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Module 5 : 24th March

Power and Sample Size

• Study Design

• Power and Sample size

• Optimal Design

• Protocols
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SECTION 1.

THE CONDUCT OF EXPERIMENTAL
STUDIES AND TRIALS

Planning of experimental animal or human studies must take into ac-
count many considerations

• aims and objectives

• ethics

• design

• data collection

• statistical analysis and reporting
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1.1 CLINICAL TRIALS AND STUDIES

A (clinical) trial is a designed study comparing the effect and value of
treatment/interventions against a control in human subjects.

Typically,

• experimental units - “subjects” - are followed forward in time

• one or more treatments - “interventions”

• involves therapeutic agent, devices, regimens or procedures

• has a control group (similar to the intervention group at start of
study)

• the control group is selected to be as similar to the study group as is
possible in virtually all respects
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The ideal clinical trial includes

• randomization of subjects

• blinding of subjects and care providers

Randomization allows for the equal allocation of potential effect modifiers
and confounders between the two study groups; factors which are possibly
unknown or unpredictable at the onset of the study

Blinding attempts to eliminate bias which might be introduced by either
the participating subject or care providers
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Ethics: Three fundamental ethical principles regarding research:

• respect for animals/persons;

— for humans, individuals should be treated as autonomous

— those with diminished autonomy need protection.

• worth and benefit

— prioritize the well being of the individual

— benefit for society/class of patients

• justice - treat persons fairly; share the risks/benefits.
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Research design issues:

• Randomization

— may be a problem if the treatment is known (or perceived ) to
be superior to placebo

— trial may be unethical

• Placebo control

— problems of an acceptable placebo

— deprivation of treatment

• Monitoring of the trial

— how to handle available data as it accrues

— monitoring for safety
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1.2 ESSENTIAL COMPONENTS

• Review of the scientific background for the study

— previous animal investigations/laboratory work

— preliminary evidence from case reports or case series

• Development of specific written hypothesis/hypotheses to be tested

— ad hoc testing for statistical significance is unjustifiable

— planned comparisons preferred over post hoc

— multiple comparison issues and control of the Type I error
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• What is the basic study design?

— randomized (controlled) trial

— non-randomized concurrent controlled study

— historical controls - non-randomized, non-concurrent

— crossover designs - subject serves as own control

— withdrawal studies - assesses response to withdrawal of inter-
vention or a reduction of dosage

— factorial design - assesses the response to more than one type of
intervention

• Study population

— specific inclusion and exclusion criteria are necessary

— sample size/power calculations/curves
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• Statistical Analysis

— what is/are the dependent and independent variables?

— how will bias be controlled?

— are there specific effect modifiers (risk factors) and/or con-
founders which need to be considered ?

— what measurements are needed

— how is the validity/accuracy of the measure to be confirmed ?

— is the proposed sample size practicable ?

— control of Type I and Type II errors

∗ effect size and estimate of variances (signal/noise ratio)

∗ If a significant difference exists between groups can it in fact
be demonstrated ?

∗ does the study have adequate power ?

— How will attrition/loss to follow-up be handled?
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1.3 ERROR AND VALIDITY

1.3.1 SOURCES OF ERROR

1. Random error - handled with the use of statistical tests and methods

2. Systematic error - uncontrolled error which may change the results
and/or interpretation of research

3. Specific types of error:

• Bias - any systematic error that results in an incorrect estimate
of the association between exposure (intervention) and the risk
of disease e.g. selection bias, recall bias, lead time bias
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• Confounding - when the effect of the exposure (intervention)
upon disease is altered by some other unaccounted for factor

— e.g. in a study of the effect of exercise on the occurrence of
coronary artery disease, age could be a confounder

— Confounding may be adjusted for in the study design or in
the final analysis of the data.

— Controlled by:

∗ Randomization: assures equal distribution of confounders
between study and control groups

∗ Restriction : subjects are restricted by the levels of a
known confounder

∗ Matching: potential confounding factors are equally
distributed between the study groups

∗ Stratification : (relative) risk estimates are computed
for the various levels of potential confounders
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• Effect Modification - when the association between exposure
(intervention) and disease varies by the level of a third factor.

— This represents an inconsistent distortion or nuisance effect.

— Cannot adjust for effect modification

— can compare risk estimates by levels of the effect modifier

— cannot control for effect modification in the analysis
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1.3.2 VALIDITY

• Internal Validity Is there in fact a causal relationship between the
experimental treatment (independent variable) and the observed
effect (dependent variable)?

• Validity of Cause

— infers that the observed effect is attributable to the specific ex-
perimental intervention and not other variables

— infers that the hypothetical dependent variable is accurately re-
flected by the measured dependent variable

• External Validity : could the observed effect be produced by in
other settings, with other populations, at other times...

• Conclusion Validity : Are the conclusions reached justifiable on
statistical grounds?
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THREADS TO VALIDITY

1. Validity of Cause

• psychology

— being part of a study may cause an increase in the ob-
served/reported magnitude of effect (Hawthorne effect)

— self-fulfilling studies: expectations of the experimenter in-
fluence how data are viewed

— subject apprehension (perceived expectation of response)

• systematic/random variability

— single (variable) measurement of the outcome

— multiple measures may improve strength of study

— aim to reduce standard errors

• weak treatment (small effect size)

• application of intervention of treatment (Integrity)
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2. Validity of Effect

• Inadequate theoretical analysis of the variables/concepts stud-
ied.

• Small number of effects measured.

3. Internal Validity

• unexpected systemic change (subject/experimenter based) may
explain the observed change.

• testing on multiple occasions may change the results

• extreme observations may be only random events.
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• selection error or bias

• loss of subjects before the end of the study

— explanation for losses/dropouts ?

— ignorable/non-ignorable response

— missing at random/completely at random.

• introduction of experimental treatment for all patients (compen-
satory equalization of treatment).

• Subjects who perceive that they are receiving a less desirable
treatment may work harder (“compensatory rivalry”).

• Subjects who perceive that they are receiving a less desirable
treatment give up effect (“resentful demoralization”).
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4. External Validity

• Treatment does not generalize

— to other situation.

— to other populations.

— to other experimental/treatment settings.

— to other time periods.

— when used in isolation

5. Statistical Conclusion Validity

• Low statistical power

• Violations of assumptions of statistical tests

• Multiple testing

• Low reliability of measures
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1.4 RANDOMIZATION

The basic objectives of randomization are to

• eliminate biases due to subject/group assignment

• produce comparable groups

• make statistical analysis more valid

• achieve balance in the study group composition

A randomized trial differs from an observational (sampling, population-
based) study as the composition of the study groups are determined by the
experimenter
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Lack of balance can compromise properties of proposed statistical tests.(for
example, power)

“The importance of randomization cannot be over stressed.
Randomization is necessary for conclusions drawn from
the experiment to be correct, unambiguous and defen-
sible.”

http://www.itl.nist.gov/div898/handbook/pri/section7/pri7.htm
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The objective of balance can be achieved using a number of approaches

Consider the two treatment group (groups A and B) case:

• simple randomization

— for fixed sample size n, allocate n/2 (selected at random) to each
group

— complete randomization: allocate each individual to group 1
with probability 1/2

• biased randomization

— may wish to allocate unequal numbers (in accordance with power
considerations)

— allocate with probability p and 1− p to the two groups.
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• (balanced) permuted block randomization

— simple randomization does not guarantee a balance over time

— instead

∗ divide study base into K blocks of size 2m say

∗ (simple) randomize each block with m into each of the two
groups

∗ maximum imbalance at any time is m

— for example: let m = 2, so that there are
(
4

2

)
= 6 possible

patterns of allocation

AABB,ABAB,BAAB,BBAA,BABA,ABBA

- allocate individuals in blocks of 4, according to one of these
six patterns chosen at random.
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• stratified randomization

— may desire to have treatment groups balanced with respect to
risk factors/confounders

— proceed as above for identified strata

• dependent/response dependent randomization

— can balance the design dynamically (dependent on the current
group sizes)

— can balance the design dependent on response or other external
factors
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1.5 INFERENCE FOR TYPES OF STUDY

The method of data collection can sometimes influence how the data are
subsequently analyzed. Typically, we wish to examine the variability in
a incidence of the response event with some exposure factor, possibly
with the presence of confounding factors.

In clinical, medical or epidemiological studies, there are two types of study;

• OBSERVATIONAL : where the exposure arises naturally, and
the experimenter attempts to detect differences in response

• EXPERIMENTAL : where the exposure is determined by the
experimenter

The type of study used influences how the data are analyzed.
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1.5.1 OBSERVATIONAL STUDIES

Consider the following representation of an observational study; let

• S denote the inclusion of a subject in the study,

• E denote exposure

• F denote incidence; if F occurs, then we observe a case.

We will try to examine variation in incidence rate across different levels
of the exposure factor.

Using probability theory

P (E ∩ F ∩ S) = P (E)P (F |E)P (S|E ∩ F ).
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We will use this factorization to deduce estimable quantities from different
observational studies that comprise the S “margin” of a 2 × 2 × 2 events
table with the recorded number of observations as follows; for the events

E ∩ S E′ ∩ S
F ∩ S E ∩ F ∩ S E′ ∩ F ∩ S
F ′ ∩ S E ∩ F ′ ∩ S E′ ∩ F ′ ∩ S

and the counts data

E ∩ S E′ ∩ S TOTAL
F ∩ S n11 n12 n1.
F ′ ∩ S n21 n22 n2.

TOTAL n.1 n.2 n..
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1.5.2 COHORT STUDY

In a cohort study, the defining feature is that E and F are independent
of S so that

P (E ∩ F ∩ S) = P (E)P (F |E)P (S) =⇒
E E′

F E ∩ F E′ ∩ F
F ′ E ∩ F ′ E′ ∩ F ′

as the S and S′ margins are identical.

It follows that all of the following quantities are estimable:
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• RATES OF EXPOSURE AND INCIDENCE

θ = P (E) = P (E ∩ F ) + P (E ∩ F ′)

and

φ = P (F ) = P (E ∩ F ) + P (E′ ∩ F )

with estimates

θ̂ =
n.1
n..

φ̂ =
n1.
n..
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• INCIDENCE RATES IN THE EXPOSED/UNEXPOSED
GROUPS

π1 = P (F |E) =
P (E ∩ F )

P (E)

π0 = P (F |E′) =
P (E′ ∩ F )

P (E′)

with estimates

π̂1 =
n11
n.1

π̂0 =
n12
n.2
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• THE RELATIVE RISK

ρ =
π1
π0

=
P (E ∩ F )/P (E)

P (E′ ∩ F )/P (E′)

with estimate

ρ̂ =
π̂1
π̂0

=
n11/n.1
n12/n.2
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• EXPOSURERATES IN THE CASE ANDCONTROLGROUPS

γ1 = P (E|F ) =
P (E ∩ F )

P (F )

γ0 = P (E|F ′) =
P (E ∩ F ′)

P (F ′)

with estimates

γ̂1 =
n11
n1.

γ̂0 =
n21
n2.
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• ODDS ON INCIDENCE IN THE EXPOSED AND UNEX-
POSED GROUPS

ω1 =
π1

1− π1
=

P (E ∩ F )

P (E ∩ F ′)

ω0 =
π0

1− π0
=

P (E′ ∩ F )

P (E′ ∩ F ′)

with estimates

ω̂1 =
π̂1

1− π̂1
=

n11
n21

ω̂0 =
π̂0

1− π̂0
=

n12
n22
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• ODDS ON EXPOSURE IN THE CASE AND CONTROL
GROUPS

Ω1 =
γ1

1− γ1
=

P (E ∩ F )

P (E′ ∩ F )

Ω0 =
γ0

1− γ
0

=
P (E ∩ F ′)

P (E′ ∩ F ′)

with estimates

Ω̂1 =
γ̂1

1− γ̂1
=

n11
n12

Ω̂0 =
γ̂0

1− γ̂0
=

n21
n22
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• ODDS RATIO

ψ =
P (F |E)/P (F ′|E)

P (F |E′)/P (F ′|E′)
=

P (E ∩ F )/P (E ∩ F ′)

P (E′ ∩ F )/P (E′ ∩ F ′)
=

ω1
ω0

=
π1/ (1− π1)

π0/ (1− π0)

or equivalently

ψ =
P (E|F )/P (E′|F )

P (E|F ′)/P (E′|F ′) =
P (E ∩ F )/P (E′ ∩ F )

P (E ∩ F ′)/P (E′ ∩ F ′)
=

Ω1
Ω0

=
γ1/ (1− γ1)

γ0/ (1− γ0)

with estimate

ψ̂ =
n11n22
n12n21
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1.5.3 CASE-CONTROL STUDY

In a case-control study, we look for incidences or cases and automatically
include them in the study, and then we find a set of controls who do not
have the “case response” and include them also. The defining probabilistic
feature is that E is independent of S given F and given F ′, but

P (S|E ∩ F ) = P (S|E′ ∩ F ) P (S|E ∩ F ′) = P (S|E′ ∩ F ′)
P (E|S ∩ F ) = P (E|S′ ∩ F ) P (E|S ∩ F ′) = P (E|S′ ∩ F ′)

In practice the design proceeds as follows; Our assumption of conditional
independence of E and S given F means corresponds to an assumption of
no probabilistic dependence between exposure and inclusion in the study.

The case-control study design is perhaps more efficient, but does not allow
the full range of inferences to be made.
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It can be shown that only the following quantities are estimable in
the absence of other knowledge

• EXPOSURERATES IN THE CASE ANDCONTROLGROUPS
with estimates

γ̂1 =
n11
n1.

γ̂0 =
n21
n2.

• ODDS ON EXPOSURE IN THE CASE AND CONTROL
GROUPS with estimates

Ω̂1 =
γ̂1

1− γ̂1
=

n11
n12

Ω̂0 =
γ̂0

1− γ̂0
=

n21
n22

• ODDS RATIO with estimate

ψ̂ =
n11n22
n12n21
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EXAMPLE: LIMITATION OF CASE CONTROL STUDIES
An illustration of why case-control studies are limited in their usefulness
is presented below; fixing γ1 = 0.2 and γ0 = 0.1 and changing the size of
the CONTROLS group. In Table 1

E ∩ S E′ ∩ S TOTAL
CASES 20 80 100

CONTROLS 100 900 1000

TOTAL 120 980 1100

and in Table 2

E ∩ S E′ ∩ S TOTAL
CASES 20 80 100

CONTROLS 500 4500 5000

TOTAL 520 4580 5100

37



Using Statistics in Research. Spring 2004

Then clearly if we estimate γ1 and γ0, we recover the true values 0.2 and
0.1, and in each case

TABLE 1: ψ̂ =
20× 900

80× 100
=

9

4
TABLE 2: ψ̂ =

20× 4500

80× 500
=

9

4

but if we try to estimate, for example π1 and π0 in the same way that we
would for a cohort study, we get different results from the two tables

TABLE 1: π̂1 =
20

120
=

1

6
π̂0 =

80

980
=

4

49

TABLE 2: π̂1 =
20

520
=

1

26
π̂0 =

80

4580
=

4

229

The row totals, corresponding to the total numbers of cases and controls,
n1. and n2., are fixed by the experimenter, and we do not have a random
sample of exposed and unexposed individuals from the population.
In a cohort study, only the total cohort size, n.., is fixed.
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1.5.4 STANDARD ERRORS FOR EFFECT SIZES

In a 2×2 table analysis, our estimates of key parameters are functions of the
counts in the table; these estimates have associated (estimated) standard
errors that allow construction of confidence intervals for the parameters,
and hence permit hypothesis testing.

Recall the counts data for individuals in the study

E E′ TOTAL
F n11 n12 n1.
F ′ n21 n22 n2.

TOTAL n.1 n.2 n..

Then we have the following estimates and estimated standard errors for
effect sizes; we typically examine such quantities on the (natural) log scale:
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• The log relative-risk

log ρ̂ = log
π̂1
π̂0

= log

(
n11/n.1
n12/n.2

)

with estimated standard error√(
1

n11
− 1

n11 + n21

)
+

(
1

n12
− 1

n12 + n22

)

• The log odds ratio

log ψ̂ = log

(
n11n22
n12n21

)

with estimated standard error√
1

n11
+

1

n21
+

1

n12
+

1

n22
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1.5.5 EXPERIMENTAL STUDIES

Experimental studies are studies where the exposure factor is determined
by the experimenter during the study

• treatment/control

• drug/placebo

• dose level 1, 2, 3, ...,K

An experimental study is a special type of cohort study; the most com-
mon type of experimental study is a randomized controlled trial (as
described in previous sections)
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SECTION 2.

POWER AND SAMPLE SIZE

General design issues often need to be considered before an experimental
study is embarked upon.

• In clinical/animal studies, ethical considerations dictate that the “op-
timal” number experimental units are considered, and that resources
are deployed in an “optimal” fashion.

• Economic forces mitigate against using an expansive study when a
smaller one enables the same research hypotheses to be tested.

Data are collected, and hypotheses tested, within a framework of statis-
tical inference and summary; the statistical framework also allows formal
assessment of the utility of a study, and allows a statistically optimal study
(with respect to a specific hypothesis) to be considered
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2.1 STATISTICALHYPOTHESIS TESTING

Recall the basic components of statistical hypothesis testing: in assessing
which of two hypotheses, H0 and H1

H0 : NULL HYPOTHESIS
H1 : ALTERNATIVE HYPOTHESIS

is preferable in explaining the observed data, we need to specify, and com-
pute the following quantities

• TEST STATISTIC, T

• NULL DISTRIBUTION, F0

• SIGNIFICANCE LEVEL, α

• P-VALUE, p

• CRITICAL VALUE(S)/CRITICAL REGION R
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Recall that the null distribution is the probability distribution of test
statistic T if the null hypothesis, H0, is true; if t

∗ is the observed test
statistic, lies in the critical region, we reject H0 in favour of H1, and do
not reject H0 otherwise.

The critical region R is defined via the significance level α by

P [T ∈ R|H0 is TRUE] ≤ α (1)

(where T ∈ R means “T takes a value in the set R”).

Note that (1) considers only the distribution of T if H0 is true, and the
conditional probability of rejection H0 in this case.

i.e. it is concerned only with “false positive” results.
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In a classical test of H0 (null hypothesis) versus H1 (alternative hypothesis),
there are four possible outcomes, two of which are erroneous:

1. Do not reject H0 when is H0 true.

2. Reject H0 when H0 is not true.

3. Reject H0 when H0 is true (Type I error).

4. Do not reject H0 when H0 is false (Type II error).

Action
Do Not Reject H0 Reject H0

H0 True � Type I Error
H0 not True Type II Error �
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TYPE I : FALSE POSITIVE result

TYPE II : FALSE NEGATIVE result

To construct a test, the distribution of the test statistic under H0 is used to
find a critical region which will ensure that the probability of committing
a type I error does not exceed some predetermined significance level α.

Ideally, we would like to make the probability of making any type of error
(false positive and false negative) as small as possible. For a finite sample
however, this is not achievable, so a pragmatic approach that bounds the
probability of a Type I error is adopted.

NOTE: For an infinite sample, we desire that the probabilities of Type I
and Type II errors should both be zero.
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2.2 POWER CALCULATIONS

The power, 1 − β, of a statistical test is its ability to correctly reject
the null hypothesis, or

1− β = P [Reject H0|H0 is not True] = P [T ∈ R|H0 is not True]

= 1− P [Do not Reject H0|H0 is not True]

= 1− P [T /∈ R|H0 is not True]

so that

β = P [Do not Reject H0|H0 is not True] = P [T /∈ R|H0 is not True]

which is based on the distribution of the test statistic under H1.
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This is the first occasion on which we have had to consider the distribution
of the test statistic under the alternative hypothesis; as we shall see, in
order to consider a sample size or power calculation, we must explicitly
consider the alternative hypothesis.

Suppose that the hypothesis test concerns a parameter θ that can take
values in the parameter space Θ. Suppose that the null and alternative
hypotheses partition Θ into two parts, Θ0 and Θ1, that is

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

so that, in the simplest case

H0 : θ = c

H1 : θ �= c

we have Θ0 ≡ {c}, Θ0 ≡ R\ {c}
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Under H1, the probability

P [Do not Reject H0|H0 is not True] = P [T /∈ R|θ ∈ Θ1]

which we previously defined as β will vary as the true value of θ varies in
the set Θ1, hence we should write β as a function of θ.

EXAMPLE: In a one-sample test of a normal mean, we have X1, ..., Xn

as a set of random variables relating to the observed data x1, ..., xn, and
an assumption that

Xi ∼ N(µ, σ2)

for i = 1, ..., n. If σ2 is known, to perform a two-sided test of equality the
hypotheses would be as follows:

H0 : µ = θ0

H1 : µ �= θ0
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The test statistic is

Z =
X − µ

σ/
√
n

and under H0,

Z =
X − θ0
σ/
√
n
∼ N(0, 1).

We reject H0 at significance level α if the z statistic is more extreme than
the critical values of the test are

R = θ0 ±CR
σ√
n

CR = Φ−1
(
1− α

2

)
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Now, if H1 is true, and µ = θ for some value θ, then , X ∼ N(θ, σ2), and
hence

Z =
X − θ0
σ/
√
n
∼ N

(
θ − θ0
σ/
√
n
, 1

)
.

so the probability that z lies in the critical region if µ = θ is

P [T ∈ R|θ] = P [Z ≤ −CR|θ] + P [Z > CR|θ] (2)

= Φ

(
−CR −

θ − θ0
σ/
√
n

)
+

(
1−Φ

(
CR −

θ− θ0
σ/
√
n

))

where Φ is the standard normal distribution function.

This quantity is the power function, 1− β (θ), when µ is actually equal
to θ.
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Hence the probability of a Type II error when the true is β (θ) , where

β (θ) = 1− P [T ∈ R|θ]

= Φ

(
CR −

θ − θ0
σ/
√
n

)
−Φ

(
−CR −

θ − θ0
σ/
√
n

)

= Φ

(
CR −

θ − θ0
σ/
√
n

)
−
(
1−Φ

(
CR +

θ − θ0
σ/
√
n

))

= Φ

(
CR −

θ − θ0
σ/
√
n

)
+ Φ

(
CR +

θ − θ0
σ/
√
n

)
− 1

The plots below illustrate examples of power functions for different choices
of σ and n, with θ0 = 0.
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Thus for fixed α, θ0, σ and n, we can compute the power function β (θ) as
θ varies.

NOTE: The parameters in (2) appear in terms of the ratio

θ − θ0
σ

that is, a standardized difference between the hypothesized values of µ
under the null and alternative hypotheses.

Similar calculations are available for other of the normal distribution-based
tests.
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2.2.1 ONE-SIDED TESTS

To perform a one-sided test of the hypotheses

H0 : µ = θ0

H1 : µ < θ0

the power function is

1− β (θ) = P [T ∈ R|θ] = P [Z ≤ CR (α) |θ] = Φ

(
CR (α)− θ − θ0

σ/
√
n

)

where CR (α) = Φ−1 (α), with a similar calculation if H1 : µ > θ0

1− β (θ) = P [Z ≥ CR (α) |θ] = 1−Φ

(
CR (α)− θ − θ0

σ/
√
n

)

where CR (α) = Φ−1 (1− α)
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2.2.2 UNKNOWN VARIANCE

If σ2 is unknown, to perform a two-sided test of equality the hypotheses
would be as follows:

H0 : µ = θ0

H1 : µ �= θ0

The test statistic is

T =
X − µ

s/
√
n

where s is the sample standard deviation, and under H0,

T =
X − θ0
s/
√
n
∼ Student(n− 1).
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We reject H0 at significance level α if the t statistic is more extreme than
the critical values of the test, with

R = θ0 ±CR
s√
n

CR = F−1tn

(
1− α

2

)

where F−1tk is the inverse cdf of the Student(k) distribution

Now, if H1 is true, and µ = θ for some value θ, then

T =
X − θ0
s/
√
n

=
X − θ

s/
√
n

+
θ − θ0
s/
√
n

= T0 +
θ − θ0
s/
√
n

where T0 ∼ Student(n− 1).
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Then the probability that T lies in the critical region is

1− β (θ) = P [T ∈ R|θ] (3)

= P

[
X − θ

s/
√
n

+
θ − θ0
s/
√
n
≤ −CR|θ

]
+ P

[
X − θ

s/
√
n

+
θ − θ0
s/
√
n

> CR|θ
]

= P

[
X − θ

s/
√
n
≤ −CR −

θ − θ0
s/
√
n
|θ
]
+ P

[
X − θ

s/
√
n

> C − θ − θ0
s/
√
n
|θ
]

= F−1
tn

(
−CR −

θ − θ0
s/
√
n

)
+

(
1− F−1

tn

(
CR −

θ − θ0
s/
√
n

))
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2.2.3 TWO SAMPLE TESTS

In a two sample problem, if σ2 is unknown but common for both samples,
to perform a test of the hypotheses:

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 = δ

The test statistic is

T =
X1 −X2

sP

√
1

n1
+

1

n2

where sP is the pooled sample standard deviation, and under H0,

T ∼ Student(n1 + n2 − 2).
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We reject H0 at significance level α if the t statistic is more extreme than
the critical values of the test are

R = ±CR
s√
n

CR = F−1

tn1+n2−2

(
1− α

2

)

Now, if H1 is true, for the particular value of δ specified

T =
X1 −X2

sP

√
1

n1
+

1

n2

=

(
X1 −X2

)
− δ

sP

√
1

n1
+

1

n2

+
δ

sP

√
1

n1
+

1

n2

= T0 + δ0

say, where T0 ∼ Student(n1 + n2 − 2).
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Then the probability that T lies in the critical region is

1− β (θ) = P [T ∈ R|θ] (4)

= P [T0 + δ0 ≤ −CR|δ] + P [T0 + δ0 > CR|δ]

= P [T0 + δ0 ≤ −CR − δ0|δ] + P [T0 > CR − δ0|δ]

= F−1tn1+n2−2 (−CR − δ0) +
(
1− F−1tn1+n2−2 (CR − δ0)

)

and thus the power function is calculable for any combination of α, n1, n2
and δ.
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SUMMARY: The adequacy of a test to distinguish between two hy-
potheses is a function of

• The null and alternative hypotheses;

• The target significance level α;

• The desired power to detect H1 for a specific θ, β (θ);

• The variability within the population(s) under study as measured by
σ

• The sample size n (or n1 and n2).

Our objective is to find a relationship between the above factors and the
sample size that enables us to select a sample size consistent with the
desired α and β (θ), typically, we will hypothesize a specific value of θ and
compute the corresponding β.
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2.2.4 GENERAL POWER CONSIDERATIONS

The principles outlined above can be applied in more complicated situations

• NON-PARAMETRIC TESTS

• NON-NORMAL DATA TESTS

— Approximate Binomial

— Exact Binomial

• ONE-WAY/TWO-WAY ANOVA

— number of groups/cross-categories, K

— number of observations per category, nK

— category levels θ1, ..., θK

• REPEATED MEASURES
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The details of the power calculation are more complicated as the complex-
ity of the experimental procedure increases, but the principles remain the
same; we compute

the probability of rejecting a specified null hypothesis
when

a specific alternative hypothesis corresponds the actual truth

that is, we are obliged to consider both null and alternative hypotheses,
and their impact on the distribution of the test statistic.

This is fundamentally different from the simple hypothesis testing situation,
where we only consider the null distribution.
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Therefore, a power calculation necessarily involves consideration of a spe-
cific alternative hypothesis, that is, equivalently, the magnitude of

• θ − θ0
σ

in the Normal sample case with known variance σ2

• δ if σ2 is unknown

• δπ = π1 − π2 in a two-sample Binomial problem, and test of

H0 : π1 − π2 = 0

H1 : π1 − π2 = δπ

and so on.

How do we choose these quantities ?

- usually by consideration of a “clinically” or ”experimentally” signifi-
cant difference, or an “anticipated” effect size..

65



Using Statistics in Research. Spring 2004

2.3 EXAMPLES

(see Machin et al, 1997, Sample Size Tables for Clinical Studies)

• power/sample size for independent groups of binary, ordered, cate-
gorical and continuous data

• paired/repeated measures data

• for equivalence studies

• survival

• observer (inter-rater) agreement
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2.4 SIMULATION-BASED CALCULATION

When analytic expressions for the power/Type II error probability are not
easily available, we can do approximate power calculations by simulation
means

• we formulate the test (null and alternative hypotheses, test statistic)
in the usual way

• we repeatedly simulate data under the alternative hypothesis model
(for fixed sample size, null model)

• we compute the power/Type II error probability empirically by eval-
uating the frequency with which the null hypothesis is correctly re-
jected.

For complicated designs (correlated data, clustered/grouped data), this is
often the simplest solution.
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2.5 SAMPLE SIZE CALCULATIONS

In all of the above, we have concentrated on computing the achieved
power for detecting a particular effect (relative effect) in a fixed study
(perhaps that has already been carried out).

Often it is desirable to reverse the logic and to ask if a certain power β to
detect an effect (if it is there) is required for a specified significance level
α, how large would sample size n need to be ?

Such a consideration is of strategic importance in study design, and can
give insight into the practicability of the proposed study.
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Recall the simple concept of standard error in a mean;

s.e.
(
X
)
=

s√
n

Clearly as n increases, the standard error decreases. Thus if we wanted a
standard error that was no larger than some quantity ǫ, we would have to
chose n large enough to ensure this, that is,

s√
n
≤ ǫ⇔ n ≥

(s
ǫ

)2

This simple idea extends naturally to confidence intervals, and to hypoth-
esis tests, and hence to power assessments.
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In the simple case of a single normal sample with known variance, the
power equation in (2) can be rearranged to be explicit in one of the other
parameters if β is regarded as fixed.

For example, if α, β, θ0 and θ1 are fixed, we can rearrange to get a sample
size calculation to test for fixed difference δ = θ1 − θ0

n =
σ2
(
CR + Φ−1 (1− β)

)2

(θ1 − θ0)
2

or standardized difference ∆ =
|θ1 − θ0|

σ

n =

(
CR + Φ−1 (1− β)

)2

∆2
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This idea of rearranging the power calculation to obtain a sample size
extends to the general cases described above.

Other issues do need to be considered

• one-sided vs two-sided tests

• in two sample problems, the deployment of the samples to be used

— equal proportions in the two groups

— fixed unequal allocation ratio between subjects assigned to the
two groups (in observational studies this may be necessary)

• allocation by randomization: exchangeable subjects
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