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SECTION 1.

SURVIVAL ANALYSIS

In many medical studies an outcome of interest is the time to an event

• death from identified cause

• recurrence of a tumour

• conception during fertility treatment

• or discharge from hospital

The distinguishing feature of such data is that at the end of the follow up
period the event may not have be observed, and thus the survival time
is censored. In this circumstance, we do not know when (or, indeed,
whether) the patient will experience the event, only that he or she has not
done so by the end of the observation period.
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Thus censoring may occur as

• truncation of study period

• loss to follow up from non-specific cause

• loss to a “competing” event unrelated to the condition being studied
(eg: patients being studied after a heart transplant may die from
some other disease or in an accident)

Typically, patients are recruited/introduced into the study over a period
and followed up to a fixed date beyond the end of recruitment, and the
last patients recruited will thus be studied for a shorter period than those
recruited first and will be less likely to experience the event. Also, it is
assumed that patients lost to follow up have the same prognosis as those
remaining in the study.
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Mathematical Notation:
Survival (or lifetime, or time-to-event) analysis is a special type of re-

gression modelling that explains the observed variability in a response
variable Y via consideration of predictors X = (X1, ..., XK). The princi-
pal difference between survival analysis and conventional regression is that
account is taken of potential censoring in the response variable

• we may observe some actual responses (survival, failure) times,

• censored responses where we do not observe an actual failure but
rather only that the failure occurs after a censoring time (the end
of study) — this is called right-censoring

• occasionally, we observe left-censoring or interval-censoring
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• the response data is thus bivariate (Y, Z) where Y is the time at
which the response is measured, and

Z =

{
1 Failure is observed
0 Censored

• The potential presence of censoring fundamentally changes how we
view the modelling process - previously we have looked at probability
densities and expected responses etc.

• we have previously only dealt with data y for which we need to specify
P [Y = y]; we now need to think about

— P [Y > y] for right censoring

— P [Y ≤ y] for left censoring

• We now take an alternative view, and examine survivor and hazard
functions.
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1.1 SURVIVAL IN DISCRETE TIME

The probability mass function for response variable Y is fY ,

fY (y) = P [Y = y] y = 0, 1, 2, ...

The distribution function FY is

FY (y) = P [Y ≤ y] =

y∑

t=0

fY (t)

= P [Y = 0] + P [Y = 1] + ...+ P [Y = y]

that is a cumulative probability function. Note that the function
FY (y) is a non-decreasing function.
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As noted above, the major difference between conventional statistical mod-
elling and survival/reliability modelling is the presence of censoring. In
conventional regression modelling, the probability contribution for data
point i with response yi is fY (yi).

For right-censored data with censoring at yi, however, we only observe the
event

Y > yi

that is, death/failure has not occurred before yi time units. This event
has probability

P [Y > yi] = 1− FY (yi)

This motivates consideration of the survivor (reliability) function

SY (y) = 1− FY (y)

Note that SY (y) is a non-increasing function.
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The likelihood function (via which inference and testing will be done) is
thus

{
∏

i:Zi=1

fY (yi)

}
×

{
∏

i:Zi=0

SY (yi)

}

that is

LIKELIHOOD FOR UNCENSORED DATA

×

LIKELIHOOD FOR CENSORED DATA

and the role of the predictors can be introduced via the parameters of fY
and FY .
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Let

fY (y) = P [Y = y] y = 0, 1, 2, ...

define a discrete failure distribution. Then

SY (y) = P [Y > y] = 1− FY (y) =
∞∑

j=y+1

fY (j)

For example, we might have (for some probability π)

fY (y) = (1− π)y π y = 0, 1, 2, ...

and

SY (y) = (1− π)y+1 y = 0, 1, 2, ...
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1.2 THEDISCRETEHAZARD FUNCTION

As an alternative method of specification, we consider thediscrete hazard
function

hY (y) = P [Failure at y|Survival ≥ y] =
fY (y)

SY (y)

and the integrated hazard

HY (y) =

y∑

t=0

hY (t)

and it can be shown that

SY (y) = exp {−HY (y)}

so that
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fY (y) =





y−1∏

j=0

(1− hY (j))



× hY (y)

and

SY (y) =

y∏

j=0

(1− hY (j))

If

fY (y) = (1− π)
y
π y = 0, 1, 2, ...

then

hY (y) =
(1− π)y π

(1− π)y+1
=

π

1− π

that is, a constant, independent of y.
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1.3 THE CONTINUOUS TIME MODEL

The probability density function for continuous response variable Y is
fY , and the expectation, likelihood function and so on that are required
for regression modelling are formed from fY . The distribution function
FY is

FY (y) = P [Y ≤ y] =

∫ y

0

fY (t) dt

In conventional regression modelling, the likelihood contribution for data
point i with response yi is fY (yi). For right-censored data with censoring
at yi, we have again the survivor function

SY (y) = 1− FY (y)
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1.4 CONTINUOUS HAZARDS

As a further alternative method of specification, we consider the continu-
ous hazard function

hY (y) = P [Failure at y|Survival ≥ y]

=
fY (y)

SY (y)

and the integrated hazard

HY (y) =

∫ y

0

hY (t) dt

and it can be shown that

SY (y) = exp {−HY (y)}
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1.5 THE KAPLAN-MEIER CURVE

TheKaplan-Meier curve (or product-limit estimate) is a non-parametric
estimate of the survivor function; it takes into account the censored data
and produces a decreasing “step-function” curve, where the downward steps
take place at the times of the failures, giving the estimated survival function
at the jth failure/censoring time as

Ŝj =

j∏

i=1

(
1−

zi
n− i+ 1

)
(1)

This curve can be used to report an estimated survival probability at a
given time (1 year, 5 years etc.).

Standard errors for these estimated survival probabilities are also available.
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Construction: Let

• sample size n comprise observed and censored failure times

• 0 < y(1) < y(2) < ... < y(m), be the distinct failure times, sorted into
ascending order

• dj be the number of number of failures observed at time y(j)

— usually dj = 1

— certainly dj ≥ 1 (dj > 1 implies tied failure times)

• nj be the number of patients “at risk” of failure at time t(j), that is,
the number of patients who have failure/censoring time greater than
or equal to t(j).
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Then the observed probability of surviving beyond t(j) (conditional on hav-
ing survived that long) is

p̂j =
nj − dj
nj

= 1− q̂j

say, where qj = dj/nj is the estimated conditional probability of failure at
time t(j). Using the chain rule for probabilities, the estimated probability
of surviving at least until time t is

P̂ (t) =

Jt∏

j=1

p̂j =

Jt∏

j=1

(
1−

dj
nj

)
(2)

where Jt = max
{
j : t(j) ≤ t

}
. P̂ is identical to the Sj function from

formula (1),and thus we have ŜKM (t) = P̂ (t).
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STANDARD ERRORS: The estimate in (2) should be reported with an
associated standard errror. A number of possibilities have been suggested.
Let Pj = P

(
t(j)
)
. Then

• Greenwood’s Formula

s.e.
(
P̂ j

)
= P̂ j

√√√√
j−1∑

i=0

di
ni − di

• Peto’s Formula

s.e.
(
P̂ j

)
= P̂ j

√
1− P̂ j
n′j

where n′j is an “adjusted” or “effective” sample size, the number of

survivors at the beginning of the interval
(
tj, t(j+1)

)
.
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1.6 THE NELSON-AALEN CURVE

The Nelson-Aalen estimate is a non-parametric estimate of the cumu-
lative hazard function; it takes the form

Ĥ (t) =

Jt∑

j=1

(
dj
nj

)
(3)

where Jt = max
{
j : t(j) ≤ t

}
. From this, we can construct another esti-

mate of the survivor function

ŜFH (t) = exp
{
−Ĥ (t)

}

this is the Fleming-Harrington estimate of the survivor function.
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STANDARD ERRORS: If Ĥj = Ĥ(t(j)), can use

• Greenwood

s.e.
(
Ĥj

)
=

√√√√
j∑

i=0

di
ni (ni − di)

• Tsiatis

s.e.
(
Ĥj

)
=

√√√√
j∑

i=0

di
n2i

• Klein

s.e.
(
Ĥj

)
=

√√√√
j∑

i=0

di (ni − di)

n3i
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1.7 THE COX REGRESSION MODEL

The Cox (or Proportional Hazards) model provides a simple way of
introducing the influence of predictors into the survival model. The basic
components are a baseline hazard function, h0 and a linear predictor
and (positive) link function g (similar to the GLM modelling of previous
chapters). Then for an experimental unit with observed predictor values
X1 = x1, X2 = x2, ...,XK = xK , the hazard function takes the form

hY (y;x) = g(xTβ)h0(y)

that is, the hazard is modified in a multiplicative fashion by the linked-
linear predictor.

Typically, g is the exponential function.
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From the previously established relationships,

SY (y;x) = exp

{
−

∫ y

0

hY (t) dt

}
= exp

{
−

∫ y

0

g(xTβ)h0(y) dt

}

If a coefficient βk is positive, the hazard is increased, and the expected
failure time decreased.

The relevance/significance of a particular predictor is assessed using a
Wald test based on the magnitude of

t =
β̂

s.e.
(
β̂
)

If |t| > 2, then the hypothesis that β = 0 can be rejected.
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1.8 THE ACCELERATED LIFE MODEL

The Accelerated Life model provides another way of introducing the
influence of predictors into the survival model. The basic components now
are a baseline survivor function, S0 and a linear predictor and (positive)
link function g as above. Then for an experimental unit with observed
predictor values X1 = x1, X2 = x2, ...,XK = xK , the survivor function
takes the form

SY (y;x) = S0(g(x
Tβ)y)

that is, the time scale is modified in a multiplicative fashion by the linked-
linear predictor.

Again, typically, g is the exponential function. This model allows direct
modelling of the influence of predictors on survival.
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1.9 FRAILTY MODELLING

The idea of frailty modelling is to introduce random effects terms into the
linear predictor that appears in the proportional hazards and accelerated
life models. For example, we extend

xTi β = β0 + β1xi1 + β1xiD + ...+ βDxiD

(which is a deterministic function of the parameter β = (β0, β1, β2, ..., βD)
and predictors x = (x1, x2, ..., xD)) to include a random component that is
specific to the individual patient concerned, that is, we have

xTi β = β0 + β1xi1 + β1xi2 + ...+ βDxiD + Li

where Li is some (usually zero mean) random variable.
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1.10 THE LOG-RANK TEST

The log-rank test is a standard test for significant differences between
two (or more) survivor functions that differ because of the influence of the
different levels of a discrete predictor.

H0 : S1 = S2

H1 : S1 
= S2

It is a non-parametric test based on ranks of samples for the two or more
subgroups.

Asymptotic or exact versions of the test can be carried out; SPSS and other
packages give further alternatives.
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1.11 PARAMETRIC MODELLING

It is possible to fit and compare parametric survival models to such data.
Parametric densities, survivor functions, hazards etc. can be readily used
in the formation of a likelihood, potentially within the proportional haz-
ards/accelerated life framework.

Typical models used are

• Weibull

• Gamma

• Log-Logistic

• Log-Normal

• Pareto

26



Using Statistics in Research Module 4 Spring 2004

1.11.1 WEIBULL MODEL

The Weibull distribution is a two-parameter probability model that is the
most commonly used in reliability modelling. For y > 0,

f(y) =
α

λα
yα−1 exp

{
−
( y
λ

)α}

F (y) = 1− exp
{
−
(y
λ

)α}
=⇒ S(y) = exp

{
−
( y
λ

)α}

h(y) =
α

λα
yα−1

H(y) =
(y
λ

)α

for parameters α, λ > 0 (the shape and scale parameters respectively).

27



Using Statistics in Research Module 4 Spring 2004

y

f(
y)

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Alpha=1
Alpha=2
Alpha=3
Alpha=4
Alpha=5

The Weibull pdf for different Alpha (Lambda=5)

28



Using Statistics in Research Module 4 Spring 2004

y

S
(y

)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alpha=1
Alpha=2
Alpha=3
Alpha=4
Alpha=5

The Weibull survivor function for different Alpha (Lambda=5)

29



Using Statistics in Research Module 4 Spring 2004

y

S
(y

)

0 2 4 6 8 10

0
5

10
15

20

Alpha=1
Alpha=2
Alpha=3
Alpha=4
Alpha=5

The Weibull hazard function for different Alpha

30



Using Statistics in Research Module 4 Spring 2004

y

S
(y

)

0 2 4 6 8 10

-2
5

-2
0

-1
5

-1
0

-5
0

5

Alpha=1
Alpha=2
Alpha=3
Alpha=4
Alpha=5

The Weibull log-hazard

31



Using Statistics in Research Module 4 Spring 2004

1.11.2 GAMMA MODEL

The Gamma distribution is a two-parameter probability model. The func-
tions interest for the Weibull distribution are, for y > 0,

f(y) =
1

λαΓ (α)
yα−1 exp

{
−
( y
λ

)}

for parameters α, λ > 0 (the shape and scale parameters respectively), and
Γ (α) is the Gamma Function, a special function defined by

Γ (α) =

∫ ∞

0

yα−1e−ydy

None of the other functions are available in a straightforward way, by can
be computed numerically.
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1.11.3 LOG-LOGISTIC

The log-logistic distribution is a two-parameter probability model for
which the functions interest for are, for y > 0,

f(y) =
αλαyα−1

(λα + yα)
2

F (y) =
yα

λα + yα
=⇒ S(y) =

λα

λα + yα

h(y) =
αyα−1

(λα + yα)

H(y) = log(λα + yα)

for parameters α, λ > 0.
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1.11.4 LOGNORMAL MODEL

The lognormal distribution is a two-parameter probability model for which
the functions interest for are, for y > 0,

f(y) =

(
1

2πy2σ2

)1/2
exp

{
−

1

2σ2
(log y − µ)2

}

F (y) = Φ

(
(log y − µ)

σ

)
=⇒ S(y) = 1−Φ

(
(log y − µ)

σ

)

H(y) = − log

(
1−Φ

(
(log y − µ)

σ

))

for parameters µ, and σ > 0, where Φ is the standard normal distribution
function. This model presumes that the log survival time is normally
distributed

logY ∼ Normal
(
µ, σ2

)
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1.11.5 PARETO MODEL

The Pareto distribution is a two-parameter probability model for which
the functions interest for are, for y > 0,

f(y) =
αθα

(θ + y)α+1

F (y) = 1−

(
θ

θ + y

)α
=⇒ S(y) =

(
θ

θ + y

)α

h(y) =
α

(θ + y)

H(y) = α log(θ + y)

for parameters α, θ > 0.
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1.12 MULTIVARIATE ANALYSIS & COM-

PETING RISKS

An important generalization of conventional survival analysis extends sur-
vival time Y to be a vector quantity, that is, we have say K different
aspects of failure, with random variable Y = (Y1, ...YK) requiring a joint
probability model. Typically, such models are difficult to construct.

A more common experimental situation is one of competing risks; that
is, there are K potential causes of failure, but at most one is observed for
each individual in the study. Then the failure time, T , is defined by

T = min {Y1, ..., YK}
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If the cause of failure, C, is recorded as C = k, we observe

Y1 > t, ..., Yk−1 > t, Yk = t, Yk+1 > t, ..., YK > t

whereas if the observation is censored, we observe

Y1 > t, ..., Yk−1 > t, Yk > t, Yk+1 > t, ..., YK > t

A joint model is again often difficult to construct, and in addition there
are issues to do with identifiability of the “marginal” failure processes for
the components of Y .

i.e. without sufficient data, there are problems in estimating the models
for Y1, ..., YK considered on theor own
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1.13 MULTI-STATE MODELLING

In multi-state modelling, rather than just having the standard failed/not
failed (dead/alive) dichotomy, with

Z =

{
0 Censored
1 Failure is observed

we have an extension to polytomy, where

Z(t) =





0 Censored at time t
1 State 1 at time t
...

...
M State M at time t

This kind of modelling is very useful for modelling disease progression; the
different states could correspond to different stages of the disease.
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In such a model, we attempt to estimate the probability

πij (ti, tj) = P [In state j at time tj|In state i at time ti]

for ti < tj , or rate, λij , of transition from one state to another.

In a discrete time framework, homogeneous Markov Models are typically
used, characterized by a transition matrix P , with (i, j)th entry πij,
independent of t, with

M∑

j=0

πij = 1

A multi-state process is a random process {Z(t)}t≥0 describing the state
within which the individual lies at time t.
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