Connectivity of Julia sets of Newton maps: A unified approach

K. Barański N. Fagella
X. Jarque
B. Karpińska
U. Warsaw, U. Barcelona, Technical U. of Warsaw

Parameter problems in analytic dynamics
Imperial College, Iondon June 29, 2016

Newton's method in the complex plane

Given $f(z)$ a complex polynomial, or an entire transcendental map, its Newton's method is defined as

$$
N_{f}(z)=z-\frac{f(z)}{f^{\prime}(z)}
$$

N_{f} is either a rational map or a transcendental meromorphic map, generally with infinitely many poles and singular values.

- It is one of the oldest and best known root-finding algorithms.
- It was one of the main motivations for the classical theory of holomorphic dynamics.
- It belongs to the special class of meromorphic maps: Those with
NO FINITE, NON-ATTRACTING FIXED POINTS

Newton's method in the complex plane

As all complex dynamical systems, its phase space decomposes into two totally invariant sets:

- The Fatou set (or stable set):
- Basins of attraction of attracting or parabolic cycles,
- Siegel discs (irrational rotation domains),
- Herman rings (irrational rotation annuli),
- Wandering domains ($\left.N^{n}(U) \cap N^{m}(U)=\emptyset\right)$ or
- Baker domains ($\left\{N^{p n}\right\}$ converges locally uniformly to ∞, for some $p>0$ and $n \rightarrow \infty$, and ∞ is an essential singularity).
- The Julia set (or chaotic set) = closure of the set of repelling periodic points $=$ closure of prepoles of all orders $=$ boundary between the different stable regions

Newton's method in the complex plane
Newton's method N_{f} for $f(z)$.

$f(z)=z(z-1)(z-a)$
$f(z)=z+e^{z}$

Main Theorem

The study of the distribution and topology of the basins of attraction has recently produced efficient algorithms to locate all roots of P. [Hubbard, Schleicher and Sutherland '04 '11].

- Goal: To present a new unified proof of the following theorem.

Theorem
Let f be a polynomial or an ETF. Then, all Fatou components of its Newton's method N_{f} are simply connected. (Equivalently, $\mathcal{J}\left(N_{f}\right)$ is connected.)

- In particular, there are no Herman rings: only basins and Siegel disks (if f polynomial) or additionally Baker or wandering domains (if f transcendental), all of them simply connected.

History of the problem

- f polynomial
- Partial results from Przytycki '86, Meier '89, Tan Lei ...
- A more general theorem on meromorphic maps by Shishikura'90, closing the problem.
- Shishikura's Theorem
- f entire transcendental; N_{f} Newton's method.
- Mayer + Schleicher '06: Basins of attraction and "virtual immediate basins" are simply connected.
- f entire transcendental, generalization of Shishikura's general theorem:
- Bergweiler + Terglane '96: case where U is a wandering domain.
- $F+$ Jarque + Taixés '08: case where U is an attracting basins or a preperiodic comp.
- $F+$ Jarque + Taixés '11: case where U is a parabolic basin.
- Baranski, F., Jarque, Karpinska '14 case where U is a Baker domain and no Herman rings, closing the problem.

History and goal

- Shishikura's proof (of the general theorem) and its extensions were heavily based on surgery. The transcendental case was quite delicate.
- To conclude the problem, new tools were developed in [BFJK'14]:
- Existence of absorbing regions inside Baker domains (as it is the case for attracting or parabolic basins).
- New strategy for the proof, different from all the previous ones, based on the existence of fixed points under certain situations.

We now use these new tools to give a UNIFIED proof of the connectivity of $\mathcal{J}\left(N_{f}\right)$ in all settings at once - rational and transcendental; DIRECT not as a corollary of the general result; and therefore SIMPLER.

Tools: Existence of absorbing regions (in Baker domains)

Absorbing Theorem ([BFJK'14])
Let F be a transcendental meromorphic map and U be an invariant Baker domain. Then there exists a domain $W \subset U$, which satisfies:
(a) $\bar{W} \subset U$,
(b) $F^{n}(\bar{W})=\overline{F^{n}(W)} \subset W$ for every $n \geq 1$,
(c) $\bigcap_{n=1}^{\infty} F^{n}(\bar{W})=\emptyset$,
(d) W is absorbing in U for F, i.e., for every compact set $K \subset U$, there exists $n_{0} \in \mathbb{N}$ such that $F^{n}(K) \subset W$ for all $n>n_{0}$.
Moreover, F is locally univalent on W.

- The theorem holds for any p-cycle of Baker domains, just taking F^{p}.
- It is well known that basins of attraction contain simply connected absorbing regions.

\rightarrow Idea of the proof

Tools: Existence of absorbing regions

Absorbing regions inside Baker domains, in general, are NOT simply connected (König '99, BFJK '13).

Happy birthday! Per molts anys!! Gefeliciteerd!!!

Theorem (Shishikura'90)
Let g be a rational map. If $\mathcal{J}(g)$ is disconnected, then g has two weakly repelling fixed points (multiplier $\lambda=1$ or $|\lambda|>1$).

- Notice that every rational map has at least one weakly repelling fixed point.
- In the case of Newton maps, infinity is the only non-attracting fixed point and there are no others. Hence $\mathcal{J}(N)$ is connected.
- The proof is based on several different surgery constructions.

- Go back

Existence of absorbing domains

Cowen's Theorem

We have the following commutative diagram [Baker+Pomerenke'79; Cowen'81].

- G holomorphic w/o fixed pts
- T Möbius transf.
- $\Omega \in\{\mathbb{H}, \mathbb{C}\}$
- $V, \varphi(V)$ simply connected
- $\varphi: \mathbb{H} \rightarrow \Omega$ semiconjugacy
- φ univalent in V.

$$
\begin{aligned}
& \varphi(V) \subset \Omega \xrightarrow{T} \Omega \\
& \downarrow \varphi^{-1} \uparrow \varphi \quad \uparrow \varphi \\
& V \subset \mathbb{H} \xrightarrow{G} \mathbb{H} \\
& \downarrow \pi \quad \downarrow \pi \\
& U \xrightarrow{F} U
\end{aligned}
$$

Moreover, $\{\varphi, T, \Omega\}$ depends only on (the speed to infinity of the orbits of) G.
This solves the case of U simply connected, taking π the Riemann map.

Idea of the proof

- In general we cannot guarantee that $\overline{\pi(V)} \subset U$.
- So we define a set $A \subset \varphi(V)$ small enough and absorbing to ensure that $W:=\pi\left(\varphi^{-1}(A)\right)$ has the desired properties.

Defining the set A
 (case $\Omega=\mathbb{H}, T(z)=z+i$)

Defining A
(case $\Omega=\mathbb{H}, T(z)=z+i)$ $\pi \varphi^{-1}(A)$

