Contents

Preface ... VII
Motivation ... VII
Aims, Readership and Book Structure XII
Final Word and Acknowledgments XIV
Description of Contents by Chapter XIX

Abbreviations and Notation XXXV

Part I. BASIC DEFINITIONS AND NO ARBITRAGE

1. Definitions and Notation 1
 1.1 The Bank Account and the Short Rate 2
 1.2 Zero-Coupon Bonds and Spot Interest Rates ... 4
 1.3 Fundamental Interest-Rate Curves 9
 1.4 Forward Rates 11
 1.5 Interest-Rate Swaps and Forward Swap Rates .. 13
 1.6 Interest-Rate Caps/Floors and Swaptions 16

2. No-Arbitrage Pricing and Numeraire Change 23
 2.1 No-Arbitrage in Continuous Time 24
 2.2 The Change-of-Numeraire Technique 26
 2.3 A Change of Numeraire Toolkit
 (Brigo & Mercurio 2001c) 28
 2.3.1 A helpful notation: "DC" 35
 2.4 The Choice of a Convenient Numeraire 37
 2.5 The Forward Measure 38
 2.6 The Fundamental Pricing Formulas 39
 2.6.1 The Pricing of Caps and Floors 40
 2.7 Pricing Claims with Deferred Payoffs 42
 2.8 Pricing Claims with Multiple Payoffs 42
 2.9 Foreign Markets and Numeraire Change 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II. FROM SHORT RATE MODELS TO HJM</td>
<td></td>
</tr>
<tr>
<td>3. One-factor short-rate models</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Introduction and Guided Tour</td>
<td>51</td>
</tr>
<tr>
<td>3.2 Classical Time-Homogeneous Short-Rate Models</td>
<td>57</td>
</tr>
<tr>
<td>3.2.1 The Vasicek Model</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2 The Dothan Model</td>
<td>62</td>
</tr>
<tr>
<td>3.2.3 The Cox, Ingersoll and Ross (CIR) Model</td>
<td>64</td>
</tr>
<tr>
<td>3.2.4 Affine Term-Structure Models</td>
<td>68</td>
</tr>
<tr>
<td>3.2.5 The Exponential-Vasicek (EV) Model</td>
<td>70</td>
</tr>
<tr>
<td>3.3 The Hull-White Extended Vasicek Model</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1 The Short-Rate Dynamics</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2 Bond and Option Pricing</td>
<td>75</td>
</tr>
<tr>
<td>3.3.3 The Construction of a Trinomial Tree</td>
<td>78</td>
</tr>
<tr>
<td>3.4 Possible Extensions of the CIR Model</td>
<td>80</td>
</tr>
<tr>
<td>3.5 The Black-Karasinski Model</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1 The Short-Rate Dynamics</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2 The Construction of a Trinomial Tree</td>
<td>85</td>
</tr>
<tr>
<td>3.6 Volatility Structures in One-Factor Short-Rate Models</td>
<td>86</td>
</tr>
<tr>
<td>3.7 Humped-Volatility Short-Rate Models</td>
<td>92</td>
</tr>
<tr>
<td>3.8 A General Deterministic-Shift Extension</td>
<td>95</td>
</tr>
<tr>
<td>3.8.1 The Basic Assumptions</td>
<td>96</td>
</tr>
<tr>
<td>3.8.2 Fitting the Initial Term Structure of Interest Rates</td>
<td>97</td>
</tr>
<tr>
<td>3.8.3 Explicit Formulas for European Options</td>
<td>99</td>
</tr>
<tr>
<td>3.8.4 The Vasicek Case</td>
<td>100</td>
</tr>
<tr>
<td>3.9 The CIR++ Model</td>
<td>102</td>
</tr>
<tr>
<td>3.9.1 The Construction of a Trinomial Tree</td>
<td>105</td>
</tr>
<tr>
<td>3.9.2 Early Exercise Pricing via Dynamic Programming</td>
<td>106</td>
</tr>
<tr>
<td>3.9.3 The Positivity of Rates and Fitting Quality</td>
<td>106</td>
</tr>
<tr>
<td>3.9.4 Monte Carlo Simulation</td>
<td>109</td>
</tr>
<tr>
<td>3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++)</td>
<td>109</td>
</tr>
<tr>
<td>3.10 Deterministic-Shift Extension of Lognormal Models</td>
<td>110</td>
</tr>
<tr>
<td>3.11 Some Further Remarks on Derivatives Pricing</td>
<td>112</td>
</tr>
<tr>
<td>3.11.1 Pricing European Options on a Coupon-Bearing Bond</td>
<td>112</td>
</tr>
<tr>
<td>3.11.2 The Monte Carlo Simulation</td>
<td>114</td>
</tr>
<tr>
<td>3.11.3 Pricing Early-Exercise Derivatives with a Tree</td>
<td>116</td>
</tr>
<tr>
<td>3.11.4 A Fundamental Case of Early Exercise: Bermudan-Style Swaptions</td>
<td>121</td>
</tr>
<tr>
<td>3.12 Implied Cap Volatility Curves</td>
<td>124</td>
</tr>
<tr>
<td>3.12.1 The Black and Karasinski Model</td>
<td>125</td>
</tr>
<tr>
<td>3.12.2 The CIR++ Model</td>
<td>126</td>
</tr>
<tr>
<td>3.12.3 The Extended Exponential-Vasicek Model</td>
<td>128</td>
</tr>
<tr>
<td>3.13 Implied Swaption Volatility Surfaces</td>
<td>129</td>
</tr>
<tr>
<td>3.13.1 The Black and Karasinski Model</td>
<td>130</td>
</tr>
</tbody>
</table>
Table of Contents

3.13.2 The Extended Exponential-Vasicek Model 131
3.14 An Example of Calibration to Real-Market Data 132

4. Two-Factor Short-Rate Models 137
 4.1 Introduction and Motivation 137
 4.2 The Two-Additive-Factor Gaussian Model G2++ 142
 4.2.1 The Short-Rate Dynamics 143
 4.2.2 The Pricing of a Zero-Coupon Bond 144
 4.2.3 Volatility and Correlation Structures in Two-Factor
 Models .. 148
 4.2.4 The Pricing of a European Option on a Zero-Coupon
 Bond ... 153
 4.2.5 The Analogy with the Hull-White Two-Factor Model 159
 4.2.6 The Construction of an Approximating Binomial Tree. 162
 4.2.7 Examples of Calibration to Real-Market Data 166
 4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++ ... 175
 4.3.1 The Basic Two-Factor CIR2 Model 176
 4.3.2 Relationship with the Longstaff and Schwartz Model
 (LS) .. 177
 4.3.3 Forward-Measure Dynamics and Option Pricing for
 CIR2 .. 178
 4.3.4 The CIR2++ Model and Option Pricing 179

5. The Heath-Jarrow-Morton (HJM) Framework 183
 5.1 The HJM Forward-Rate Dynamics 185
 5.2 Markovianity of the Short-Rate Process 186
 5.3 The Ritchken and Sankarasubramanian Framework 187
 5.4 The Mercurio and Moraleda Model 191

Part III. MARKET MODELS

6. The LIBOR and Swap Market Models (LFM and LSM) 195
 6.1 Introduction .. 195
 6.2 Market Models: a Guided Tour 196
 6.3 The Lognormal Forward-LIBOR Model (LFM) 207
 6.3.1 Some Specifications of the Instantaneous Volatility of
 Forward Rates ... 210
 6.3.2 Forward-Rate Dynamics under Different Numeraires 213
 6.4 Calibration of the LFM to Caps and Floors Prices 220
 6.4.1 Piecewise-Constant Instantaneous-Volatility Structures 223
 6.4.2 Parametric Volatility Structures 224
 6.4.3 Cap Quotes in the Market 225
 6.5 The Term Structure of Volatility 226
 6.5.1 Piecewise-Constant Instantaneous Volatility Structures 228
Table of Contents

6.5.2 Parametric Volatility Structures .. 231
6.6 Instantaneous Correlation and Terminal Correlation 234
6.7 Swaptions and the Lognormal Forward-Swap Model (LSM) 237
 6.7.1 Swaptions Hedging ... 241
 6.7.2 Cash-Settled Swaptions ... 243
6.8 Incompatibility between the LFM and the LSM 244
6.9 The Structure of Instantaneous Correlations 246
 6.9.1 Some convenient full rank parameterizations 248
 6.9.2 Reduced-rank formulations: Rebonato’s angles and eigen-
values zeroing .. 250
 6.9.3 Reducing the angles ... 259
6.10 Monte Carlo Pricing of Swaptions with the LFM 264
6.11 Monte Carlo Standard Error ... 266
6.12 Monte Carlo Variance Reduction: Control Variate Estimator 269
6.13 Rank-One Analytical Swaption Prices 271
6.14 Rank-r Analytical Swaption Prices 277
6.15 A Simpler LFM Formula for Swaptions Volatilities 281
6.16 A Formula for Terminal Correlations of Forward Rates 284
6.17 Calibration to Swaptions Prices ... 287
6.18 Instantaneous Correlations: Inputs (Historical Estimation) or
 Outputs (Fitting Parameters)? ... 290
6.19 The exogenous correlation matrix 291
 6.19.1 Historical Estimation ... 292
 6.19.2 Pivot matrices ... 295
6.20 Connecting Caplet and $S \times 1$-Swaption Volatilities 300
6.21 Forward and Spot Rates over Non-Standard Periods 307
 6.21.1 Drift Interpolation .. 308
 6.21.2 The Bridging Technique ... 310

7. Cases of Calibration of the LIBOR Market Model 313
 7.1 Inputs for the First Cases ... 315
 7.2 Joint Calibration with Piecewise-Constant Volatilities as in
 TABLE 5 .. 315
 7.3 Joint Calibration with Parameterized Volatilities as in For-
 mulation 7 .. 319
 7.4 Exact Swaptions “Cascade” Calibration with Volatilities as
 in TABLE 1 .. 322
 7.4.1 Some Numerical Results 330
 7.5 A Pause for Thought .. 337
 7.5.1 First summary .. 337
 7.5.2 An automatic fast analytical calibration of LFM to
 swaptions. Motivations and plan 338
 7.6 Further Numerical Studies on the Cascade Calibration Algo-
 rithm ... 340
Table of Contents

7.6.1 Cascade Calibration under Various Correlations and Ranks .. 342
7.6.2 Cascade Calibration Diagnostics: Terminal Correlation and Evolution of Volatilities 346
7.6.3 The interpolation for the swaption matrix and its impact on the CCA 349
7.7 Empirically efficient Cascade Calibration .. 351
 7.7.1 CCA with Endogenous Interpolation and Based Only on Pure Market Data 352
 7.7.2 Financial Diagnostics of the RCCAEI test results .. 359
 7.7.3 Endogenous Cascade Interpolation for missing swaptions volatilities quotes 364
 7.7.4 A first partial check on the calibrated σ parameters stability 364
7.8 Reliability: Monte Carlo tests ... 366
7.9 Cascade Calibration and the cap market ... 369
7.10 Cascade Calibration: Conclusions ... 372

8. Monte Carlo Tests for LFM Analytical Approximations .. 377
 8.1 First Part. Tests Based on the Kullback Leibler Information (KLI) 378
 8.1.1 Distance between distributions: The Kullback Leibler information 378
 8.1.2 Distance of the LFM swap rate from the lognormal family of distributions 381
 8.1.3 Monte Carlo tests for measuring KLI .. 384
 8.1.4 Conclusions on the KLI-based approach .. 391
 8.2 Second Part: Classical Tests .. 392
 8.3 The “Testing Plan” for Volatilities ... 392
 8.4 Test Results for Volatilities .. 396
 8.4.1 Case (1): Constant Instantaneous Volatilities ... 396
 8.4.2 Case (2): Volatilities as Functions of Time to Maturity .. 401
 8.4.3 Case (3): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity ... 410
 8.5 The “Testing Plan” for Terminal Correlations ... 421
 8.6 Test Results for Terminal Correlations .. 427
 8.6.1 Case (i): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Typical Rank-Two Correlations 427
 8.6.2 Case (ii): Constant Instantaneous Volatilities, Typical Rank-Two Correlations 430
 8.6.3 Case (iii): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Some Negative Rank-Two Correlations 432
8.6.4 Case (iv): Constant Instantaneous Volatilities, Some Negative Rank-Two Correlations 438
8.6.5 Case (v): Constant Instantaneous Volatilities, Perfect Correlations, Upwardly Shifted Φ’s 439
8.7 Test Results: Stylized Conclusions 442

Part IV. THE VOLATILITY SMILE

9. Including the Smile in the LFM 447
 9.1 A Mini-tour on the Smile Problem 447
 9.2 Modeling the Smile 450

10. Local-Volatility Models 453
 10.1 The Shifted-Lognormal Model 454
 10.2 The Constant Elasticity of Variance Model 456
 10.3 A Class of Analytically-Tractable Models 459
 10.4 A Lognormal-Mixture (LM) Model 463
 10.5 Forward Rates Dynamics under Different Measures 467
 10.5.1 Decorrelation Between Underlying and Volatility 469
 10.6 Shifting the LM Dynamics 469
 10.7 A Lognormal-Mixture with Different Means (LMDM) 471
 10.8 The Case of Hyperbolic-Sine Processes 473
 10.9 Testing the Above Mixture-Models on Market Data 475
 10.10A Second General Class 478
 10.11A Particular Case: a Mixture of GBM’s 483
 10.12 An Extension of the GBM Mixture Model Allowing for Implied Volatility Skews 486
 10.13A General Dynamics à la Dupire (1994) 489

11. Stochastic-Volatility Models 495
 11.1 The Andersen and Brotherton-Ratcliffe (2001) Model 497
 11.3 The Piterbarg (2003) Model 504
 11.5 The Joshi and Rebonato (2003) Model 513

12. Uncertain-Parameter Models 517
 12.1 The Shifted-Lognormal Model with Uncertain Parameters (SLMUP) 519
 12.1.1 Relationship with the Lognormal-Mixture LVFM 520
 12.2 Calibration to Caplets 520
 12.3 Swaption Pricing 522
 12.4 Monte-Carlo Swaption Pricing 524
 12.5 Calibration to Swaptions 526
Part V. EXAMPLES OF MARKET PAYOFFS

13. Pricing Derivatives on a Single Interest-Rate Curve
 13.1 In-Arrears Swaps
 13.2 In-Arrears Caps
 13.2.1 A First Analytical Formula (LFM)
 13.2.2 A Second Analytical Formula (G2++)
 13.3 Autocaps
 13.4 Caps with Deferred Caplets
 13.4.1 A First Analytical Formula (LFM)
 13.4.2 A Second Analytical Formula (G2++)
 13.5 Ratchet Caps and Floors
 13.5.1 Analytical Approximation for Ratchet Caps with the LFM
 13.6 Ratchets (One-Way Floaters)
 13.7 Constant-Maturity Swaps (CMS)
 13.7.1 CMS with the LFM
 13.7.2 CMS with the G2++ Model
 13.8 The Convexity Adjustment and Applications to CMS
 13.8.1 Natural and Unnatural Time Lags
 13.8.2 The Convexity-Adjustment Technique
 13.8.3 Deducing a Simple Lognormal Dynamics from the Adjustment
 13.9 Average Rate Caps
 13.10 Captions and Floortions
 13.11 Zero-Coupon Swaptions
 13.12 Eurodollar Futures
 13.12.1 The Shifted Two-Factor Vasicek G2++ Model
 13.12.2 Eurodollar Futures with the LFM
 13.13 LFM Pricing with “In-Between” Spot Rates
 13.13.1 Accrual Swaps
 13.13.2 Trigger Swaps
 13.14 LFM Pricing with Early Exercise and Possible Path Dependence
 13.15 LFM: Pricing Bermudan Swaptions
 13.15.1 Least Squared Monte Carlo Approach
 13.15.2 Carr and Yang’s Approach
Table of Contents

13.15.3 Andersen's Approach ... 592
13.15.4 Numerical Example ... 595
13.16 New Generation of Contracts 601
 13.16.1 Target Redemption Notes 602
 13.16.2 CMS Spread Options .. 603

14. Pricing Derivatives on Two Interest-Rate Curves 607
 14.1 The Attractive Features of G2++ for Multi-Curve Payoffs 608
 14.1.1 The Model ... 608
 14.1.2 Interaction Between Models of the Two Curves “1” and “2” ... 610
 14.1.3 The Two-Models Dynamics under a Unique Convenient Forward Measure ... 611
 14.2 Quanto Constant-Maturity Swaps 613
 14.2.1 Quanto CMS: The Contract 613
 14.2.2 Quanto CMS: The G2++ Model 615
 14.2.3 Quanto CMS: Quanto Adjustment 621
 14.3 Differential Swaps .. 623
 14.3.1 The Contract .. 623
 14.3.2 Differential Swaps with the G2++ Model 624
 14.3.3 A Market-Like Formula 626
 14.4 Market Formulas for Basic Quanto Derivatives 626
 14.4.1 The Pricing of Quanto Caplets/Floorlets 627
 14.4.2 The Pricing of Quanto Caps/Floors 628
 14.4.3 The Pricing of Differential Swaps 629
 14.4.4 The Pricing of Quanto Swaptions 630
 14.5 Pricing of Options on two Currency LIBOR Rates 633
 14.5.1 Spread Options .. 635
 14.5.2 Options on the Product 637
 14.5.3 Trigger Swaps ... 638
 14.5.4 Dealing with Multiple Dates 639

Part VI. INFLATION

15. Pricing of Inflation-Indexed Derivatives 643
 15.1 The Foreign-Currency Analogy 644
 15.2 Definitions and Notation 645
 15.3 The JY Model ... 646

16. Inflation-Indexed Swaps .. 649
 16.1 Pricing of a ZCIIS .. 649
 16.2 Pricing of a YYIIS .. 651
 16.3 Pricing of a YYIIS with the JY Model 652
 16.4 Pricing of a YYIIS with a First Market Model 654
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5 Pricing of a YYIIS with a Second Market Model</td>
<td>657</td>
</tr>
<tr>
<td>17. Inflation-Indexed Caplets/Floorlets</td>
<td>661</td>
</tr>
<tr>
<td>17.1 Pricing with the JY Model</td>
<td>661</td>
</tr>
<tr>
<td>17.2 Pricing with the Second Market Model</td>
<td>663</td>
</tr>
<tr>
<td>17.3 Inflation-Indexed Caps</td>
<td>665</td>
</tr>
<tr>
<td>18. Calibration to market data</td>
<td>669</td>
</tr>
<tr>
<td>19. Introducing Stochastic Volatility</td>
<td>673</td>
</tr>
<tr>
<td>19.1 Modelling Forward CPI's with Stochastic Volatility</td>
<td>674</td>
</tr>
<tr>
<td>19.2 Pricing Formulae</td>
<td>676</td>
</tr>
<tr>
<td>19.2.1 Exact Solution for the Uncorrelated Case</td>
<td>677</td>
</tr>
<tr>
<td>19.2.2 Approximated Dynamics for Non-zero Correlations</td>
<td>680</td>
</tr>
<tr>
<td>19.3 Example of Calibration</td>
<td>681</td>
</tr>
<tr>
<td>20. Pricing Hybrids with an Inflation Component</td>
<td>689</td>
</tr>
<tr>
<td>20.1 A Simple Hybrid Payoff</td>
<td>689</td>
</tr>
<tr>
<td>Part VII. CREDIT</td>
<td></td>
</tr>
<tr>
<td>21. Introduction and Pricing under Counterparty Risk</td>
<td>695</td>
</tr>
<tr>
<td>21.1 Introduction and Guided Tour</td>
<td>696</td>
</tr>
<tr>
<td>21.1.1 Reduced form (Intensity) models</td>
<td>697</td>
</tr>
<tr>
<td>21.1.2 CDS Options Market Models</td>
<td>699</td>
</tr>
<tr>
<td>21.1.3 Firm Value (or Structural) Models</td>
<td>702</td>
</tr>
<tr>
<td>21.1.4 Further Models</td>
<td>704</td>
</tr>
<tr>
<td>21.1.5 The Multi-name picture: FtD, CDO and Copula Functions</td>
<td>705</td>
</tr>
<tr>
<td>21.1.6 First to Default (FtD) Basket</td>
<td>705</td>
</tr>
<tr>
<td>21.1.7 Collateralized Debt Obligation (CDO) Tranches</td>
<td>707</td>
</tr>
<tr>
<td>21.1.8 Where can we introduce dependence?</td>
<td>708</td>
</tr>
<tr>
<td>21.1.9 Copula Functions</td>
<td>710</td>
</tr>
<tr>
<td>21.1.10 Dynamic Loss models</td>
<td>718</td>
</tr>
<tr>
<td>21.1.11 What data are available in the market?</td>
<td>719</td>
</tr>
<tr>
<td>21.2 Defaultable (corporate) zero coupon bonds</td>
<td>723</td>
</tr>
<tr>
<td>21.2.1 Defaultable (corporate) coupon bonds</td>
<td>724</td>
</tr>
<tr>
<td>21.3 Credit Default Swaps and Defaultable Floaters</td>
<td>724</td>
</tr>
<tr>
<td>21.3.1 CDS payoffs: Different Formulations</td>
<td>725</td>
</tr>
<tr>
<td>21.3.2 CDS pricing formulas</td>
<td>727</td>
</tr>
<tr>
<td>21.3.3 Changing filtration: (\mathcal{F}_t) without default VS complete (\mathcal{G}_t)</td>
<td>728</td>
</tr>
<tr>
<td>21.3.4 CDS forward rates: The first definition</td>
<td>730</td>
</tr>
</tbody>
</table>
22. **Intensity Models** .. 757
 22.1 Introduction and Chapter Description 757
 22.2 Poisson processes ... 759
 22.2.1 Time homogeneous Poisson processes 760
 22.2.2 Time inhomogeneous Poisson Processes 761
 22.2.3 Cox Processes ... 763
 22.3 CDS Calibration and Implied Hazard Rates/ Intensities 764
 22.4 Inducing dependence between Interest-rates and the default event ... 776
 22.5 The Filtration Switching Formula: Pricing under partial information ... 777
 22.6 Default Simulation in reduced form models 778
 22.6.1 Standard error ... 781
 22.6.2 Variance Reduction with Control Variate 783
 22.7 Stochastic Intensity: The SSRD model 785
 22.7.1 A two-factor shifted square-root diffusion model for intensity and interest rates (Brigo and Alfonsi (2003)) . 786
 22.7.2 Calibrating the joint stochastic model to CDS: Separability... 789
 22.7.3 Discretization schemes for simulating \((\lambda, r)\) 797
 22.7.4 Study of the convergence of the discretization schemes for simulating CIR processes (Alfonsi (2005)) 801
 22.7.5 Gaussian dependence mapping: A tractable approximated SSRD.. 812
 22.7.6 Numerical Tests: Gaussian Mapping and Correlation Impact ... 815
 22.7.7 The impact of correlation on a few “test payoffs” 817
 22.7.8 A pricing example: A Cancellable Structure 818
 22.7.9 CDS Options and Jamshidian’s Decomposition 820
 22.7.10 Bermudan CDS Options .. 830
22.8 Stochastic diffusion intensity is not enough: Adding jumps
- The JCIR(++) Model .. 830
- 22.8.1 The jump-diffusion CIR model (JCIR) 831
- 22.8.2 Bond (or Survival Probability) Formula......................... 832
- 22.8.3 Exact calibration of CDS: The JCIR++ model 833
- 22.8.4 Simulation .. 833
- 22.8.5 Jamshidian’s Decomposition 834
- 22.8.6 Attaining high levels of CDS implied volatility 836
- 22.8.7 JCIR(++) models as a multi-name possibility 837

22.9 Conclusions and further research 838

23. CDS Options Market Models 841
- 23.1 CDS Options and Callable Defaultable Floaters 844
 - 23.1.1 Once-callable defaultable floaters 846
- 23.2 A market formula for CDS options and callable defaultable
 floaters ... 847
 - 23.2.1 Market formulas for CDS Options 847
 - 23.2.2 Market Formula for callable DFRN 849
 - 23.2.3 Examples of Implied Volatilities from the Market 852
- 23.3 Towards a Completely Specified Market Model 854
 - 23.3.1 First Choice. One-period and two-period rates 855
 - 23.3.2 Second Choice: Co-terminal and one-period CDS rates
 market model ... 860
 - 23.3.3 Third choice. Approximation: One-period CDS rates
 dynamics ... 861
 - 23.4 Hints at Smile Modeling .. 863
- 23.5 Constant Maturity Credit Default Swaps (CMCDS) with the
 market model ... 864
 - 23.5.1 CDS and Constant Maturity CDS 864
 - 23.5.2 Proof of the main result 867
 - 23.5.3 A few numerical examples 869

Part VIII. APPENDICES

A. Other Interest-Rate Models 877
- A.1 Brennan and Schwartz’s Model 877
- A.2 Balduzzi, Das, Foresi and Sundaram’s Model 878
- A.3 Flesaker and Hughston’s Model 879
- A.4 Rogers’s Potential Approach 881
- A.5 Markov Functional Models 881
LIV Table of Contents

B. Pricing Equity Derivatives under Stochastic Rates 883
 B.1 The Short Rate and Asset-Price Dynamics 883
 B.1.1 The Dynamics under the Forward Measure 886
 B.2 The Pricing of a European Option on the Given Asset 888
 B.3 A More General Model 889
 B.3.1 The Construction of an Approximating Tree for r .. 890
 B.3.2 The Approximating Tree for S 892
 B.3.3 The Two-Dimensional Tree 893

C. A Crash Intro to Stochastic Differential Equations and Poisson Processes .. 897
 C.1 From Deterministic to Stochastic Differential Equations 897
 C.2 Ito's Formula ... 904
 C.3 Discretizing SDEs for Monte Carlo: Euler and Milstein Schemes 906
 C.4 Examples ... 908
 C.5 Two Important Theorems 910
 C.6 A Crash Intro to Poisson Processes 913
 C.6.1 Time inhomogeneous Poisson Processes 915
 C.6.2 Doubly Stochastic Poisson Processes (or Cox Processes) 916
 C.6.3 Compound Poisson processes 917
 C.6.4 Jump-diffusion Processes 918

D. A Useful Calculation 919

E. A Second Useful Calculation 921

F. Approximating Diffusions with Trees 925

G. Trivia and Frequently Asked Questions 931

H. Talking to the Traders 935

References .. 951

Index ... 967