−1
α̃c(n−1)+2

◦ · · · ◦ h−1
α̃c(m)

(y)
∣

∣ ≤ 2(1 + e−1).

In the above lemma, it is part of the conclusion that if one of the compositions in items
(i) and (ii) is defined and is at least e2, then the composition in the other item is defined as
well.

Proof. First assume that item (i) holds. By Equation (6.6), hr(t) ≥ t for all t ≥ 0 and
r ∈ (0, 1). This implies that for all j with n ≤ j ≤ m, h−1

αj ◦ h−1
αj+1

◦ · · · ◦ h−1
αm(y) ≥ e2. Let

yj = h−1
αj ◦ h−1

αj+1
◦ · · · ◦ h−1

αm(y), for n ≤ j ≤ m.

By an inductive argument, we show that for all j with n ≤ j ≤ m,

ỹj = h−1
α̃c(j−1)+1

◦ h−1
α̃c(n−1)+2

◦ · · · ◦ h−1
α̃c(m)

(y),

is defined, and satisfies

|yj − ỹj | ≤ 2(1 + e−1).

We start with j = m. If εm = +1, c(m − 1) + 1 = c(m), and since y ≥ e2 > 0,
ỹm = h−1

α̃c(m)
(y) is defined. Moreover, by Lemma 6.6, αm = α̃c(m−1)+1 = α̃c(m), and hence,

ym = ỹm.
If εm = −1, c(m − 1) + 1 = c(m) − 1. Since y ≥ e2 > 1, h−1

α̃c(m)
(y) > h−1

α̃c(m)
(1) = 0,

and hence ỹm = h−1
α̃c(m−1)+1

◦ h−1
α̃c(m)

(y) is defined. Moreover, by Lemma 6.6, we have αm =

1− α̃c(m−1)+1 and αm = α̃c(m−1)+1α̃c(m). As αm ∈ (0, 1/2), α̃c(m−1)+1 ∈ (1/2, 1), and hence
α̃c(m) = α̃c(m−1)+2 = 1/α̃c(m−1)+1 − 1. We use Lemma 6.8 with r = αm, r1 = α̃c(m−1)+1

and r2 = α̃c(m) to conclude that |ym − ỹm| = |h−1
αm(y)− h−1

α̃c(m−1)+1 ◦ h−1
α̃c(m)

(y)| ≤ 1 + e−1.

Now assume that the assertion holds for j + 1, with n < j + 1 ≤ m. To prove it for j we
consider two cases.

If εj = +1, c(j − 1) + 1 = c(j). By the induction hypothesis for j + 1, |yj+1 − ỹj+1| ≤
2(1 + e−1). Combining with yj+1 ≥ e2, we obtain ỹj+1 ≥ e2 − 2(1 + e−1) > 4. This implies
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that ỹj = h−1
α̃c(j)

(ỹj+1) is defined. On the other hand, by Lemma 6.6, αj = α̃c(j−1)+1 = α̃c(j).

Moreover, for all t ≥ 4 and all r ∈ (0, 1), (h−1
r )′(t) ≤ 1/2. Therefore,

|yj − ỹj| = |h−1
αj (yj+1)− h−1

α̃c(j)
(ỹj+1)| = |h−1

αj (yj+1)− h−1
αj (ỹj+1)|

≤ (1/2)|yj+1 − ỹj+1| ≤ (1/2)2(1 + e−1) ≤ 2(1 + e−1).

If εj = −1, c(j − 1) + 1 = c(j) − 1. As in the previous case, the induction hypothesis
for j + 1 gives us |yj+1 − ỹj+1| ≤ 2(1 + e−1). Combining with yj+1 ≥ e2 we obtain ỹj+1 ≥
e2 − 2(1 + e−1) > 4. This implies that ỹj = h−1

α̃c(j)−1
◦ h−1

α̃c(j)
(ỹj+1) is defined.

On the other hand, by Lemma 6.6, αj = 1 − α̃c(j−1)+1, and α̃c(j) = α̃c(j−1)+2 =
1/α̃c(j−1)+1 − 1. Using Lemma 6.8 with r = αj , r1 = α̃c(j−1)+1 and r2 = α̃c(j) we get

|hαj (yj)− h−1
α̃c(j)−1

◦ h−1
α̃c(j)

(yj)| ≤ 1 + e−1.

By elementary calculations one may see that for all t ≥ 4,
(

h−1
α̃c(j)−1

◦ h−1
α̃c(j)

)′
(t) ≤ 1/2.

Therefore,

|yj − ỹj | = |h−1
αj (yj+1)− h−1

α̃c(j)−1
◦ h−1

α̃c(j)
(ỹj+1)|

≤ |h−1
αj (yj+1)− h−1

α̃c(j)−1
◦ h−1

α̃c(j)
(yj+1)|

+ |h−1
α̃c(j)−1

◦ h−1
α̃c(j)

(yj+1)− h−1
α̃c(j)−1

◦ h−1
α̃c(j)

(ỹj+1)|
≤ (1 + e−1) + (1/2) · |yj+1 − ỹj+1|
≤ (1 + e−1) + (1/2) · 2(1 + e−1) = 2(1 + e−1).

This completes the proof of the induction.
The proof of the lemma when item (ii) holds is similar, indeed easier, and is left to the

reader. �

Proof of Proposition 6.5. Let exp◦i denote the i-fold composition of the exponential map
x 7→ ex.

Assume that α satisfies the criterion in Proposition 6.5. Fix an arbitrary n ≥ 0. Let n′

be an integer with

(6.16) n′ ≥ n+ exp◦2(2) + 2(1 + e−1).

Applying the criterion in Proposition 6.5 with n′, there is m′ ≥ n′ such that

hαm′
−1

◦ · · · ◦ hαn′
(0) ≥ B(αm′).

By Lemma 6.7-(iii), there is m ≥ n′ such that

hαm ◦ hαm−1 ◦ · · · ◦ hαn′
(0) ≥ B(αm+1) + 29.

We are going to show that the pair c(m) + 1, n satisfies the inequality in Definition 6.2.
By Proposition 6.4 and Lemma 6.6-(iv),

B(αm+1) + 29 = B(α̃c(m)+1) + 29 ≥ B̃(α̃c(m)+1).

Combining with the previous inequality, we obtain

hαm ◦ hαm−1 ◦ · · · ◦ hαn′
(0) ≥ B̃(α̃c(m)+1).
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This implies that there is an integer j, with n′ ≤ j ≤ m such that

(6.17) h−1
αj ◦ · · · ◦ h−1

αm(B̃(α̃c(m)+1)) ≤ 0.

Now we consider two cases based on the size of B̃(α̃c(m)+1).

First assume that B̃(α̃c(m)+1) < e2. Using hr(y) ≥ y + 1 several times, we obtain

e2 ≤ n′ − n ≤ m− n ≤ c(m)− n ≤ hα̃c(m)
◦ · · · ◦ hα̃n(0).

Thus, we have the desired inequality B̃(α̃c(m)+1) ≤ hα̃c(m)
◦ · · · ◦ hα̃n(0).

Now assume that B̃(α̃c(m)+1) ≥ e2. Combining with Equation (6.17), there is an integer
j′, with j ≤ j′ ≤ m, such that

h−1
αj′

◦ · · · ◦ h−1
αm(B̃(α̃c(m)+1)) ∈ [e2, exp◦1(e2)].

This is because any such orbit must pass through the interval [e2, exp◦1(e2)]. We may now

apply Lemma 6.9, to conclude that h−1
α̃c(j′−1)+1

◦ · · · ◦ h−1
α̃c(m)

(B̃(α̃c(m)+1)) is defined and

h−1
α̃c(j′−1)+1

◦ · · · ◦h−1
α̃c(m)

(B̃(α̃c(m)+1))

≤ h−1
α̃c(j′−1)+1

◦ · · · ◦ h−1
α̃c(m)

(B̃(α̃c(m)+1))− h−1
α′

j

◦ · · · ◦ h−1
αm(B̃(α̃c(m)+1))

+ h−1
αj′

◦ · · · ◦ h−1
αm(B̃(α̃c(m)+1))

≤ 2(1 + e−1) + exp◦1(e2) = 2(1 + e−1) + exp◦2(2).

On the other hand, for all j′ ≥ 0, j′ ≤ c(j′). Then, combining with Equation (6.16), we have

c(j′ − 1)− n+ 1 ≥ j′ − 1− n+ 1 ≥ j − n ≥ n′ − n ≥ 2(1 + e−1) + exp◦2(2).

Now, using hr(y) ≥ y + 1 several times, we obtain

2(1 + e−1) + exp◦2(2) ≤ c(j′ − 1)− n+ 1 ≤ hα̃c(j′−1)
◦ · · · ◦ hα̃n(0).

Combining the above inequalities we obtain

h−1
α̃c(j′−1)+1

◦ · · · ◦ h−1
α̃c(m)

(B̃(α̃c(m)+1)) ≤ hα̃c(j′−1)
◦ · · · ◦ hα̃n(0),

which gives the desired relation

B̃(α̃c(m)+1) ≤ hα̃c(m)
◦ · · · ◦ hα̃n(0).

This completes the proof of one side of the proposition.
The other side of the proposition may be proved along the same lines, but there are some

technical differences.
Assume that α satisfies Definition 6.2. Fix an arbitrary n ≥ 0. Let n′ be an integer with

(6.18) n′ ≥ 2n+ 2 exp◦3(2) + 4(1 + e−1).

Applying Definition 6.2 with n′, there is m′ ≥ n′ such that

hα̃m′
−1

◦ · · · ◦ hα̃n′
(0) ≥ B̃(α̃m′).

Recall that c(m) → +∞ as m→ +∞. By Lemma 6.7-(ii), there is m ≥ n′ such that

hα̃c(m)
◦ hα̃c(m)−1

◦ · · · ◦ hα̃n′
(0) ≥ B̃(α̃c(m)+1) + 29.
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Note that c(m) ≥ m ≥ n′. We are going to show that the pairm+1, n satisfies the inequality
in Proposition 6.5.

By Proposition 6.4 and Lemma 6.6-(iv),

B̃(α̃c(m)+1) + 29 ≥ B(α̃c(m)+1) = B(αm+1).

Combining with the previous inequality, we obtain

hα̃c(m)
◦ hα̃c(m)−1

◦ · · · ◦ hα̃n′
(0) ≥ B(αm+1).

This implies that there is an integer j, with n′ ≤ j ≤ c(m) such that

(6.19) h−1
α̃j

◦ · · · ◦ h−1
α̃c(m)

(B(αm+1)) ≤ 0.

Now we consider two cases based on the size of B(αm+1).
First assume that B(αm+1) < exp◦3(2). Using hr(y) ≥ y + 1 several times, we obtain

exp◦3(2) ≤ n′ − n ≤ m− n ≤ hαm ◦ · · · ◦ hαn(0).

Thus, we have the desired inequality B(αm+1) ≤ hαm ◦ · · · ◦ hαn(0).
Now assume that B(αm+1) ≥ exp◦3(2) = exp◦2(e2). Combining with Equation (6.19),

there is an integer j′, with j ≤ c(j′)− 1 ≤ c(m), such that

h−1
α̃c(j′)−1

◦ · · · ◦ h−1
α̃c(m)

(B(αm+1)) ∈ [e2, exp◦2(e2)].

This is because any such orbit has two consecutive elements in the interval [e2, exp◦3(2)], and
the image of the map i 7→ c(i) covers at least one element of any pair of consecutive integers.
We may now apply Lemma 6.9, to conclude that h−1

αj′
◦ · · · ◦ h−1

αm(B(αm+1)) is defined and

h−1
αj′

◦ · · · ◦ h−1
αm(B(αm+1)) ≤ h−1

αj′
◦ · · · ◦ h−1

αm(B(αm+1))− h−1
α̃c(j′)−1

◦ · · · ◦ h−1
α̃c(m)

(B(αm+1))

+ h−1
α̃c(j′)−1

◦ · · · ◦ h−1
α̃c(m)

(B(αm+1))

≤ 2(1 + e−1) + exp◦3(2).

On the other hand, for all j′ ≥ 0, 1 + 2j′ ≥ c(j′). Then, combining with our choice of n′ in
Equation (6.18), we have

j′ − n ≥ (c(j′)− 1)/2− n ≥ j/2− n ≥ n′/2− n ≥ exp◦3(2) + 2(1 + e−1).

Now, using hr(y) ≥ y + 1 several times, we obtain

2(1 + e−1) + exp◦3(2) ≤ j′ − n ≤ hαj′−1
◦ · · · ◦ hαn(0).

Combining the above inequalities we obtain

h−1
αj′

◦ · · · ◦ h−1
αm(B(αm+1)) ≤ hαj′−1

◦ · · · ◦ hαn(0),

which gives the desired relation B(αm+1) ≤ hαm ◦ · · · ◦ hαn(0). This completes the proof of
the other side of the proposition. �
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7. Elementary properties of the change of coordinates

In this section we establish some basic properties of the changes of coordinates Yr intro-
duced in Section 2. The important properties are the relation between Yr and the function
hr employed in the definition of the Herman numbers in Section 6, and the relation between
Yr and the functional relation for the Brjuno function in Equation (6.12). In Proposition 7.1
we show that a suitable rescaling of the restriction of Yr to the y-axis is uniformly close to hr.
In Lemma 7.2 we relate the behaviour of Yr to the main functional relation for the Brjuno
function. In Lemma 7.3 we list some geometric properties of the mapping Yr : H′ → H′.

Recall from Section 6.1 that hr is a diffeomorphism from R onto (0,+∞).

Proposition 7.1. For all r ∈ (0, 1/2] and all y ≥ 1,

|2π ImYr(iy/(2π))− h−1
r (y)| ≤ π.

Proof. The map h−1
r : (0,+∞) → R is given by the formula

h−1
r (y) =

{

ry + log r−1 − 1 if y ≥ 1/r,

log y if 0 < y ≤ 1/r.

We first give some basic estimates needed for the proof. For all t ∈ [0, 1] we have t ≤
et − 1 ≤ et, for all t ∈ [0, 3π/2] we have 1− e−t ≤ t, and for all t ∈ R we have |1− eit| ≤ |t|.
Then, for all r ∈ (0, 1/2], we have

(7.1) |e−3πr − eπri| ≤ |e−3πr − 1|+ |1− eπri| ≤ 3πr + πr = 4πr,

and

(7.2) |e−3πr − eπri| ≥ | Im(e−3πr − eπri)| = sin(πr) ≥ πr/2.

Now we consider two cases. First assume that 1 ≤ y ≤ 1/r. We note that
∣

∣e−3πr − e−πriery
∣

∣ ≤ |e−3πr − 1|+ |1− e−πri|+ |e−πri − e−πriery|
≤ 3πr + πr + ery = 4πr + ery,

and
∣

∣e−3πr − e−πriery
∣

∣ ≥ |eπriery| − |e−3πr| ≥ ery − 1 ≥ ry.

These imply that
∣

∣

∣

e−3πr − e−πriery

y(e−3πr − eπri)

∣

∣

∣
≤ 4πr + ery

yπr/2
≤ 4π/y + e

π/2
≤ 4π + e

π/2
≤ eπ,

and
∣

∣

∣

e−3πr − e−πriery

y(e−3πr − eπri)

∣

∣

∣
≥ ry

y(4πr)
=

1

4π
≥ e−π.

For 1 ≤ y ≤ 1/r, we have

2π ImYr(iy/(2π))− h−1
r (y) = log

∣

∣

∣

e−3πr − e−πriery

e−3πr − eπri

∣

∣

∣
− log y = log

∣

∣

∣

e−3πr − e−πriery

y(e−3πr − eπri)

∣

∣

∣
.

Combining these, one obtains the inequality in the proposition when 1 ≤ y ≤ 1/r.
Now assume that y ≥ 1/r. First note that

|e−3πr − e−πriery| ≤ |e−3πr|+ |e−πriery| ≤ 1 + ery ≤ 2ery,
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and

|e−3πr − e−πriery| ≥ |e−πriery| − |e−3πr| ≥ ery − 1 ≥ ery/2.

For y ≥ 1/r, we have

2π ImYr(iy/(2π))− h−1
r (y) = log

∣

∣

∣

e−3πr − e−πriery

e−3πr − eπri

∣

∣

∣
− ry − log r−1 + 1

= log
∣

∣

∣

r(e−3πr − e−πriery)

ery(e−3πr − eπri)

∣

∣

∣
+ 1

= log
∣

∣

∣

r

e−3πr − eπri

∣

∣

∣
+ log

∣

∣

∣

e−3πr − e−πriery

ery

∣

∣

∣
+ 1.

Using log(2/π) + log 2 + 1 ≤ π and − log(4π) − log 2 + 1 ≥ −π, these imply the desired
inequality in the proposition when y ≥ 1/r. �

Compare the item (iii) in the following lemma to the second functional equation in (6.12).

Lemma 7.2. Let r ∈ (0, 1/2]. We have

(i) for all y ≥ 0 and all x0 ∈ [0, 1/r],

max
x∈x0+Z

ImYr(x+ iy) = ImYr(x
′ + iy),

where x′ ∈ (x0 + Z) ∩ [1/(2r)− 1, 1/(2r)];
(ii) for all y ≥ 0, and all x ∈ [1/(2r)− 1, 1/(2r)] we have

2πry + log(1/r)− 4 ≤ 2π ImYr(x + iy) ≤ 2πry + log(1/r) + 2.

Proof. (i): Note that

max
x∈x0+Z

ImYr(x+ iy) =
1

2π
max

x∈x0+Z
log

∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri

∣

∣

∣
.

The maximum of |e−3πr − e−πrie−2πri(x0+k)e2πry| occurs when e−πrie−2πri(x0+k) is closest
to the negative real axis. This happens when |πri + 2πri(x0 + k)− πi| ≤ πr, which implies
that |(x0 + k)− (1/(2r)− 1/2)| ≤ 1/2.

(ii): For x ∈ R,

2π ImYr(x+ iy)− 2πry − log
1

r
= log

∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri
· re−2πry

∣

∣

∣
.

Assume that 2πry ≥ 1. By Equation (7.2),

∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri
· re−2πry

∣

∣

∣
≤ |e−3πr|+ |e−πrie−2πrixe2πry|

|e−3πr − eπri| · re−2πry

≤ 2e2πry

πr/2
· re−2πry =

4

π
≤ e2.
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On the other hand, by Equation (7.1),
∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri
· re−2πry

∣

∣

∣
≥ |e−πrie−2πrixe2πry| − |e−3πr|

|e−3πr − eπri| · re−2πry

≥ e2πry − 1

|e−3πr − eπri| · re
−2πry

≥ e2πry/2

4πr
· re−2πry =

1

8π
≥ e−4.

Now assume that 0 ≤ 2πry ≤ 1. For all x ∈ R, by Equation (7.2),
∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri
· re−2πry

∣

∣

∣
≤

∣

∣

∣

e−3πr + e2πry

e−3πr − eπri

∣

∣

∣
· re−2πry

≤ 3πr + e2πry

πr/2
· re−2πry

= (6r + e4ry)e−2πry.

Hence, using y ≤ 1/(2πr) and r ∈ (0, 1/2], we obtain

(6r + e4ry)e−2πry ≤ (3 +
2e

π
)e−2πry ≤ 3 +

2e

π
≤ e2.

On the other hand, for x ∈ [1/(2r)− 1, 1/(2r)], we have

|e−3πr − e−πrie−2πrixe2πry| ≥ e2πry.

Hence, by Equation (7.1),
∣

∣

∣

e−3πr − e−πrie−2πrixe2πry

e−3πr − eπri
· re−2πry

∣

∣

∣
≥ e2πry

4πr
· re−2πry =

1

4π
≥ e−4.

These imply the desired inequality in part (iii). �

Lemma 7.3. For all r ∈ (0, 1/2], we have

(i) for all x ∈ [0, 1/r] and all y ≥ −1,

ImYr(x + iy) ≥ ImYr(iy)− 1/(2π);

(ii) for all x ∈ [0, 1/r] and all y1 ≥ y2 ≥ −1,

ImYr(x+ iy1)− ImYr(x+ iy2) ≤ ImYr(iy1)− ImYr(iy2) + 1/(2π);

(iii) for all y1 ≥ y2 ≥ −1 and y ≥ 0,

ImYr(iy + iy1)− ImYr(iy + iy2) ≤ ImYr(iy1)− ImYr(iy2) + 1/(4π);

(iv) for all y1 ≥ y2 ≥ −1 and y ∈ [0, 5/π],

ImYr(iy1)− ImYr(iy2) ≤ ImYr(iy + iy1)− ImYr(iy + iy2) + 5/π.

Proof. Part (i): Recall from the proof of Lemma 2.2 that

∂Yr
∂s

(w) =
∂Yr
∂w

(w) +
∂Yr
∂w

(w) = r +
ir Im ξ

|ξ − 1|2 ,
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where w = s+ iy and ξ = e−3πreπrie2πriw. We note that when s ∈ [0, 1/(2r)− 1/2]∪ [1/r−
1/2, 1/r], Im ∂Yr(s+iy)/∂s ≥ 0, and when s ∈ [1/(2r)−1/2, 1/r−1/2], Im ∂Yr(s+iy)/∂s ≤ 0.
Moreover, when s ∈ [1/r − 1, 1/r − 1/2], we have

∣

∣

∣
Im

∂Yr
∂s

(s+ iy)
∣

∣

∣
=
r| Im ξ|
|ξ − 1|2 ≤ r|e−3πre2πr sin(πr + 2πrs)|

(1− e−πr)2
≤ re−πr sin (πr)

1 + e−2πr − 2e−πr
≤ 1

π
.

To see the last inequality, it is enough to show that g(u) = u sinu − eu − e−u + 2 ≤ 0 for
all u = πr ∈ [0, π/2]. By Taylor’s remainder theorem, for all u ∈ [0, π/2], there is u0 ∈ [0, u]
such that

g(u) = g(0)+ug′(0)+u2g′′(0)/2+u30g
(3)(u0)/6 = u30(−3 sinu0−u0 cosu0−eu0+e−u0)/6 ≤ 0.

For x ∈ [0, 1/r], we use the formula

ImYr(x + iy)− ImYr(iy) =

∫ x

0

Im
∂Yr(s+ iy)

∂s
ds

to obtain a lower bound. We consider four cases:
• When x ∈ [0, 1/(2r)− 1/2], the integrand is non-negative, and hence

∫ x

0

Im
∂Yr(s+ iy)

∂s
ds ≥ 0.

• When x ∈ [1/(2r)− 1/2, 1/r− 1], then 1
r − 1− x ∈ [0, 1/(2r)− 1/2] and by the previous

case,
∫ x

0

Im
∂Yr(s+ iy)

∂s
ds =

∫ 1/r−1−x

0

Im
∂Yr(s+ iy)

∂s
ds+

∫ x

1/r−1−x

Im
∂Yr(s+ iy)

∂s
ds

≥
∫ x

1/r−1−x

Im
∂Yr(s+ iy)

∂s
ds

=

∫ x

1/r−1−x

r sin(πr + 2πrs)

1 + e−6πr−4πry − 2e−3πr−2πry cos(πr + 2πrs)
ds

=

∫ πr+2πrx

2π−πr−2πrx

r sin(θ)

1 + e−6πr−4πry − 2e−3πr−2πry cos θ

dθ

2πr
= 0.

• When x ∈ [1/r − 1, 1/r− 1/2], by the previous case and the above estimate,
∫ x

0

Im
∂Yr(s+ iy)

∂s
ds =

∫ 1/r−1

0

Im
∂Yr(s+ iy)

∂s
ds+

∫ 1/r−1/2

1/r−1

Im
∂Yr(s+ iy)

∂s
ds

≥
∫ 1/r−1/2

1/r−1

Im
∂Yr(s+ iy)

∂s
ds ≥ −1

π
· 1
2
=

−1

2π
.

• When x ∈ [1/r − 1/2, 1/r], by the previous case,
∫ x

0

Im
∂Yr(s+ iy)

∂s
ds =

∫ 1/r−1/2

0

Im
∂Yr(s+ iy)

∂s
ds+

∫ x

1/r−1/2

Im
∂Yr(s+ iy)

∂s
ds

≥ −1

2π
+

∫ x

1/r−1/2

Im
∂Yr(s+ iy)

∂s
ds ≥ −1

2π
.
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This completes the proof of Part (i).
Part (ii): Let

g(θ, t1, t2) =
1 + e2t1 − 2et1 cos θ

1 + e2t2 − 2et2 cos θ
, θ ∈ R, t1 ≥ t2 > 0.

Since 1+ e2t2 − 2et2 cos θ ≥ 1+ e2t2 − 2et2 = (et2 − 1)2 > 0, g is well-defined, and is positive.
Moreover,

∂θg(θ, t1, t2) =
−2 sin θ(et1 − et2)(et1+t2 − 1)

(1 + e2t2 − 2et2 cos θ)2
.

Thus, g is a decreasing function of θ on [0, π] + 2πZ, and increasing on [π, 2π] + 2πZ.
This implies that g(θ, t1, t2) ≤ g(0, t1, t2), for all θ ∈ R. Applying this inequality with
θ = −πr − 2πrx, t1 = 3πr + 2πry1, and t2 = 3πr + 2πry2, one obtains

∣

∣

∣

e−3πr − e−πrie−2πrixe2πry1

e−3πr − e−πrie−2πrixe2πry2

∣

∣

∣

2

= g(θ, t1, t2) ≤ g(0, t1, t2) =
∣

∣

∣

e−3πr − e2πry1

e−3πr − e2πry2

∣

∣

∣

2

.

Therefore, for all y1 ≥ y2 ≥ −1, we have

ImYr(x+ iy1)− ImYr(x+ iy2) =
1

2π
log

∣

∣

∣

e−3πr − e−πrie−2πrixe2πry1

e−3πr − e−πrie−2πrixe2πry2

∣

∣

∣

≤ 1

2π
log

∣

∣

∣

e−3πr − e2πry1

e−3πr − e2πry2

∣

∣

∣

= ImYr(1/r − 1/2 + iy1)− ImYr(1/r − 1/2 + iy2).

On the other hand,

ImYr(1/r − 1/2 + iy1) =
1

2π
log

∣

∣

∣

e−3πr − e2πry1

e−3πr − e−πri

∣

∣

∣

≤ 1

2π
log

∣

∣

∣

e−3πr − e−πrie2πry1

e−3πr − e−πri

∣

∣

∣
= ImYr(iy1),

and by the inequality in Part (i),

ImYr(1/r − 1/2 + iy2) ≥ ImYr(iy2)− 1/(2π).

Combining the above inequalities together, we conclude Part (ii) of the lemma.
Part (iii): If y1 = y2, the inequality trivially holds. Below we assume that y1 > y2.
By the definition of Yr, it is enough to prove that for all r ∈ (0, 1/2], y1 ≥ y2 ≥ 0, and

y ≥ 0 we have
∣

∣

∣

e−3πr − e−πrie2πr(y+y1)

e−3πr − e−πrie2πr(y+y2)

∣

∣

∣
≤

√
2
∣

∣

∣

e−3πr − e−πrie2πry1

e−3πr − e−πrie2πry2

∣

∣

∣
.

Let us fix y1 > y2, and consider the Möbius transformations

M(z) =
e−3πr − e−πrie2πry1z

e−3πr − e−πrie2πry2z
, M1(z) =

e−3πr + e2πry1z

e−3πr + e2πry2z
.

We have M(0) = M1(0) = 1, and M(∞) = M1(∞) = e2πr(y1−y2). Then, there is a Möbius
transformation M2 with M2(1) = 1, M2(e

2πr(y1−y2)) = e2πr(y1−y2), and M =M2 ◦M1. The
precise form of M2 is not relevant here.
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An elementary algebraic calculation shows that

M1(1) ≥ (1 + e2πr(y1−y2))/2.

Since M1 maps the real interval [0,+∞] to [1, e2πr(y1−y2)], we must have

M1(e
2πry) ≥M1(1) ≥ (1 + e2πr(y1−y2))/2.

That is, M1(1) and M1(e
2πry) belong to the right hand of the middle point of the interval

[1, e2πr(y1−y2)].
Note that |M ′

2(1)| = |M ′(0)/M ′
1(0)| = 1. Thus, M2 preserves the line Re z = (1 +

e2πr(y1−y2))/2, and maps the real interval [(1 + e2πr(y1−y2))/2, e2πr(y1−y2)] to an arc γ of
a circle whose center B lies on the vertical line Re z = (1 + e2πr(y1−y2))/2. By the above
paragraph, M(e2πry) and M(1) belong to γ. By looking at argM ′

2(1), one can see that γ
meets the line Im z = 0 at e2πr(y1−y2) with asymptotic angle +πr ≤ π/2. That is, γ and B lie
in the same component of C \R. See Figure 5 for an illustration of the following argument.

b

b

b b

b

O 1 e2πr(y1−y2)

A

B

C

M(1)

M(e2πry)

Figure 5. Illustration of the inequality in Lemma 7.3-(iii). The curve γ is
the arc on the dotted circle.

Let C be the point on γ where |C| achieves its maximum, and let O denote the origin.
Then, the line from O to C must pass through B. Let A denote the point where the arc γ
meets the line Re z = (1 + e2πr(y1−y2))/2. In the triangle OAB, the angle θ at the vertex B
is at least π/2. By the cosine formula,

|OA|2 = |OB|2 + |AB|2 − 2|OB||AB| cos θ ≥ |OB|2 + |AB|2.
Using the inequality |OB|2 + |AB|2 ≥ 2|OB||AB|, we conclude that

2|OA|2 ≥ |OB|2 + |AB|2 + 2|OB||AB| = (|OB|+ |AB|)2.
By the above discussion, M(1) and M(e2πry) belong to γ, with M(1) lying between A

and M(e2πry). Now, we consider two cases. If M(1) lies between C and e2πr(y1−y2), then we
must have M(e2πry)/M(1) ≤ 1. If M(1) lies between A and C, by the above inequality, we
obtain

|M(e2πry)|
|M(1)| ≤ |OC|

|OA| =
|OB|+ |BA|

|OA| ≤
√
2.

This completes the proof of the desired inequality.
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Part (iv): Recall that Yr(0) = 0 and hence by Lemma 2.2, ImYr(−i) ≥ −9/10. Moreover,
ImYr(iy+ iy1) ≥ ImYr(iy1). By rearranging terms and using the inequality in Part (iii), we
note that

ImYr(iy1)− ImYr(iy2)− (ImYr(iy + iy1)− ImYr(iy + iy2))

=
(

ImYr(iy + iy2)− ImYr(iy2)
)

+
(

ImYr(iy1)− ImYr(iy + iy1)
)

≤ ImYr(iy + iy2)− ImYr(iy2)

≤ ImYr(i(y − 1))− ImYr(−i) + 1/(4π)

≤ ImYr(i(5− π)/π) + 9/10 + 1/(4π).

On the other hand, by Equation (7.2), for all r ∈ (0, 1/2], we have

Yr(i(5− π)/π) =
1

2π
log

∣

∣

∣

e−3πr − e−πrie2r(5−π)

e−3πr − eπri

∣

∣

∣

≤ 1

2π
log

|e−3πr − 1|+ |1− e−πri|+ |e−πri − e−πrie2r(5−π)|
πr/2

≤ 1

2π
log

3πr + πr + (e2r(5−π) − 1)

πr/2

≤ 1

2π
log

3πr + πr + (e3 − 8)πr/2

πr/2
=

3

2π
.

Using the inequality 9/10 ≤ 3/π, we obtain the desired estimate in Part (iv). �

8. Topology of the sets Aα

8.1. Cantor bouquets and hairy Jordan curves. In this section we describe the topol-
ogy of the sets Aα in terms of the arithmetic properties of α. In particular, here we will
prove Theorem B. Let us start by presenting the definition of the two main topological
objects which appear in the theorem.

A Cantor bouquet is any subset of the plane which is ambiently homeomorphic to a set
of the form

{re2πiθ ∈ C | 0 ≤ θ ≤ 1, 0 ≤ r ≤ R(θ)}
where R : R/Z → [0, 1] satisfies the following:

(a) R = 0 on a dense subset of R/Z, and R > 0 on a dense subset of R/Z,
(b) for each θ0 ∈ R/Z we have

lim sup
θ→θ+

0

R(θ) = R(θ0) = lim sup
θ→θ−

0

R(θ).

A one-sided hairy Jordan curve is any subset of the plane which is ambiently home-
omorphic to a set of the form

{re2πiθ ∈ C | 0 ≤ θ ≤ 1, 1 ≤ r ≤ 1 +R(θ)}
where R : R/Z → [0, 1] satisfies properties (a) and (b) in the above definition.



48 DAVOUD CHERAGHI

The Cantor bouquet and one-sided hairy Jordan curve enjoy similar topological feature
as the standard Cantor set. Under an additional mild condition (topological smoothness)
they are uniquely characterised by some topological axioms, see [AO93].

To study the topology of the sets Mα (and Aα), it is convenient to work with the sets Ijn
and In from Section 3.3. That is because each of the sets Ijn and In is the region above the
graph of a function. Since the sets Ijn, for j ≥ 0, forms a nest, one is led to an increasing
collection of functions on a fixed domain. Since the nest may shrink to an empty set along
a fixed vertical line, we are led to considering functions which attain +∞ at some points. It
turns out that there are two main collections of functions required to capture the topological
features of these sets. In the next section we build these functions and study their properties.

8.2. Height functions. 8 Recall that the sets Ijn and In consist of closed half-infinite
vertical lines. For n ≥ −1, and j ≥ 0, define bjn : [0, 1/αn] → [−1,+∞) as

(8.1) bjn(x) = min{y | x+ iy ∈ Ijn}.
Since each Yn preserves vertical lines, it follows that

Ijn = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ bjn(Rew)}.
By the definition of the sets Ijn and the functional equations (3.8)–(3.9), one can see that for
all n ≥ −1 and j ≥ 0, bjn : [0, 1/αn] → [−1,+∞) is continuous. Moreover, by Equation (3.16),
we must have bj+1

n ≥ bjn on [0, 1/αn]. For n ≥ −1, we define bn : [0, 1/αn] → [−1,+∞] as

bn(x) = lim
j→+∞

bjn(x) = sup
j≥1

bjn(x).

Note that bn is allowed to take +∞. The function bn describes the set In, that is,

(8.2) In = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ bn(Rew)}.
By Lemma 3.2, bjn(0) = bjn(1/αn), and b

j
n(x+ 1) = bjn(x) for all x ∈ [0, 1/αn − 1]. Taking

limits as j → +∞, we obtain

(8.3) bn(0) = bn(1/αn), bn(x + 1) = bn(x), for all x ∈ [0, 1/αn − 1] and n ≥ −1.

Only when α is a Brjuno number, for n ≥ −1 and j ≥ 0 we inductively define the functions

pjn : [0, 1/αn] → [−1,+∞).

For all n ≥ −1, we set p0n ≡ (B(αn+1) + 5π)/(2π). Assume that pjn is defined for some
j ≥ 0 and all n ≥ −1. We define pj+1

n on [0, 1/αn] as follows. For xn ∈ [0, 1/αn], we find
xn+1 ∈ [0, 1/αn+1] and ln ∈ Z such that −εn+1αn+1xn+1 = xn − ln, and define

pj+1
n (xn) = ImYn+1

(

xn+1 + ipjn+1(xn+1)
)

.

In other words, the graph of pj+1
n is obtained from applying Yn+1 to the graph of pjn+1, and

then applying suitable translations by integers.
Evidently, for all n ≥ −1 and all j ≥ 0, we have pj+1

n (x+1) = pj+1
n (x), for x ∈ [0, 1/αn−1].

Moreover, it follows from (3.8) and (3.9) that each pjn : [0, 1/αn] → R is continuous, and
pjn(0) = pjn(1/αn).

8The letter b stands for “base” and “p” for “pinnacle”; the reason for these will become clear in a moment.
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Note that for every n ≥ −1, by Lemma 7.2-(i)-(ii) and Equation (6.12), we have

p1n ≤ max
x∈[0,1/αn+1]

ImYn+1

(

x+ i(B(αn+2) + 5π)/(2π)
)

≤ αn+1
B(αn+2) + 5π

2π
+

1

2π
log

1

αn+1
+

1

π

=
1

2π

(

αn+1B(αn+2) + log
1

αn+1

)

+
αn+15π

2π
+

1

π

≤ 1

2π
B(αn+1) +

5

4
+

1

π
≤ p0n.

Using an induction argument, starting with p1n ≤ p0n, for every n ≥ −1, one may show that
for all n ≥ −1 and j ≥ 0 we have

pj+1
n (x) ≤ pjn(x), ∀x ∈ [0, 1/αn].

Therefore, we may define the functions

pn(x) = lim
j→+∞

pjn(x), ∀x ∈ [0, 1/αn].

It follows that

(8.4) pn(0) = pn(1/αn), pn(x) = pn(x+ 1), ∀x ∈ [0, 1/αn − 1].

On the other hand, by definition, p0n ≥ b0n, for all n ≥ −1. Since the graphs of b0n+1

and p0n+1 are mapped to the graphs of b1n and p1n, respectively, by Yn+1 and its integer
translations, we must have p1n ≥ b1n, for all n ≥ −1. By induction, this implies that for all
n ≥ −1 and all j ≥ 0,

(8.5) pjn(x) ≥ bjn(x), ∀x ∈ [0, 1/αn].

In particular, pn ≥ bn on [0, 1/αn].

8.3. Accumulation of the hairs.

Proposition 8.1. For all n ≥ −1, we have 9

(i) for all x ∈ [0, 1/αn), lim infs→x+ bn(s) = bn(x);
(ii) for all x ∈ (0, 1/αn], lim infs→x− bn(s) = bn(x).

Proof. By Lemma 3.1, the sets Ijn are closed. Thus, their intersection In is also a closed set.
Since In is the set above the graph of bn, this implies that

∀x ∈ [0, 1/αn), lim inf
s→x+

bn(s) ≥ bn(x), and ∀x ∈ (0, 1/αn], lim inf
s→x−

bn(s) ≥ bn(x).

So we need to show that the equality holds in both cases. If bn(x) = +∞, then we auto-
matically have the equalities. Indeed, lim inf can be replaced by lim in that case. Below we
assume that bn(x) 6= ∞.

Fix xn ∈ [0, 1/αn], and let en ∈ {+1,−1} be arbitrary, except that en = +1 if xn = 0,
and en = −1 if xn = 1/αn. Define the sequence {em}m≥n according to em+1 = −εm+1em.

9To be clear, the notation s → x+ means that s → x and s > x. Similarly, s → x− means that s → x

and s < x.
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We use en to deal with both statements at once. That is, to prove the desired equalities, it
is enough to show that for every δ > 0 there is x′n strictly between xn and xn+δen such that
bn(x

′
n) ≤ bn(xn) + δ. The idea of the proof is rather elementary. We map xn + ibn(xn) ∈

In to zm ∈ Im using the maps Y−1
j , for large m ≥ n. Then, using Equation (8.3), we

find z′m = zm + em ∈ Im, which may be mapped to z′n ∈ In using Yj . It follows that
sign(Re z′n − xn) = en, and by the uniform contraction of Yj , z

′
n is close to xn + ibn(xn).

However, there are some technical difficulties due to εj = ±1 and z′m = zm + em /∈ Im. We
present the details in several steps.

Step 1. There is an infinite sequence {(lm, xm+1)}m≥n, with lm ∈ Z and xm+1 ∈
[0, 1/αm+1] such that ReYm+1(xm+1) + lm = xm for all m ≥ n. Moreover, if xm = 0
for some m ≥ n, then em = +1.

We define the sequence inductively. Assume that xm ∈ [0, 1/αm] is defined for some
m ≥ n. To define lm and xm+1 we proceed as follows:

(a) if xm ∈ [0, 1/αm] ∩ Z, we let lm = xm + (em + εm+1)/2 and define

xm+1 =
1

−εm+1αm+1
· (xm − lm) =

1 + εm+1em
2αm+1

.

(b) if xm ∈ [0, 1/αm] \ Z we choose lm ∈ Z such that xm − lm ∈ ((−1 − εm+1)/2, (1 −
εm+1)/2), and define

xm+1 =
xm − lm

−εm+1αm+1
.

In part (a), xm+1 ∈ {0, 1/αm+1}, depending on the sign of εm+1em. In part (b), if
εm+1 = −1, then xm − lm ∈ (0, 1) and therefore xm+1 ∈ (0, 1/αm+1). If εm+1 = +1, then
xm − lm ∈ (−1, 0) and therefore xm+1 ∈ (0, 1/αm+1). Thus, in both cases xm+1 belongs to
[0, 1/αm+1].

By Equation (3.5), ReYm+1(xm+1) = −εm+1αm+1xm+1. Thus, ReYm+1(xm+1) + lm =
xm.

To prove the latter part of Step 1, note that if j = n then ej = +1 by the definition of en
at the beginning of the proof. If j > n, by the definition of the sequence (xm, lm), xj must
be generated in part (a), since part (b) produces values in (0, 1/αm). But, part (a) produces
xj = 0 only if εjej−1 = −1. Then, ej = −εjej−1 = +1.

For all m ≥ n we have

(8.6) (1 + εm+1)/2 ≤ lm ≤ am + εm+1.

That is because, if lm is produced in (b) and εm+1 = −1 then the largest integer in [0, 1/αm]
is am − 1 and there is 0 ≤ lm ≤ am − 1 with xm − lm ∈ (0, 1). If lm is produced in
(b) and εm+1 = +1 then the largest integer in [0, 1/αm] is am and there is 1 ≤ lm ≤
am + 1 with xm − lm ∈ (−1, 0). If lm is produced in (a), then xm ≤ am + (εm+1 − 1)/2
and therefore lm ≤ am + εm+1 + em/2 − 1/2 ≤ am + εm+1. On the other hand, in (a)
lm = xm + (em + εm+1)/2 ≥ (1 + εm+1)/2, since, by the above paragraph, if xm = 0 then
em = +1. We are done with Step 1.

Let us say that some level m ≥ n is eligible, if one of the following four cases occurs:
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(E1) (em, εm+1) = (+1,−1) and xm belongs to

[0, 1/αm − 2] ∪ [am − 2− αm+1, am − 2] ∪ [am − 1− αm+1, am − 1];

(E2) (em, εm+1) = (+1,+1) and xm belongs to

[0, 1/αm − 2] ∪ [am − 1− αm+1, am − 1] ∪ [am − αm+1, am];

(E3) (em, εm+1) = (−1,−1) and xm belongs to

[1, 1/αm − 1] ∪ [1− αm+1, 1] ∪ [am − 1, am − 1 + αm+1];

(E4) (em, εm+1) = (−1,+1) and xm belongs to

[1, 1/αm − 1] ∪ [αm+1, 2αm+1] ∪ [am, am + αm+1].

Recall the numbers βj introduced in Section 6.2.

Step 2. Let k ≥ j ≥ n be integers. Either there is an eligible m ∈ [j, k], or

(8.7) xj ∈
{

[0, βk/βj ] ∪ [1/αj − 1, 1/αj − 1 + βk/βj ] if ej = −1

[1/αj − 1− βk/βj , 1/αj − 1] ∪ [1/αj − βk/βj, 1/αj] if ej = +1.

We prove this by induction on k− j. Assume that k− j = 0. If ej = +1 then either xj ∈
[0, 1/αj−2] and j is eligible as in (E1) and (E2), or xj ∈ [1/αj−2, 1/αj−1]∪ [1/αj−1, 1/αj]
and (8.7) holds. If ej = −1 then either xj ∈ [1, 1/αj − 1] and j is eligible as in (E3) and
(E4), or xj ∈ [0, 1] ∪ [1/αj − 1, 1/αj] and (8.7) holds.

Now assume that the statement holds for integers k and j with k− j = t ≥ 0. We aim to
prove it for integers k and j with k − j = t+ 1. By the induction hypotheses applied to the
pair j + 1 and k we conclude that either there is an eligible m ∈ [j + 1, k], or
(8.8)

xj+1 ∈
{

[0, βk/βj+1] ∪ [1/αj+1 − 1, 1/αj+1 − 1 + βk/βj+1] if ej+1 = −1

[1/αj+1 − 1− βk/βj+1, 1/αj+1 − 1] ∪ [1/αj+1 − βk/βj+1, 1/αj+1] if ej+1 = +1.

If there is an eligible m ∈ [j + 1, k] ⊂ [j, k] then we are done. We show that if (8.8) holds,
either j is eligible or (8.7) holds. To prove this, we consider four cases based on the values
of ej and εj+1.

I) If (ej , εj+1) = (+1,−1), ej+1 = −εj+1ej = +1, and by Equation (8.8),

xj+1 ∈ [1/αj+1 − 1− βk/βj+1, 1/αj+1 − 1] ∪ [1/αj+1 − βk/βj+1, 1/αj+1].

Since xm − lm = −εj+1αj+1xj+1 = αj+1xj+1, this implies that

xj ∈
(

[1 − αj+1 − βk/βj, 1− αj+1] ∪ [1− βk/βj, 1]
)

+ Z.

If xj ∈ [0, 1/αj − 2] then j is eligible through (E1). If xj ∈ [1/αj − 2, 1/αj], using 1/αj =
aj − αj+1, xj must belong to one of the intervals

[aj − 2− βk/βj, aj − 2], [aj − 1− βk/βj , aj − 1]

[1/αj − 1− βk/βj, 1/αj − 1], [1/αj − βk/βj, 1/αj].

If xj belongs to one of the bottom two intervals then (8.7) holds. If xj belongs to one of the
top two interval, then j is eligible though (E1), since [aj − 2− βk/βj, aj − 2] is contained in
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[aj − 2−αj+1, aj − 2] and [aj − 1−βk/βj , aj − 1] is contained in [aj − 1−αj+1, aj − 1]. Here
we use βk/βj ≤ αj+1, which is valid due to k ≥ j + 1.

II) If (ej , εj+1) = (+1,+1), ej+1 = −εj+1ej = −1, and by Equation (8.8),

xj+1 ∈ [0, βk/βj+1] ∪ [1/αj+1 − 1, 1/αj+1 − 1 + βk/βj+1].

Since xj − lj = −εj+1αj+1xj+1 = −αj+1xj+1, this implies that

xj ∈
(

[−βk/βj, 0] ∪ [−1 + αj+1 − βk/βj,−1 + αj+1]
)

+ Z.

If xj ∈ [0, 1/αj − 2] then j is eligible though (E2). If xj ∈ [1/αj − 2, 1/αj], using 1/αj =
aj + αj+1, xj must belong to one of the intervals

[aj − βk/βj, aj ], [aj − 1− βk/βj , aj − 1]

[1/αj − 1− βk/βj, 1/αj − 1], [1/αj − βk/βj, 1/αj].

If xj belongs to one of the bottom two intervals, then (8.7) holds. If xj belongs to one
of the top two intervals then j is eligible as in (E2), since [aj − βk/βj, aj ] is contained in
[aj − αj+1, aj ] and [aj − 1− βk/βj , aj − 1] is contained in [aj − 1− αj+1, aj − 1].

III) If (ej , εj+1) = (−1,−1), ej+1 = −εj+1ej = −1, and by Equation (8.8),

xj+1 ∈ [0, βk/βj+1] ∪ [1/αj+1 − 1, 1/αj+1 − 1 + βk/βj+1].

Since xj − lj = −εj+1αj+1xj+1 = αj+1xj+1, this implies that

xj ∈
(

[0, βk/βj ] ∪ [1− αj+1, 1− αj+1 + βk/βj]
)

+ Z.

If xj ∈ [1, 1/αj − 1] then j is eligible through (E3). If xj ∈ [0, 1] ∪ [1/αj − 1, 1/αj], using
1/αj = aj − αj+1, xj must belong to one of the intervals

[0, βk/βj], [1/αj − 1, 1/αj − 1 + βk/βj]

[1− αj+1, 1− αj+1 + βk/βj], [aj − 1, aj − 1 + βk/βj ].

If xj belongs to one of the top two intervals, then (8.7) holds. If xj belongs to one of the
bottom two interval then j is eligible through (E3) since [1 − αj+1, 1 − αj+1 + βk/βj] is
contained in [1− αj+1, 1] and [aj − 1, aj − 1 + βk/βj] is contained in [aj − 1, aj − 1 + αj+1].

IV) If (ej , εj+1) = (−1,+1), ej+1 = −εj+1ej = +1, and by Equation (8.8),

xj+1 ∈ [1/αj+1 − 1− βk/βj+1, 1/αj+1 − 1] ∪ [1/αj+1 − βk/βj+1, 1/αj+1].

Since xj − lj = −εj+1αj+1xj+1 = −αj+1xj+1, this implies that

xj ∈
(

[−1 + αj+1,−1 + αj + βk/βj] ∪ [−1,−1 + βk/βj ]
)

+ Z.

If xj ∈ [1, 1/αj − 1] then j is eligible through (E4). If xj ∈ [0, 1] ∪ [1/αj − 1, 1/αj], using
1/αj = aj + αj+1, xj must belong to one of the intervals

[αj+1, αj+1 + βk/βj], [aj , aj + βk/βj ]

[0, βk/βj ], [1/αj − 1, 1/αj − 1 + βk/βj ]

If xj belongs to one of the bottom two intervals, then (8.7) holds. If xj belongs to one of
the top two intervals then j is eligible through (E4), since [αj+1, αj+1 + βk/βj] is contained
in [αj+1, 2αj+1] and [aj , aj + βk/βj ] is contained in [aj , aj + αj+1].
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Step 3. Either there is j ≥ n such that for all m ≥ j we have xm = 1/αm − 1, or there
are arbitrarily large eligible m ≥ n.

If there is j ≥ n such that xj ∈ {1/αj − 1, 1/αj}, then for all m ≥ j + 1 we have
xm = 1/αm − 1. That is because, by the definition of the sequence {(xm, lm)}, if xj ∈
{1/αj − 1, 1/αj} then xj+1 ∈ {1/αj+1 − 1}. Therefore, for all m ≥ j + 1 we have xm ∈
{1/αm − 1}.

Assume that there is j ≥ n such that xj = 0. Recall from Step 1 that whenever xm = 0,
em = +1. By the definition of the sequence (xm, lm), if some xm = 0 then either εm+1 = −1
and hence xm+1 = 0, or εm+1 = +1 and hence xm+1 = 1/αm+1. By the above paragraph,
it follows that either eventually xm = 0, or eventually xm = 1/αm − 1. When eventually
xm = 0, all sufficiently large m becomes eligible through (E1) and (E2).

By the above paragraphs, if there is j ≥ n with xj ∈ {0, 1/αj − 1, 1/αj}, we are done.
Below we assume that there are no such j.

Fix an arbitrary j ≥ n. Since βk/βj → 0 as k → ∞, there is k ≥ j such that xj /∈
[0, βk/βj] ∪ [1/αj − 1 − βk/βj, 1/αj − 1 + βk/βj ] ∪ [1/αj − βk/βj ]. It follows from Step 2
that there must be an eligible j′ ∈ [j, k]. This proves that there are arbitrarily large eligible
m ≥ n.

Step 4. For every δ > 0 there is x′n strictly between xn and xn + δen such that bn(x
′
n) ≤

bn(xn) + δ.

For m ≥ n, let zm = xm + ibm(xm) ∈ Im, which is the lowest point on Im with real part
equal to xm. By Step 1, for m ≥ n, we have ReYm+1(xm+1) + lm = xm. It follows from the
definition of the sets Ijn and In that Ym+1(zm+1) + lm = zm.

For m ≥ 0, let Km = ∩j≥1K
j
m and Jm = ∩j≥1J

j
m.

Assume that m ≥ n, and either xm = 1/αm − 1 or m is eligible. We claim that there is
z′m ∈ Im satisfying the following properties:

(i) sign(Re z′m − Re zm) = em,
(ii) |z′m − zm| ≤ 2,
(iii) either both z′m and zm belong to Km, or both z′m and zm belong to Jm.

If xm = 1/αm − 1 we simply let z′m = zm + em. By Equation (8.3), z′m ∈ Im. Moreover,
{zm, z′m} ⊂ Km if em = −1 and {zm, z′m} ⊂ Jm if em = +1. If m is eligible, we show this
by looking at cases (E1) through (E4) in the definition of eligibility. The main tool for each
of those cases is the periodic property of Im and Im+1 in Equation (8.3).

(E1): If xm ∈ [0, 1/αm − 2] we let z′m = zm + 1 = zm + em. Here {zm, z′m} ⊂ Km.
If xm ∈ [am−2−αm+1, am−2] = [1/αm−2, am−2], then xm+1 ∈ [1/αm+1−1, 1/αm+1].

Choose an integer km+1 with xm+1 − km+1 ∈ [0, 1] and define z′m = Ym+1(zm+1 − km+1) +
am− 2. Note that Re zm ≤ am− 2 ≤ Re z′m ≤ am− 2+αm+1 ≤ 1/αm− 1. This implies that
sign(Re z′m−Re zm) = +1 = em, and {zm, z′m} ⊂ Km. Here, am = 1/αm+αm+1 ≥ 2+αm+1,
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so am ≥ 3. Using Equation (3.8) with em = +1 and Equation (3.7),

|zm − z′m| = |(Ym+1(zm+1) + am − 3)− (Ym+1(zm+1 − km+1) + am − 2)|
= |Ym+1(zm+1)− 1− Ym+1(zm+1 − km+1)|
= |Ym+1(zm+1 − 1/αm+1)− Ym+1(zm+1 − km+1)|
≤ 0.9|(zm+1 − 1/αm+1)− (zm+1 − km+1)|
= 0.9|1/αm+1 − km+1| ≤ 0.9 · 2 ≤ 2.

If xm ∈ [am − 1 − αm+1, am − 1] = [1/αm − 1, am − 1] we let z′m = Ym+1(zm+1 −
km+1) + am − 1. In this case, Re zm ≤ am − 1 ≤ Re z′m ≤ am − 1 + αm+1 ≤ 1/αm. Hence,
sign(Re z′m−Re zm) = +1 = em, and {zm, z′m} ⊂ Jm. As in the previous case, |zm−z′m| ≤ 2.

(E2): If xm ∈ [0, 1/αm − 2] we let z′m = zm + 1 = zm + em. If xm belongs to [am − 1 −
αm+1, am − 1], then xm+1 ∈ [0, 1]. Choose an integer km+1 with xm+1 + km+1 ∈ [1/αm+1 −
1, 1/αm+1] and define z′m = Ym+1(zm+1 + km+1) + am. If xm belongs to [am − αm+1, am],
we let z′m = Ym+1(zm+1 + km+1) + am + 1. As in the previous case, one can see that z′m
enjoys the desired properties.

(E3): If xm belongs to [1, 1/αm − 1], we let z′m = zm − 1 = zm + em. If xm belongs to
[1− αm+1, 1], then xm+1 ∈ [1/αm+1 − 1, 1/αm+1]. We define z′m = Ym+1(zm+1 − 1). If xm
belongs to [am − 1, am − 1 + αm+1] then xm+1 ∈ [0, 1]. We choose an integer km+1 with
xm+1 + km+1 ∈ [1/αm+1 − 1, 1/αm+1] and define z′m = Ym+1(zm+1 + km+1) + am − 2. One
can see that z′m enjoys the desired properties.

(E4): If xm belongs to [1, 1/αm − 1], we let z′m = zm − 1 = zm + em. If xm belongs to
[αm+1, 2αm+1] then xm+1 ∈ [1/αm+1−2, 1/αm+1−1]. We define z′m = Ym+1(zm+1+1)+1.
If xm belongs to [am, am+αm+1] = [am, 1/αm], then xm+1 ∈ [1/αm+1− 1, 1/αm+1]. Choose
an integer km+1 with xm+1 − km+1 ∈ [0, 1] and define z′m = Ym+1(zm+1 − km+1) + am. One
can see that z′m enjoys the desired properties. This completes the proof of the existence of
z′m.

By the definition of the domains Ijn, and Equation (8.6), for all m ≥ n

• either Ym+1(Km+1) + lm ⊂ Km or Ym+1(Km+1) + lm ⊂ Jm,
• either Ym+1(Jm+1) + lm ⊂ Km or Ym+1(Jm+1) + lm ⊂ Jm.

It follows from the above properties that any composition of the form (Yn+1 + ln) ◦ · · · ◦
(Ym+1 + lm) is defined and continuous on both Km and Jm.

Fix an arbitrary δ > 0 and choose n′ ≥ n such that 2 · 0.9(n′−n) < δ. By Step 3 there is
m ≥ n′ such that either xm = 1/αm−1 or m is eligible. Then, by the above argument, there
is z′m satisfying the three items listed above. Let us define zmn = (Yn+1 + ln) ◦ · · · ◦ (Ym+1 +
lm)(z′m) ∈ In. By Equation (3.7), we have |zmn −zn| ≤ 2 ·0.9m−n < δ. Let x′n = xmn = Re zmn .
We have |x′n−xn| = |Re zmn −Re zn| < δ and bn(x

m
n )−bn(xn) ≤ Im zmn −Im zn < δ. Moreover,

the relations sign(Re z′m − Re zm) = em, em−1 = −εmem, and ReYm(x) = −εmαmx imply
that sign(xmn − xn) = sign(Rexmn − Re zn) = en. �

8.4. The Brjuno condition in the renormalisation tower.
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Proposition 8.2. For all α ∈ B and all n ≥ −1 we have
∣

∣

∣
2π sup

x∈[0,1/αn]

bn(x)− B(αn+1)
∣

∣

∣
≤ 5π.

Proof. For n ≥ −1 and j ≥ 0 we define

Dj
n = max{bjn(x) | x ∈ [0, 1/αn]}.

We first show that the numbers Dj
n nearly satisfy the recursive relation for the Brjuno

function, see Equation (6.12). That is, for all n ≥ 0 and all j ≥ 1, we have

(8.9)
∣

∣2πDj
n−1 − 2παnD

j−1
n − log(1/αn)

∣

∣ ≤ 4.

Since bjn−1 and bj−1
n are periodic of period +1, we may choose xn−1 ∈ [1/(2αn−1) −

1, 1/(2αn−1)] and xn ∈ [1/(2αn)−1, 1/(2αn)] such that bjn−1(xn−1) = Dj
n−1 and bj−1

n (xn) =

Dj−1
n . Choose x′n ∈ [0, 1/αn] such that −εnαnx

′
n ∈ xn−1 + Z. By Lemma 7.2-(i), we must

have x′n ∈ [1/(2αn)−1, 1/(2αn)]. We apply 7.2-(ii) with y = bj−1
n (x′n) and x = x′n, to obtain

2παnD
j−1
n + log 1/αn = 2παnb

j−1
n (xn) + log 1/αn ≥ 2παnb

j−1
n (x′n) + log 1/αn

≥ 2π ImYn(x
′
n + ibj−1

n (x′n))− 2

= 2πbjn−1(xn−1)− 2 = 2πDj
n−1 − 2.

Similarly,

2παnD
j−1
n + log 1/αn = 2παnb

j−1
n (xn) + log 1/αn ≤ 2π Im(xn + ibj−1

n (xn)) + 4

≤ 2πbjn−1(xn−1) + 4 = 2πDj
n−1 + 4.

This completes the proof of inequality (8.9).

Fix an arbitrary n ≥ −1 and j ≥ 1. Let us define βn+i(αn+1) =
∏i

l=1 αn+l for i ≥ 1, and
βn(αn+1) = 1. Then for integers k ∈ [0, j] define the numbers

Xk = 2πβn+k(αn+1)D
j−k
n+k +

k
∑

i=1

βn+i−1(αn+1) log 1/αn+i.

We have X0 = 2πDj
n. With this notation, we form a telescoping sum

2πDj
n =

j−1
∑

k=0

(Xk −Xk+1) +Xj.

By Equation (8.9),

|Xk−Xk+1| =
∣

∣βn+k(αn+1)
(

2πDj−k
n+k−2παn+k+1D

j−k−1
n+k+1− log(1/αn+k+1)

)∣

∣ ≤ βn+k(αn+1)4.

On the other hand, since D0
n+j = −1, we have

∣

∣Xj −
j

∑

i=1

βn+i−1(αn+1) log 1/αn+i

∣

∣ = |2πβn+j(αn+1)D
0
n+j | ≤ 2π.
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Combining the above inequalities, and using Equation (3.1), we conclude that

∣

∣

∣
2πDj

n −
j

∑

i=1

βn+i−1(αn+1) log 1/αn+i

∣

∣

∣
≤

j−1
∑

k=0

βn+k(αn+1)4 + 2π

≤
j−1
∑

k=0

2−k4 + 2π ≤ 8 + 2π.

By Equation (3.16), bjn ≥ bj−1
n , which implies that Dj

n ≥ Dj−1
n . Hence, for each n ≥ −1,

Dj
n forms an increasing sequence. Combining with the above inequality,

∣

∣

∣
2π lim

j→+∞
Dj

n − B(αn+1)
∣

∣

∣
≤ 8 + 2π.

Note that because bjn ≤ bn and bjn → bn point-wise, we must have supx∈[0,1/αn] bn =

limj→+∞Dj
n. �

8.5. The Herman condition in the renormalisation tower. In this section we establish
an equivalent criterion for the arithmetic class H in terms of the maps Yn. The key idea here
is that the equivalent criterion in Proposition 6.5 is stable under uniform changes to the maps
hαn . That is, if one replaces hαn by uniformly nearby maps, say Y−1

n , the corresponding set
of rotation numbers stays the same. See Proposition 7.1.

Note that for arbitrary m > n ≥ 0 and y ≥ 0, the compositions h−1
αn ◦ · · · ◦ h−1

αm(y) may
not be defined. This happens when an intermediate iterate falls into (−∞, 0].

Lemma 8.3. Assume that for some integers m > n ≥ 0, and y ∈ (1,+∞), the composition
h−1
αn ◦ · · · ◦ h−1

αm(y) is defined and is positive. Then,

∣

∣2π Im (Yn ◦ · · · ◦ Ym(iy/(2π)))− h−1
αn ◦ · · · ◦ h−1

αm(y)
∣

∣ ≤ 10π.

Proof. For integers j with n ≤ j ≤ m− 1, we may introduce

Gm,j−1(y) = h−1
αj ◦ · · · ◦ h−1

αm(y), Gm,m−1(y) = h−1
αm(y), Gm,m(y) = y.

By the assumptions in the lemma, all the above values are positive. Also, for integers j with
n+ 1 ≤ j ≤ m, and t ≥ −1, we may introduce the maps

Ψj,n−1(t) = 2π ImYn ◦ · · · ◦ Yj(it/(2π)),Ψn,n−1(t) = 2π ImYn(it/(2π)),Ψn−1,n−1(t) = t.

With the above notations, we may form a telescoping sum, to obtain

∣

∣h−1
αn ◦ · · · ◦ h−1

αm(y)− 2π ImYn ◦ · · · ◦ Ym(iy/(2π))
∣

∣

=
∣

∣Gm,n−1(y)−Ψm,n−1(y)
∣

∣

=
∣

∣

∣

m
∑

j=n

Ψj−1,n−1(Gm,j−1(y))−Ψj,n−1(Gm,j(y))
∣

∣

∣
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By Equation (3.7), for all s and t in (0,+∞), |Ψj−1,n−1(s)−Ψj−1,n−1(t)
∣

∣ ≤ 0.9(j−n) · |s− t|.
Thus,

∣

∣Ψj−1,n−1(Gm,j−1(y))−Ψj,n−1(Gm,j(y))
∣

∣

=
∣

∣Ψj−1,n−1(Gm,j−1(y))−Ψj−1,n−1(−2πiYj(iGm,j(y)/(2π)))
∣

∣

≤ 0.9(j−n)
∣

∣Gm,j−1(y) + 2πiYj(iGm,j(y)/(2π))
∣

∣

On the other hand, by Proposition 7.1 and Equation (3.5), for all j ≥ 0 and all t ≥ 1, we
have

|h−1
αj (t)− 2π ImYj(it/(2π))| ≤ π.

Also, note that since Gm,n−1(y) > 0 and hαn(0) = 1, Gm,j(y) > 1, for n ≤ j ≤ m. Therefore,
∣

∣Gm,j−1(y) + 2πiYj(iGm,j(y)/(2π))
∣

∣ =
∣

∣h−1
αj (Gm,j(y))− 2π ImYj(iGm,j(y)/(2π))

∣

∣ ≤ π.

Combining the above inequalities together, we obtain

∣

∣h−1
αn ◦ · · · ◦ h−1

αm(y)− 2π ImYn ◦ · · · ◦ Ym(iy/(2π))
∣

∣ ≤
m
∑

j=n

0.9(j−n)π ≤ 10π. �

Proposition 8.4. An irrational number α belongs to H , if and only if, for all x > 0 there
is m ≥ 1 such that

ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ x.

Proof. Fix an arbitrary α ∈ H and x > 0. Choose n ≥ 0 such that 0.9n(10π+1)/(2π) ≤ x.
By the criterion in Proposition 6.5, there is m ≥ n such that

(8.10) hαm−1 ◦ · · · ◦ hαn(0) ≥ B(αm).

Now we consider two cases. First assume that B(αm) ≤ 1. Recall that B(αm) > 0. By (3.6)
and (3.7),

ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ 0.9m · 1/(2π) ≤ 0.9n/(2π) ≤ x.

Thus, we have the desired inequality in the proposition in this case.
Now assume that B(αm) > 1. The composition of the maps in Equation (8.10) is under-

stood as the identity map when m = n, and as the map hαn when m = n + 1. Also recall
that hαn(0) = 1. Then, in this case, we must have n < m − 1. Let k ∈ [n,m − 1] be the
smallest integer such that

h−1
αk ◦ · · · ◦ h−1

αm−1
(B(αm))

is defined and is positive. By Equation (8.10), k exists and k > n. Moreover, by the
minimality of k, we must have h−1

αk ◦ · · · ◦h−1
αm−1

(B(αm)) ≤ +1. Now, we may use Lemma 8.3

with y = B(αm) and h−1
αk

◦ · · · ◦ h−1
αm−1

(B(αm)) to conclude that

|2π ImYk ◦ · · · ◦ Ym−1(iB(αm)/(2π))|
≤ |2π ImYk ◦ · · · ◦ Ym−1(iB(αm)/(2π))− h−1

αk
◦ · · · ◦ h−1

αm−1
(B(αm))|

+ |h−1
αk ◦ · · · ◦ h−1

αm−1
(B(αm))|

≤ 10π + 1.



58 DAVOUD CHERAGHI

Then, by (3.6) and (3.7), we obtain

ImY0 ◦ · · · ◦ Yk−1 ◦ Yk ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ Y0 ◦ · · · ◦ Yk−1((10π + 1)/(2π))

≤ 0.9k
10π + 1

2π
≤ 0.9n

10π + 1

2π
≤ x.

Thus, the desired inequality in the proposition also holds in this case.
To prove the other direction of the proposition, fix an arbitrary n ≥ 0. We shall prove

that there is m ≥ n satisfying the inequality in Proposition 6.5.
First note that for all j ≥ 0 and y ≥ 0, h−1

αj (y) ≤ y − 1. This implies that there are
k > l ≥ n such that

(8.11) h−1
αl

◦ · · · ◦ h−1
αk

(12π) ≤ 0.

In particular, the composition in the above equation is defined. Note that in general one
cannot choose l = n. Now, choose x > 0 such that

(8.12) x < ImY0 ◦ · · · ◦Yk(i),

and

(8.13) x < min
{

ImY0 ◦ · · · ◦ Yj(iB(αj+1)/(2π)) | ∀j ∈ [0, k − 1] ∩ Z
}

,

By the hypothesis in the proposition, there is m ≥ 1 such that

(8.14) ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ x.

Note that by Equation (8.13) we must have m ≥ k + 1. In particular, m ≥ n.
By Equation (8.12), we must have

(8.15) ImYk+1 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ 1.

Otherwise, by the injectivity of the maps Yj and Equation (3.6),

ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) = ImY0 ◦ · · · ◦ Yk(Yk+1 ◦ · · · ◦ Ym−1(iB(αm)/(2π))

> ImY0 ◦ · · · ◦ Yk(i) > x,

which contradicts Equation (8.14).
Now we consider two cases. First assume that B(αm) > 1 and h−1

αk+1
◦ · · · ◦ h−1

αm−1
(B(αm))

is defined. Here, we may apply Lemma 8.3 to this composition with y = B(αm), and use
Equation (8.15), to get

h−1
αk+1

◦ . . . ◦ h−1
αm−1

(B(αm))

≤ |h−1
αk+1

◦ · · · ◦ h−1
αm−1

(B(αm))− 2π ImYk+1 ◦ · · · ◦ Ym−1(iB(αm)/(2π))|
+ |2π ImYk+1 ◦ · · · ◦Ym−1(iB(αm)/(2π))|

≤ 10π + 2π.

Combining this with Equation (8.11), and using the monotonicity of the maps hαj , we
conclude that there is l′ ∈ [l, k] such that

h−1
αl′

◦ · · · ◦ h−1
αm−1

(B(αm)) = h−1
αl′

◦ · · · ◦ h−1
αk

(h−1
αk+1

◦ · · · ◦ h−1
αm−1

(B(αm)))

≤ h−1
αl′

◦ · · · ◦ h−1
αk

(12π) < 0.



MODEL FOR RENORMALISATION OF IRRATIONALLY INDIFFERENT FIXED POINTS 59

Here we need to choose l′ ≥ l so that the compositions in the above equation are defined.
The above inequality implies that B(αm) < hαm−1 ◦ · · · ◦ hαl′ (0). Note that l′ ≥ l ≥ n. On
the other hand, since hαj (y) ≥ y+1 for all j and y > 0, we must have hαl′−1

◦· · ·◦hαn(0) > 0.
Therefore,

B(αm) < hαm−1 ◦ · · · ◦ hαl′ (0) < hαm−1 ◦ · · · ◦ hαn(0).
This completes the argument in this case.

Now assume that either B(αm) ≤ 1, or h−1
αk+1

◦ · · · ◦ h−1
αm−1

(B(αm)) is not defined. These

imply that there is j in [k + 2,m − 1] such that h−1
αj ◦ · · · ◦ h−1

αm−1
(B(αm)) ≤ 0, and hence

B(αm) ≤ hαm−1 ◦ · · · ◦ hαj (0). Note that j ≥ k + 2 ≥ n + 2. As in the previous case,
hαj−1 ◦ · · · ◦ hαn(0) > 0. Therefore,

B(αm) < hαm−1 ◦ · · · ◦ hαj (0) < hαm−1 ◦ · · · ◦ hαn(0).
This completes the argument in this case. �

Proposition 8.5. Assume that α ∈ B. Then, α ∈ H if and only if pn(0) = bn(0) = 0 for
all n ≥ −1.

Proof. Recall that pn(0) = pn(1/αn) and bn(0) = bn(1/αn), for all n ≥ −1. Also, Yn+1

maps the graphs of pn+1 and bn+1 to the graphs of pn and bn, respectively. These imply
that pn+1(0) = bn+1(0) if and only if pn(0) = bn(0), for all n ≥ −1. Therefore, to prove the
proposition, it is enough to show that α ∈ H if and only if p−1(0) = b−1(0) = 0.

Assume that α ∈ H . Fix an arbitrary ε > 0. Choose m0 ≥ 1 satisfying 5 · 0.9m0 ≤ ε.
Let ε′ ≤ ε/2 be a positive constant. We may apply Proposition 8.4 with x = ε′ and obtain
m ≥ 1 satisfying the inequality in that proposition. By making ε′ small enough, we may
make m ≥ m0. Now, using the uniform contraction of the maps Yn in Equation (3.7),

p−1(0) ≤ pm−1(0)

= ImY0 ◦ · · · ◦ Ym−1(ip
0
m−1(0))

= ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π) + 5/2)− ImY0 ◦ · · · ◦Ym−1(iB(αm)/(2π))

+ ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π))

≤ 0.9m5/2 + ε′ ≤ ε.

That is, b−1(0) = 0 ≤ p−1(0) ≤ ε, for all ε > 0. This implies that b−1(0) = p−1(0).
Now assume that b−1(0) = p−1(0) = 0. Fix x > 0. Since pm−1(0) → p−1(0), as m → +∞,

there is m ≥ 1 such that pm−1(0) < x. Then, by the monotonicity of the maps t 7→ ImYl(it),

ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π) + 5/2) = pm−1(0) ≤ x.

By Proposition 8.4, this implies that α ∈ H . �

8.6. Hairs, or no hairs.

Proposition 8.6. For every n ≥ −1, the following properties hold.

(i) If α ∈ B \H , bn = pn on a dense subset of [0, 1/αn] and bn < pn on a dense subset
of [0, 1/αn];

(ii) If α /∈ B, bn = +∞ on a dense subset of [0, 1/αn] and bn < +∞ on a dense subset
of [0, 1/αn].
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Proof. Each of the strict inequalities in items (i) and (ii) hold at least at one point. That
is because when α ∈ B \ H , by Proposition 8.5, we have pn(0) 6= bn(0), and when α /∈ B,
bn(0) = 0 < +∞. The main task is to show that each of the equalities in (i) and (ii) hold at
least at one point. To that end we show that there is xn ∈ [0, 1/αn] such that if α ∈ B \H

we have pn(xn) = bn(xn) and if α /∈ B we have bn(xn) = +∞. There is an algorithm to
identify the points xn, as we explain below.

There are xn ∈ [0, 1/αn] and ln ∈ Z, for n ≥ −1, such that

xn+1 ∈ [1/(2αn+1)− 1, 1/(2αn+1)], −εn+1αn+1xn+1 ∈ xn − ln.

By Lemma 7.2-(ii), for all n ≥ −1 and all j ≥ 0 we have

|2πbjn−1(xn−1)− 2παnb
j−1
n (xn)− log(1/αn)| ≤ 4.

One may literally repeat the latter part of the proof of Proposition 8.2 with Dj
n = bjn(xn) to

conclude that for all n ≥ −1,

(8.16)
∣

∣2πbn(xn)− B(αn+1)
∣

∣ ≤ 8 + 2π.

Now, if α /∈ B we must have bn(xn) = +∞. Assume that α ∈ B. We have

pjn(xn) = Im(Yn + ln) ◦ · · · ◦ (Yn+j(xn+j + ip0n+j(xn+j)) + ln+j−1)

= Im(Yn + ln) ◦ · · · ◦ (Yn+j(xn+j + iB(αn+j+1)/(2π) + 5/2) + ln+j−1),

and

bn(xn) = Im(Yn + ln) ◦ · · · ◦ (Yn+j(xn+j + ibn+j(xn+j)) + ln+j−1).

Therefore, by (3.7) and (8.16),

pjn(xn)− bn(xn) ≤ 0.9j
(5

2
+

8 + 2π

2π

)

.

Since pn ≥ bn on [0, 1/αn], we conclude that pn(xn) = limj→+∞ pjn(xn) = bn(xn).
To discuss items (i) and (ii) in the proposition at once, let us define pn ≡ +∞, for all

n ≥ −1, when α /∈ B.
Recall that the graphs of pn and bn are obtained from the graphs of pn+1 and bn+1,

respectively, using the map Yn+1 and its integer translations. Thus, if pn = bn at some
y ∈ [0, 1/αn], then pn−1 = bn−1 at −εnαny + (1 + εn)/2. Similarly, if pn 6= bn at some
y ∈ [0, 1/αn], then pn−1 6= bn−1 at −εnαny + (1 + εn)/2. On the other hand, pn and bn are
periodic of period +1, for all n ≥ −1. One infers from these properties, and the first part
of the proof, that pn = bn on a dense subset of [0, 1/αn], and pn 6= bn on a dense subset of
[0, 1/αn], for all n ≥ −1. �

Proposition 8.7. Assume that α ∈ B. For all n ≥ −1, pn : [0, 1/αn] → [1,+∞) is
continuous. Moreover, if α ∈ H then pn = bn on [0, 1/αn], for all n ≥ −1.

Proof. We aim to show that pjn uniformly converges to pn on [0, 1/αn]. By the continuity of
the maps pjn, this implies the first part of the proposition. At the same time, we show that
pjn uniformly converges to bn, when α ∈ H , which implies the latter part of the proposition.
We present the details in several steps.
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Step 1. For all n ≥ −1, all j ≥ 0, and all x ∈ [0, 1/αn],

pjn(x) ≥ pjn(0)− 5/π, bjn(x) ≥ bjn(0)− 5/π.

We prove this by induction on j. When j = 0, p0n ≡ (B(αn+1) + 5π)/(2π) and b0n ≡ −1.
Therefore, p0n(x) ≥ p0n(0)− 5/π and b0n(x) ≥ b0n(0)− 5/π. Now assume that both inequalities
hold for some j − 1 ≥ 0 and all n ≥ −1. Below we prove them for j and all n ≥ −1.

Fix an arbitrary n ≥ 0, and let xn−1 ∈ [0, 1/αn−1] be arbitrary. Choose xn ∈ [0, 1/αn]
and ln−1 ∈ Z with −εnαnxn = xn−1 + ln−1.

If pj−1
n (xn) ≥ pj−1

n (0), by the monotonicity of y 7→ ImYn(xn + iy), we have

ImYn(xn + ipj−1
n (xn))− ImYn(xn + ipj−1

n (0)) ≥ 0 ≥ −9/(2π).

If pj−1
n (xn) ≤ pj−1

n (0), by the uniform contraction of Yn in Equation (3.7) and the induction
hypothesis, we have

ImYn(xn + ipj−1
n (xn))− ImYn(xn + ipj−1

n (0)) ≥ 0.9(pj−1
n (xn)− pj−1

n (0))

≥ 0.9(−5/π) = −9/(2π).

On the other hand, by Lemma 7.3-(i),

ImYn(xn + ipj−1
n (0)) ≥ ImYn(ip

j−1
n (0))− 1/(2π) = pjn−1(0)− 1/(2π).

Therefore, by the above inequalities and the definition of pjn−1, we have

pjn−1(xn−1) = ImYn(xn + ipj−1
n (xn))

=
(

ImYn(xn + ipj−1
n (xn))− ImYn(xn + ipj−1

n (0))
)

+ ImYn(xn + ipj−1
n (0))

≥ −9/(2π) + pjn−1(0)− 1/(2π) = pjn−1(0)− 5/π.

The same argument applies to the map bjn−1.

As j → +∞, pjn → pn and bjn → bn point-wise on [0, 1/αn]. These lead to

(8.17) pn(x) ≥ pn(0)− 5/π, bn(x) ≥ bn(0)− 5/π.

Step 2. For all n ≥ −1 and j ≥ 0 we have

pjn(x)− pn(x) ≤ pjn(0)− pn(0) + 55/π, and pjn(x)− bjn(x) ≤ pjn(0)− bjn(0) + 55/π.

We shall prove these by induction on j. If j = 0, by Equation (8.17),

p0n(x) − pn(x) = p0n(0)− pn(x) ≤ p0n(0)− pn(0) + 5/π,

and

p0n(x) − b0n(x) = p0n(0)− b0n(0) ≤ p0n(0)− b0n(0) + 5/π.

Now assume that both inequalities in Step 2 hold for some j ≥ 0 and all n ≥ −1. We aim to
prove it for j+1 and all n ≥ −1. Fix an arbitrary xn−1 ∈ [0, 1/αn−1]. Choose xn ∈ [0, 1/αn]
and ln−1 ∈ Z such that −εnαnxn = xn−1 + ln−1. Then, using Lemma 7.3-(ii),

pj+1
n−1(xn−1)− pn−1(xn−1) = ImYn(xn + ipjn(xn))− ImYn(xn + ipn(xn))

≤ ImYn(ip
j
n(xn))− ImYn(ipn(xn)) + 1/(2π).

We consider two cases.
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(1) Assume that pn(xn) ≥ pn(0). Using Lemma 7.3-(iii), the induction hypothesis, and
Equation (3.7), respectively, we obtain

ImYn(ip
j
n(xn)) − ImYn(ipn(xn))

≤ ImYn(i(p
j
n(xn)− pn(xn) + pn(0))− ImYn(ipn(0)) + 1/(4π)

≤ ImYn(i(p
j
n(0) + 55/π)− pn−1(0) + 1/(4π)

≤ ImYn(ip
j
n(0)) + (9/10) · (55/π)− pn−1(0) + 1/(4π)

= pj+1
n−1(0)− pn−1(0) + 199/(4π).

(2) Assume that pn(xn) < pn(0). By Equation (8.17), we must have pn(0) − pn(xn) ∈
[0, 5/π]. Then we may apply Lemma 7.3-(iv), and the induction hypothesis, to obtain

ImYn(ip
j
n(xn))− ImYn(ipn(xn))

≤ ImYn(i(p
j
n(xn)− pn(xn) + pn(0))− ImYn(ipn(0)) + 5/π

≤ ImYn(ip
j
n(0) + 55/π)− pn−1(0) + 5/π

≤ ImYn(ip
j
n(0)) + 0.9 · 55/π − pn−1(0) + 5/π

= pj+1
n−1(0)− pn−1(0) + 109/(2π).

Combining the above inequalities, we obtain the first inequality in Step 2 for j + 1. The
same argument applies to the difference pj+1

n−1(xn−1)− bj+1
n−1(xn−1).

Step 3. For every n ≥ −1, pjn uniformly converges to pn on [0, 1/αn], as j → +∞.

Fix n ≥ −1, and let ε > 0 be arbitrary. Choose m ≥ n such that 0.9m−n(1 + 55/π) < ε.
Since pjm(0) → pm(0), as j → +∞, there is j0 > 0 such that for all j ≥ j0 we have
|pjm(0) − pm(0)| < 1. By Step 2, this implies that for all x′ ∈ [0, 1/αm] we have |pjm(x′) −
pm(x′)| ≤ 1 + 55/π. By the uniform contraction of Yl in Equation (3.7), and since Yl

maps the graph of pl to pl−1 and the graph of pkl to the graph of pk+1
l−1 , we conclude that

|pj+m−n
n (x) − pn(x)| ≤ 0.9m−n(1 + 55/π) < ε.

Step 4. If α ∈ H , for every n ≥ −1, pjn → bn on [0, 1/αn].

By Proposition 8.5, if α ∈ H , we have bn(0) = pn(0) for all n ≥ −1. Taking limits
as j → +∞ in the second inequality in Step 2, we conclude that for all n ≥ −1 we have
|pn(x) − bn(x)| ≤ 55/π. By the uniform contraction of Yl, and equivariant property of the
graphs of these functions, we conclude that pn ≡ bn, for all n ≥ −1. �

8.7. Proof of Theorem B. In this section we combine the results from the previous sections
to characterise the topology of the model Aα.

Note that Aα = ∂Mα satisfies the relations

(8.18)
Aα =

{

s(e2πiw) | w ∈ I−1, Imw ≤ p−1(Rew)
}

, if α ∈ B,

Aα =
{

s(e2πiw) | w ∈ I−1

}

∪ {0} , if α /∈ B.

Proof of Theorem B. Recall that I−1 is the set above the graph of b−1, and Aα is obtained
from I−1 through a projection, see (8.2) and (8.18). By Lemma 3.2 and Equation (8.3) we
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may extend I−1 and b−1 periodically with period +1. That is, b−1 is defined on R and is +1-
periodic, and I−1 becomes I−1 + Z. When α is a Brjuno number, we also have the function
p−1, which is +1-periodic by Equation (8.4). We may extend this function +1-periodically
onto R as well.

Part (i) By Proposition 8.7, b−1 ≡ p−1 on [0, 1], and hence b−1 is a continuous function.
It follows that ∂I−1 is equal to the graph of b−1. The map e2πix 7→ e−2πixe−2πb−1(x) from
the unit circle to Aα is continuous and injective.

Part (ii) By Proposition 8.2, b−1(x) is finite for every x ∈ R, and by Equation (8.5),
b−1 ≤ p−1. Consider the function Rα : R/Z → [1,+∞), Rα(x) = e2π(p−1(x)−b−1(x)), and
then the set

A′
α = {re2πix | 1 ≤ r ≤ Rα(x)}.

From Proposition 8.6 we infer that each of Rα(x) = 1 and Rα(x) 6= 1 hold on a dense subset
of R/Z. Using the continuity of p−1 in Proposition 8.7, and Proposition 8.1, we note that
for every x ∈ R/Z, we have

lim sup
s→x+

Rα(s) = exp
(

2πp−1(x) − 2π lim inf
s→x+

b−1(s)
)

= Rα(x).

Similarly, lim sups→x− Rα(s) = Rα(x). Therefore, by the definition in the introduction, A′
α

is a one-sided hairy Jordan curve.
Since I−1 is a closed set, ∂I−1 ⊂ I−1. On the other hand, p−1 is continuous, and p−1 = b−1

on a dense subset of R. It follows that

∂I−1 = {x+ iy | x ∈ R, b−1(x) ≤ y ≤ p−1(x)}.
Hence,

Aα = {e2πixe−2πy | x ∈ R/Z, b−1(x) ≤ y ≤ p−1(x)}.
The map re2πix 7→ re−2πixe−2πp−1(x) from A′

α to Aα is a homeomorphism.
Part (iii) Consider the set

A′
α = {re2πix | 0 ≤ r ≤ e−2πb−1(x)}.

By virtue of propositions 8.1 and 8.6, A′
α is a Cantor bouquet. Here, I−1 is the set above

the graph of b−1, and b−1 takes +∞ on a dense subset of R, see Proposition 8.6. It follows
that

I−1 = {x+ iy | x ∈ R, b−1(x) ≤ y},
and hence,

Aα = {re2πix | 0 ≤ r ≤ e−2πb−1(x)}.
Here, re2πix 7→ re−2πix provides a homeomorphism from A′

α to Aα. Thus, Aα is a Cantor
bouquet. �

Corollary 8.8. For every α ∈ B, we have the following properties:

• Mα contains the ball of radius e−B(α)−5π about 0,
• Mα does not contain any ball of radius more than e−B(α)+5π about 0.
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Proof. Recall that any point w with Rew ∈ [0, 1] and Imw ≥ p−1(Rew) belongs to I−1.

Recall that P j
−1 is a decreasing sequence of functions converging to p−1, and p

0
−1 ≡ (B(α) +

5π)/(2π). Through projection w 7→ s(e2πiw), and adding 0, we obtain the desired ball. On
the other hand, by Proposition 8.2, supx∈[0,1] b−1(x) is at least (B(α)− 5π)/(2π). With the

project, we obtain a point with modulus at most e−B(α)+5π outside Mα. �

9. Dynamics of Tα on Aα

Here, we study the dynamics of Tα on Aα and classify the closed invariant subset of this
model. In particular, we prove all parts of Theorem C in this section.

9.1. Topological recurrence. Recall that a map f : X → X , of a topological space X , is
called topologically recurrent, if for every x ∈ X there is a strictly increasing sequence
of positive integers (mi)i≥0 such that f◦mi(x) → x as i→ +∞.

Proposition 9.1. For every α ∈ R \Q, Tα : Aα → Aα is topologically recurrent.

Proof. Evidently, it is enough to show that T̃α : I−1/Z → I−1/Z is topologically recurrent.
To that end, fix an arbitrary w−1 ∈ I−1, and assume that (wi; li)i≥−1 denotes the trajectory
of w−1. We consider two cases:

(i) there are arbitrarily large integers m with wm ∈ Km,
(ii) there is an integer m ≥ −1 such that for all i ≥ m we have wi ∈ Ii \Ki.

Let us first assume that (i) holds. Fix an arbitrary ε > 0. There is m ≥ 4 such that

wm ∈ Km and (0.9)m
√
2 ≤ ε. If wm + 1 ∈ Km, then we note that

(Y0 + (ε0 + 1)/2) ◦ (Y1 + l0) ◦ · · · ◦ (Ym + lm−1)(wm + 1)

is defined and belongs to I−1. It follows from an induction argument that there is an integer

n ≥ 0 such that the above point is equal to T̃ ◦n
α (w−1). Then, by Equation (4.2) and the

uniform contraction of Yj in Lemma 2.2, we have |T̃ ◦n
α (w−1)− w−1| ≤ (0.9)m+1 · 1 ≤ ε.

If wm+1 /∈ Km, we may not directly apply the above argument, since Ym+ lm−1(wm+1)
may not belong to Im−1. However, there is an integer l′ ≥ (εm + 1)/2 such that

|Re(Ym + l′)(wm + 1)− Rewm−1| ≤ 1,

and either both (Ym + l′)(wm + 1) and wm−1 belong to Km−1, or both (Ym + l′)(wm + 1)
and wm−1 belong to Im−1 \Km−1. Note that, by Lemma 2.2, we have

| Im(Ym + l′)(wm + 1)− Imwm−1| = | Im(Ym + l′)(wm + 1)− Im(Ym + lm−1)(wm)|
≤ |Ym(wm + 1)− Ym(wm)|
≤ 0.9 · 1 ≤ 1.

Combining with the upper bound on the difference of the real parts, we obtain

|(Ym + l′)(wm + 1)− wm−1| ≤
√
2.

Now we consider the point

(Y0 + (ε0 + 1)/2) ◦ (Y1 + l0) ◦ · · · ◦ (Ym−1 + lm−2) ◦ (Ym + l′)(wm + 1),
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which is defined and belongs to I−1. In the same fashion, there is an integer n ≥ 0 such

that the above point is equal to T̃ ◦n
α (w−1). Using the uniform contraction of Yj again, and

the above bound on |(Ym + l′)(wm + 1) − wm−1|, we conclude that |T̃ ◦n
α (w−1) − w−1| ≤

(0.9)m ·
√
2 ≤ ε.

Now assume that case (ii) holds. Given ε > 0, we may choose m ≥ 4 such that for all
i ≥ m we have wi ∈ Ii \Ki, and 0.9m+1 · 31 ≤ ε.

There is w′
−1 in I−1 whose trajectory (w′

i; l
′
i)i≥−1 satisfies wi ∈ Ii \ Ki, for 0 ≤ i ≤ m,

and w′
m = wm. It follows that there is an integer n1 ≥ 0 such that T̃ ◦n1

α (w−1) = w′
−1.

The point w′
−1 belongs to V∞, and T̃α at w′

−1 is defined using the second case in the

definition of T̃α. Recall the map En defined in Equation (4.8). Let us choose the integer l ≥
(εm+1+1)/2 such that Em(wm)+ l ∈ Im \Km. It follows that |ReEm(wm)+ l−Rewm| ≤ 1.
By Equation (4.9), we have | ImEm(wm)+ l− Imwm| ≤ 30. Thus, |Em(wm)+ l−wm| ≤ 31.

Consider the point

(Y0 + (ε0 + 1)/2) ◦ (Y1 + l0) ◦ · · · ◦ (Ym−1 + lm−2) ◦ (Ym + l)(Em(wm)),

which is defined and belongs to I−1. The above point is equal to T̃ ◦n2
α (T̃α(w

′
−1)). By the

uniform contraction of Yj , we conclude that |T̃ ◦n2
α (T̃α(w

′
−1)) − T̃α(w

′
−1)| ≤ 0.9m+1 · 31. By

the above paragraph, this implies that |T̃ ◦n2+1+n1
α (w−1) − T̃ n1+1

α (w−1)| ≤ 0.9m+1 · 31 ≤ ε.
As n1 is independent of ε, this completes the proof in case (ii). �

Recall that a set K ⊂ Aα is called forward invariant under Tα, if Tα(K) ⊆ K. The set
K is called invariant, or fully invariant, under Tα, if T

−1
α (K) = K.

Proposition 9.2. Let α ∈ R \ Q. If K ⊂ Aα is closed and forward invariant under Tα,
then K is fully invariant under Tα.

Proof. Fix an arbitrary z ∈ K. By Proposition 9.1, there is an increasing sequence of positive
integers mi such that T◦mi

α (z) → z as i → ∞. Since, K is closed, the sequence T◦mi−1
α (z)

has a convergence subsequence, which converges to some z′ in K. Evidently, Tα(z
′) = z,

and hence z′ = T−1
α (z) ∈ K. �

9.2. Closed invariant subsets. In this section we build a family of closed invariant sets
for Tα : Aα → Aα, parametrised on a closed interval in R. The process is in analogy with
how the set Aα is built in Section 3.3.

Fix an arbitrary y ≥ 0, and inductively define yn ≥ 0, for n ≥ −1, according to

(9.1) y−1 = y, yn+1 = ImY−1
n+1(iyn).

For n ≥ 0, let
(9.2)

yI0n = {w ∈ C | Rew ∈ [0, 1/αn], Imw ≥ yn − 1},
yJ0

n = {w ∈ yI0n | Rew ∈ [1/αn − 1, 1/αn]}, yK0
n = {w ∈ yI0n | Rew ∈ [0, 1/αn − 1]}.

As in Section 3.3, we inductively defined the sets yIjn,
yJj

n, and
yKj

n, for j ≥ 1 and n ≥ 0.
Assume that yIjn,

yJj
n, and

yKj
n are defined for some j and all n ≥ 0. When εn+1 = −1, we
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let

(9.3) yIj+1
n =

an−2
⋃

l=0

(

Yn+1(
yIjn+1) + l

)

⋃

(

Yn+1(
yKj

n+1) + an − 1
)

.

When εn+1 = +1, we let

(9.4) yIj+1
n =

an
⋃

l=1

(

Yn+1(
yIjn+1) + l

)

⋃

(

Yn+1(
yJj

n+1) + an + 1
)

.

Then, define

yJj+1
n = {w ∈ yIj+1

n | Rew ∈ [1/αn−1, 1/αn]}, yKj+1
n = {w ∈ yIj+1

n | Rew ∈ [0, 1/αn−1]}.
Let

yI0−1 = {w ∈ C | Rew ∈ [0, 1/α−1], Imw ≥ y−1 − 1},
and for j ≥ 1, consider the sets

yIj−1 = Y0(
yIj−1

0 ) + (ε0 + 1)/2.

By the latter part of Lemma 2.1, yI1n ⊂ yI0n, for n ≥ −1. This implies that for all n ≥ −1
and all j ≥ 0,

(9.5) yIj+1
n ⊂ yIjn.

For n ≥ −1, we define the closed sets

yIn =
⋂

j≥0

yIjn.

Evidently, when y = 0, we have yn = 0, for all n ≥ 0, and hence, 0In = In, for all n ≥ −1.
Note that, iy ∈ yI−1, for any y ≥ 0, and

(9.6) xI−1 ( yI−1, if x > y ≥ 0.

Moreover, by the uniform contraction of Yn in Lemma 2.2,

(9.7) iy′ /∈ yI−1, if y′ < y.

Recall that for all α ∈ R \Q, max(Aα ∩ R) = +1. We define rα ≥ 0 according to

[rα, 1] = Aα ∩ [0,+∞).

If α /∈ B, rα = 0, and if α ∈ B, rα = e−2πp−1(0). When α /∈ B and t ∈ (0, 1], choose y ≥ 0
so that t = e−2πy and define

tAα =
{

s(e2πiw) | w ∈ yI−1

}

∪ {0} .
We extend this notation by setting 0Aα = {0}. When α ∈ B and t ∈ [rα, 1], choose y ≥ 0
so that t = e−2πy, and define

tAα =
{

s(e2πiw) | w ∈ yI−1, Imw ≤ p−1(Rew)
}

.

For all α ∈ R \Q, 1Aα = Aα. By (9.6) and (9.7), for every rα ≤ s < t ≤ 1, we have

(9.8) sAα ( tAα, and t /∈ sAα.
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Proposition 9.3. For any α ∈ R \ Q and any t ∈ [rα, 1],
tAα is fully invariant under

Tα : Aα → Aα.

Proof. By Proposition 9.2, it is enough to show that tAα is forward invariant. By the

definition of tAα, it is enough to show that for all y ≥ 0, yI−1 is forward invariant under T̃α.
Let us fix y ≥ 0.

Recall the decomposition I−1 = ∪n≥0W
n∪V∞ in Equation (4.5). Let w ∈ yI−1∩Wn, for

some n ≥ 0. Let (wj , lj)j≥−1 denote the trajectory of w. By the definition of Wn, wn ∈ Kn,
and by the definition of yI−1, wn ∈ yIn. Since, yIn is translation invariant, wn + 1 ∈ yIn.

Then, it follows from the definitions of T̃α and yI−1 that T̃α(w) ∈ yI−1.

By the above paragraph, T̃α maps ∪n≥0W
n ∩ yI−1 into yI−1. Since T̃α : I−1/Z → I−1/Z

is continuous and yI−1/Z is closed, T̃α maps the closure of (∪n≥0W
n∩yI−1)/Z into yI−1/Z.

The closure of (∪n≥0W
n ∩ yI−1)/Z is equal to yI−1/Z. �

9.3. Closures of orbits.

Lemma 9.4. For every α ∈ R \Q, the following hold:

(i) if α /∈ B, then for all y ≥ 0, the orbit of iy under T̃α is dense in yI−1;

(ii) if α ∈ B, then for all y with 0 ≤ y ≤ p−1(0), the orbit of iy under T̃α is dense in

{w ∈ yI−1 | Imw ≤ p−1(Rew)}.
Proof. To simplify the notations, let us first consider the orbit of y = 0.

When α ∈ H , the set in item (ii) becomes the graph of the function b−1 = p−1. Then,
the statement follows from the continuity of b−1 in Proposition 8.7. The non-trivial case is
to prove the statement when α /∈ H .

Let 〈x〉 denote the fractional part of x ∈ R, that is, 〈x〉 ∈ [0, 1) and x ∈ 〈x〉 + Z. By
Equation (8.18), in order to prove the proposition, it is enough to show that the set

{

〈−mε0α0 + (1 + ε0)/2〉+ ib−1(〈−mε0α0 + (1 + ε0)/2〉)
∣

∣

∣
m ∈ N

}

is dense in ∂I−1. This is because s(e
2πi(−mε0α0)) = e2πimα.

It is possible to prove both items in the proposition at once. Assume that z is an arbitrary
point, such that either α /∈ B and z ∈ I−1, or α ∈ B and z ∈ I−1 with Im z ≤ p−1(Re z).
Also, fix an arbitrary δ > 0. We aim to identify an element of the orbit of y in the δ
neighbourhood of z.

Recall that I−1 = ∩j≥1I
j
−1. Choose j0 ≥ 1 such that (9/10)j0

√
2 ≤ δ/2. There are j ≥ j0

and z′ ∈ ∂Ij+1
−1 such that |z′ − z| ≤ δ/2 and Re z′ ∈ (0, 1). By the definition of Ij+1

−1 , there

must be wj ∈ ∂I0j and integers lk ∈ Z, for −1 ≤ k ≤ j, such that

z′ = (Y0 + l−1) ◦ (Y1 + l0) ◦ · · · ◦ (Yj + lj−1)(wj).

There is an integer lj with 0 ≤ lj ≤ 1/αj such that |lj − wj | ≤
√
2. Let

z′′ = (Y0 + l−1) ◦ (Y1 + l1) ◦ · · · ◦ (Yj + lj−1)(lj).

By the uniform contraction of the maps Yk in Equation (3.7), |z′−z′′| ≤ (9/10)j+1
√
2 ≤ δ/2.

In particular, |z′′ − z| ≤ δ.
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On the other hand, since ReYk(x) = −εkαk Rex, one may verify that

Re z′′ =

j
∑

k=0

(

lk

k
∏

n=0

(−εnαn)
)

+ l−1.

Any value of the above form is equal to −mε0α0+(1+ε0)/2, for somem ∈ N, modulo Z. This
may be proved by induction on j. From the definition of I−1 we note that l−1 = (1 + ε0)/2.
This implies the statement for j = 0. Now assume that the statement is true for all integers
less than j. To prove it for j, one uses the relation εjαj = 1/αj−1 − aj−1 to reduce the
statement to j − 1.

The proof for non-zero values of y is identical to the above one; one only needs to employ
the translation invariance of the sets yIjn. �

Proposition 9.5. For any α ∈ R \Q, and any t ∈ [rα, 1], ω(t) =
tAα. In particular,

• if s > t, s /∈ ω(t),
• the obit of +1 is dense in Aα.

Proof. This is an immediate corollary of Lemma 9.4 and the property in Equation (9.7). �

Proposition 9.6. Let α ∈ R\Q. For every non-empty closed invariant set X of Tα : Aα →
Aα, there is t ∈ [rα, 1] such that X = tAα.

Proof. If α /∈ B and X = {0}, we let t = 0. Otherwise, let X−1 ⊂ I−1 be the lift of X \ {0},
which is a closed set in C. We inductively define the closed sets Xn, for n ≥ 0, according to

Xn+1 = {w ∈ In+1 | Yn+1(w) + (εn+1 + 1)/2 ∈ Xn}.
We consider two cases below.

Case (I) There is N ≥ −1 such that for all n ≥ N , min ImXn ≥ 4.
We define the functions hjn : [0, 1/αn] → [−1,+∞), for n ≥ −1 and j ≥ N +1, as follows.

For n ≥ N , let

h0n(x) = min ImXn − 5.

Then, define hj+1
n as the lift of hjn+1 by Yn+1. That is, for x ∈ [0, 1], let

hj+1
n (x) = ImYn+1(−εn+1x/αn+1 + ihjn+1(−εn+1x/αn+1)),

and then extend hj+1
n over [0, 1/αn] using h

j+1
n (x) = hj+1

n (x+ 1).
We claim that for all n ≥ −1 and all j ≥ N + 1, hj+1

n ≥ hjn. We show this by induction

on j. Let n ≥ N . Since X−1 is invariant under T̃α, Xn+1 is +1-periodic. This implies that
every point on the graph of h0n+1 is at distance at most (5 + 1/2) from some element of
Xn+1. Then, by the uniform contraction of Yn+1 in Lemma 2.2, any point on the graph of
h1n is at distance at most (1/2 + 5) · 0.9 ≤ 5 from some element of Xn. This implies that
h1n ≥ min ImXn − 5 = h0n, for all n ≥ N . Now repeatedly applying the maps Yl, we obtain
the desired property.

By the above paragraph, hjn converges to some function hn : [0, 1/αn] → [−1,+∞], as
j → +∞. Moreover, by the relations in (3.8) and (3.9), for any n ≥ −1 we have

hn(0) = hn(1/αn), hn(x) = hn(x+ 1), for n ≥ −1, x ∈ [0, 1/αn − 1].
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One may repeat the argument in Step 1 of the proof of Proposition 8.7 (replace pjn with hjn)
to conclude that for all n ≥ N and all x ∈ [0, 1/αn], hn(x) ≥ hn(0)− 5/π. Since XN is not
empty, and lies above the graph of hN , there must be x ∈ [0, 1/αN ] such that hN (x) < +∞.
In particular, hN(0) 6= +∞, and hence h−1(0) 6= +∞. Let us introduce y = h−1(0).

We claim that iy ∈ X−1. To see this, fix an arbitrary n ≥ N . There is a net of points
on Xn − 5i, at distance one from one another, which lie on the graph of h0n. Lifting these
points using Yj + lj , we obtain a net of points on the graph of hn−1, which by the uniform
contraction of Yj in Lemma 2.2 must be at distances at most 1 · 0.9n+1 from one another.
Moreover, those points on the graph of hn−1 lie at distances at most 5 · 0.9n+1 from some
elements of X−1. As h

n
−1 → h−1(0), one may conclude that there is a sequence of points in

X−1 which converges to ih−1(0) = iy. Since X−1 is closed, iy ∈ X−1.
Let us consider the set yI−1 and the associated function ybn. We claim that hn ≡ ybn,

on [0, 1/αn], for all n ≥ −1. Recall the values yn ≥ 0 from Equation (9.1), and note that
hn(0) = yn, for all n ≥ −1. Also, recall the functions ybjn : [0, 1/αn] → [−1,+∞]. Since Xn

lies above the graph of hn, for n ≥ N we have

h0n(x) = min ImXn − 5 ≥ min
x∈[0,1/αn]

hn(x)− 5 ≥ hn(0)− 5/π − 5.

On the other hand, hn(0) ≥ h0n(0) = h0n(x), for all x ∈ [0, 1/αn]. Recall that yb0n(x) ≡
yn − 1 = hn(0) − 1, for x ∈ [0, 1/αn]. Therefore, for all n ≥ N and all x ∈ [0, 1/αn],
|h0n(x) − yb0n(x)| ≤ 6. By the uniform contraction of Yl in Lemma 2.2, for all n ≥ −1,
x ∈ [0, 1/αn] and j ≥ N + 1, we must have |hjn(x) − ybjn(x)| ≤ 6 · 0.9j. Taking limits as
j → +∞, we obtain hn(x) ≡ ybn(x).

Since X−1 lies above the graph of h−1, and h−1 = yb−1, we must have

X−1 ⊆ yI−1, if α /∈ B, and X−1 ⊆ {w ∈ yI−1 | Imw ≤ p−1(Rew)}, if α ∈ B.

On the other hand, as iy ∈ X−1, X−1 is closed, and X−1 is invariant under T̃α, the closure

of the orbit of iy under T̃α must be contained in X−1. By virtue of Lemma 9.4, we conclude
that the inclusions in the above equation are equalities.

Case (II) There are arbitrarily large n with min ImXn ≤ 4.
Here, we may introduce h0n(x) ≡ −1, for all n ≥ −1, and define the functions hjn as in

case (I). We note that hjn is an increasing sequence of functions, which converges to some
hn : [0, 1/αn] → [−1,+∞]. Moreover, these functions also enjoy the functional relations
hn(x + 1) = hn(x), for x ∈ [0, 1/αn], and hn(0) = hn(1/αn). Then, as in the above
paragraphs, we must have hn(0) ≤ hn(x)+ 5/π, for all n ≥ 0. Since Xn lies above the graph
of hn, combining with the hypothesis in this case, there must be arbitrarily large n with
hn(0) ≤ 4 + 5/π. By the uniform contraction of Yl, we conclude that h−1(0) = 0. Thus,

0 ∈ X−1. Since X−1 is closed, and invariant under T̃α, the closure of the orbit of 0 must be
in X−1. Using Lemma 9.4, we complete the proof in this case. �

9.4. Topology of the closed invariant subsets. In order to explain the topological prop-
erties of the sets tAα, we use height functions as in Section 8.2 to study the structure
of the sets yI−1. Since each Yn preserves vertical lines, each of Ijn and In, for n ≥ −1
and j ≥ 0, consists of closed half-infinite vertical lines. For n ≥ −1 and j ≥ 0, define
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ybjn : [0, 1/αn] → [−1,+∞) according to

(9.9) yIjn = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ ybjn(Rew)}.
By the relations in (3.8)–(3.9), for all n ≥ −1 and j ≥ 0, ybjn : [0, 1/αn] → [−1,+∞) is
continuous. Moreover, by (9.5) and (9.9), ybj+1

n ≥ ybjn on [0, 1/αn]. Thus, for n ≥ −1, we
may define ybn : [0, 1/αn] → [−1,+∞] as

ybn(x) = lim
j→+∞

ybjn(x) = sup
j≥0

ybjn(x).

The function ybn describes the set In, that is,

(9.10) yIn = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ ybn(Rew)}.
By the definition of the sets yIjn,

ybjn(0) = ybjn(1/αn), and ybjn(x + 1) = ybjn(x) for all
x ∈ [0, 1/αn − 1]. Taking limits as j → +∞, we note that for all n ≥ −1,

(9.11) ybn(0) =
ybn(1/αn),

ybn(x+ 1) = ybn(x), ∀x ∈ [0, 1/αn − 1].

These are the key functional relations required to explain the topology of yI−1.
From Section 8.2, recall the height functions pn : [0, 1/αn] → [−1,+∞), for n ≥ −1.

Proposition 9.7. For every α ∈ R \Q the following hold:

(i) if α /∈ B, for every t ∈ (rα, 1],
tAα is a Cantor bouquet;

(ii) if α ∈ B \ H , for every t ∈ (rα, 1],
tAα is a one-sided hairy Jordan curve.

Proof. One may repeat the proof of Proposition 8.1, replacing bn with ybn, and using the
relations in Equation (9.11) instead of the corresponding ones in Equation (8.3). (Indeed,
one only needs to verify the first and the last paragraphs in the proof of Proposition 8.1.)
That leads to the properties

(a) for all x ∈ [0, 1/αn), lim infs→x+
ybn(s) =

ybn(x);
(b) for all x ∈ (0, 1/αn], lim infs→x−

ybn(s) =
ybn(x);

for each n ≥ −1 and y ≥ 0. In the same way, as in the proof of Proposition 8.6, we also note
that for every n ≥ −1,

(c) if α /∈ B, each of ybn = +∞ and ybn < +∞ hold on a dense subset of [0, 1/αn];
(d) if α ∈ B \H and y < p−1(0), each of ybn = pn and ybn < pn hold on a dense subset

of [0, 1/αn].

Then, one may repeat the proof of Theorem B, using the above properties (a)–(d) to establish
the desired result. �

9.5. Dependence on the parameter.

Proposition 9.8. For every α ∈ R \ Q, the map t 7→ tAα, t ∈ [rα, 1], is continuous with
respect to the Hausdorff metric on compact subsets of C.

Proof. By the definition of tAα, it is enough to show that the map y 7→ yI−1, for y ≥ 0,
is continuous with respect to the Hausdorff distance. To that end, we need to show that
for any y ≥ 0 and any ε > 0, there is δ > 0 such that if |x − y| ≤ δ and x ≥ 0, then
xI−1 ⊂ Bε(

yI−1) and yI−1 ⊂ Bε(
xI−1). Here, Bε(

zI−1) denotes the ε-neighbourhood of
zI−1. Fix an arbitrary y ≥ 0 and ε > 0.

We claim that
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(i) yI−1 = ∪x>y
xI−1,

(ii) if y > 0, yI−1 = ∩x<y
xI−1.

To prove these, it is enough to show that for all t ∈ [0, 1], xb−1(t) → yb−1(t), as x→ y. Let
(xn)n≥−1 and (yn)n≥−1 denote the sequences defined according to Equation (9.1) for the
values x and y respectively. If |x− y| is small enough, |xn − yn| ≤ 1. The inequality | xb0n −
yb0n| ≤ 1 and the uniform contraction in Lemma 2.2 imply that | xbn+1

−1 − ybn+1
−1 | ≤ 0.9n+1.

Since xbn−1(t) → xb−1(t) and
ybn−1(t) → yb−1(t), as n→ ∞, one infers that xb−1(t) → yb−1(t),

as x→ y.
By property (i) above, ∪x>yBε(

xI−1) provides an open cover of yI−1. Note that for any

x > y, Bε(
xI−1) covers all points in

0I−1 above some imaginary value. It follows (choose a
finite cover) that there is x0 > y such that if y < x ≤ x0,

yI−1 ⊂ Bε(
xI−1). On the other

hand, if y > 0, property (ii) implies that there is x1 < y such that for all x1 < x < y, we
have xI−1 ⊂ Bε(

yI−1).
Let δ = min{|x0 − y|, |x1 − y|}. Below assume that |x− y| ≤ δ, for some x ≥ 0.
If x < y, by Equation (9.6), yI−1 ⊂ xI−1 and hence yI−1 ⊂ Bε(

xI−1). If x > y, by the
above paragraph, we have yI−1 ⊂ Bε(

xI−1).
Similarly, if x > y, by Equation (9.6), xI−1 ⊂ yI−1 and hence xI−1 ⊂ Bε(

yI−1). If x < y,
by the above paragraphs, xI−1 ⊂ Bε(

yI−1). �

It would be interesting to know the modulus of continuity of the map t 7→ tAα, t ∈ [rα, 1].
This completes the proof of Theorem C. More precisely, part (i) is proved in Proposi-

tion 9.1. Part (ii) follows from Propositions 9.5 and 9.8. Part (iii) follows from Proposi-
tion 9.6 and Equation (9.8). Parts (iv) and (v) follow from Propositions 9.6 and 9.7. Here,
when α ∈ H , we have rα = 1 and there is nothing to prove.
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