ASSESSED COURSEWORK 2

SOLUTIONS

(a) Using the estimator of $I(\theta)$ denoted $\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)$, where

$$
\begin{aligned}
\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right) & =-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(X_{i}, \widetilde{\theta}_{n}\right)=-\left.\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\tilde{\theta}_{n}} \\
& =-\left.\frac{1}{n} \frac{\partial^{2}}{\partial \theta^{2}} \sum_{i=1}^{n} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\tilde{\theta}_{n}} \\
& =-\left.\frac{1}{n} \frac{\partial^{2}}{\partial \theta^{2}} l_{n}(\theta)\right|_{\theta=\tilde{\theta}_{n}} \\
& =-\frac{1}{n} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right)
\end{aligned}
$$

we have

$$
W_{n}=n\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{T} \widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)\left(\widetilde{\theta}_{n}-\theta_{0}\right)=-\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right)
$$

as $\left(\widetilde{\theta}_{n}-\theta_{0}\right)$ is a scalar quantity.

Similarly, for the Rao statistic, we may use

$$
\widehat{I}_{n}\left(\theta_{0}\right)=-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(X_{i}, \theta_{0}\right)=-\frac{1}{n} \ddot{l}_{n}\left(\theta_{0}\right)
$$

as an estimator/estimate of $I\left(\theta_{0}\right)$, the single datum or unit information matrix Then

$$
\begin{aligned}
Z_{n} & \equiv Z_{n}\left(\theta_{0}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} S\left(X_{i}, \theta_{0}\right)=\left.\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\theta_{0}} \\
& =\left.\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\theta_{0}} \\
& =\frac{1}{\sqrt{n}} i_{n}\left(\theta_{0}\right)
\end{aligned}
$$

and thus, as all quantities are scalars

$$
R_{n}=Z_{n}\left(\theta_{0}\right)^{T}\left[\widehat{I}_{n}\left(\theta_{0}\right)\right]^{-1} Z_{n}\left(\theta_{0}\right)=\frac{\left\{Z_{n}\left(\theta_{0}\right)\right\}^{2}}{\widehat{I}_{n}\left(\theta_{0}\right)}=\frac{\left\{\frac{1}{\sqrt{n}} \dot{l}_{n}\left(\theta_{0}\right)\right\}^{2}}{-\frac{1}{n} \ddot{l}_{n}\left(\theta_{0}\right)}=-\left\{i_{n}\left(\theta_{0}\right)\right\}^{2}\left\{\ddot{l}_{n}\left(\theta_{0}\right)\right\}^{-1}
$$

For the Rao statistic it is more common and more straightforward to use $\widehat{I}_{n}\left(\theta_{0}\right)$ rather than $\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)$ as the estimate of the Fisher information, although under the null hypothesis the asymptotic distribution is the same in both cases - using θ_{0} is obviously more straightforward as we do not need to compute $\widetilde{\theta}_{n}$.
(b) For the Poisson case, for $\lambda>0$

$$
f_{X}(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2, \ldots
$$

and so if $s_{n}=\sum_{i=1}^{n} x_{i}$

$$
l_{n}(\lambda)=-n \lambda+s_{n} \log \lambda-\sum_{i=1}^{n} \log x_{i}!
$$

and so

$$
\dot{l}_{n}(\lambda)=-n+\frac{s_{n}}{\lambda} \quad \ddot{l}_{n}(\lambda)=-\frac{s_{n}}{\lambda^{2}}
$$

and hence the MLE, from $\dot{l}_{n}\left(\hat{\lambda}_{n}\right)=0$, is $\hat{\lambda}_{n}=s_{n} / n=\bar{x}$, with estimator $S_{n} / n=\bar{X}$. Thus

- Wald Statistic: using the formula above

$$
W_{n}=-\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right)=-\left(\bar{X}-\lambda_{0}\right)^{2}\left(\frac{-S_{n}}{(\bar{X})^{2}}\right)=n \frac{\left(\bar{X}-\lambda_{0}\right)^{2}}{\bar{X}} .
$$

[3 MARKS]

- Rao Statistic: using the formula above

$$
R_{n}=-\left\{\dot{l}_{n}\left(\theta_{0}\right)\right\}^{2}\left\{\ddot{l}_{n}\left(\theta_{0}\right)\right\}^{-1}=\frac{-\left(\frac{S_{n}}{\lambda_{0}}-n\right)^{2}}{-\frac{S_{n}}{\lambda_{0}^{2}}}=\frac{\left(S_{n}-n \lambda_{0}\right)^{2}}{S_{n}}=\frac{n\left(\bar{X}-\lambda_{0}\right)^{2}}{\bar{X}}
$$

that is, identical to Wald.
[3 MARKS]
Note: in this case, we can compute the Fisher Information $I\left(\lambda_{0}\right)$ exactly - we have

$$
I\left(\lambda_{0}\right)=E_{X \mid \lambda_{0}}\left[-\Psi\left(X, \lambda_{0}\right)\right]=E_{X \mid \lambda_{0}}\left[\frac{X}{\lambda_{0}^{2}}\right]=\frac{1}{\lambda_{0}^{2}} E_{X \mid \lambda_{0}}[X]=\frac{\lambda_{0}}{\lambda_{0}^{2}}=\frac{1}{\lambda_{0}}
$$

so a perhaps preferable version of the Rao statistic is

$$
R_{n}=\frac{\left\{Z_{n}\left(\theta_{0}\right)\right\}^{2}}{I\left(\theta_{0}\right)}=\frac{\left(\frac{1}{\sqrt{n}}\left(\frac{S_{n}}{\lambda_{0}}-n\right)\right)^{2}}{\frac{1}{\lambda_{0}}}=\frac{\lambda_{0}}{n}\left(\frac{S_{n}}{\lambda_{0}}-n\right)^{2}=\frac{n\left(\bar{X}-\lambda_{0}\right)^{2}}{\lambda_{0}}
$$

As a general rule, if the Fisher Information can be computed exactly, then the exact version should be used for the Rao/Score statistic rather than an estimated version.

- Likelihood Ratio Statistic: by definition, using the notation $\widetilde{\Lambda}_{n}$ (... sorry ...)

$$
\widetilde{\Lambda}_{n}=\frac{L_{n}\left(\widehat{\lambda}_{n}\right)}{L_{n}\left(\lambda_{0}\right)}=\frac{e^{-n \widehat{\lambda}_{n}} \widehat{\lambda}_{n}^{S_{n}}}{e^{-n \lambda_{0}} \lambda_{0}^{S_{n}}}=\exp \left\{-n\left(\widehat{\lambda}_{n}-\lambda_{0}\right)+S_{n}\left(\log \widehat{\lambda}_{n}-\log \lambda_{0}\right)\right\}
$$

or equivalently

$$
2 \log \widetilde{\Lambda}_{n}=-2 n\left(\widehat{\lambda}_{n}-\lambda_{0}\right)+2 S_{n}\left(\log \widehat{\lambda}_{n}-\log \lambda_{0}\right)
$$

(c) Under the normal model, the likelihood is

$$
L_{n}(\mu, \sigma)=f_{X \mid \mu, \sigma}\left(x ; \mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

and thus, in terms of the random variables, for general X,

$$
l(X ; \theta)=\log f_{X \mid \mu, \sigma}\left(X ; \mu, \sigma^{2}\right)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(X-\mu)^{2}
$$

and, for μ

$$
\frac{\partial}{\partial \mu} l(X ; \theta)=\frac{1}{\sigma^{2}}(X-\mu) \quad \frac{\partial^{2}}{\partial \mu^{2}}\{l(X ; \theta)\}=-\frac{1}{\sigma^{2}}
$$

whereas for σ^{2}

$$
\frac{\partial}{\partial \sigma^{2}}\{l(X ; \theta)\}=-\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(X-\mu)^{2} \quad \frac{\partial^{2}}{\partial\left(\sigma^{2}\right)^{2}}\{l(X ; \theta)\}=\frac{1}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(X-\mu)^{2}
$$

and

$$
\frac{\partial^{2}}{\partial \mu \partial \sigma^{2}}\{l(X ; \theta)\}=-\frac{1}{\sigma^{4}}(X-\mu)
$$

(here taking σ^{2} as the variable with which we differentiating with respect to). Now

$$
E_{f_{X \mid} \mu, \sigma}[(X-\mu)]=0 \quad E_{f_{X \mid} \mu, \sigma}\left[(X-\mu)^{2}\right]=\sigma^{2}
$$

we have for the Fisher Information for $\left(\mu, \sigma^{2}\right)$ from a single datum as

$$
I\left(\mu, \sigma^{2}\right)=-\left[\begin{array}{cc}
E\left[-\frac{1}{\sigma^{2}}\right] & E\left[-\frac{1}{\sigma^{4}}(X-\mu)\right] \\
E\left[-\frac{1}{\sigma^{4}}\left(X_{1}-\mu\right)\right] & E\left[\frac{1}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(X-\mu)^{2}\right.
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{1}{2 \sigma^{4}}
\end{array}\right]=\left[\begin{array}{cc}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right]
$$

say, and $I_{n}\left(\mu, \sigma^{2}\right)=n I\left(\mu, \sigma^{2}\right)$.
(i) The Wald Statistic in this multiparameter setting is, from notes

$$
W_{n}=n\left(\widetilde{\theta}_{n 1}-\theta_{10}\right)^{T}\left[\widehat{I}_{n}^{11}\left(\widetilde{\theta}_{n}\right)\right]^{-1}\left(\widetilde{\theta}_{n 1}-\theta_{10}\right) .
$$

Here, σ^{2} is estimated under \mathbf{H}_{1} as given in notes, so

$$
\begin{gathered}
\widetilde{\theta}_{n 1}=\bar{X} \quad \theta_{10}=0 \quad\left[\widehat{I}_{n}^{11}\left(\widetilde{\theta}_{n}\right)\right]^{-1}=\widehat{I}_{11}-\widehat{I}_{12} \widehat{I}_{22}^{-1} \widehat{I}_{21}=\widehat{I}_{11}=\frac{1}{\widehat{\sigma}^{2}}=\frac{1}{S^{2}} \\
\\
\Longrightarrow W_{n}=n(\bar{X})^{T}\left[\frac{1}{S^{2}}\right](\bar{X})=\frac{n(\bar{X})^{2}}{S^{2}}
\end{gathered}
$$

(ii) Under H_{0}, the μ and σ^{2} are completely specified, whereas under H_{1}, the MLEs of μ and σ^{2} are

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Hence the Wald Statistic is

$$
\begin{aligned}
W_{n} & =n\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{T}\left[\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)\right]\left(\widetilde{\theta}_{n}-\theta_{0}\right)=\left[\begin{array}{c}
\sqrt{n}(\bar{X}-0) \\
\sqrt{n}\left(S^{2}-\sigma_{0}^{2}\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
\frac{1}{S^{2}} & 0 \\
0 & \frac{1}{2 S^{4}}
\end{array}\right]\left[\begin{array}{c}
\sqrt{n}(\bar{X}-0) \\
\sqrt{n}\left(S^{2}-\sigma_{0}^{2}\right)
\end{array}\right] \\
& =\frac{n(\bar{X})^{2}}{S^{2}}+\frac{n\left(S^{2}-\sigma_{0}^{2}\right)^{2}}{2 S^{4}}
\end{aligned}
$$

To clarify notation, if f_{X}, l, S and Ψ denote the density, its log, the score (first partial derivative of l wrt $\theta)$ and the second partial derivative

$$
\begin{array}{rlr}
l(\theta) & =\log f_{X}(X ; \theta) & \\
S(\theta) & \equiv S(X ; \theta)=\frac{\partial}{\partial \theta}\{l(\theta)\} & \text { a } k \times 1 \text { vector } \\
\Psi(\theta) & \equiv \Psi(X ; \theta)=\frac{\partial^{2}}{\partial \theta^{2}}\{l(\theta)\} & \text { a } k \times k \text { matrix }
\end{array}
$$

with the "full-likelihood" versions

$$
l_{n}(\theta)=\sum_{i=1}^{n} \log f_{X}(X ; \theta) \quad S_{n}(\theta) \equiv S_{n}(X, \theta) \equiv \frac{\partial}{\partial \theta}\left\{l_{n}(\theta)\right\} \quad \Psi_{n}(\theta) \equiv \Psi_{n}(X, \theta)=\frac{\partial^{2}}{\partial \theta^{2}}\left\{l_{n}(\theta)\right\}
$$

- UNIT INFORMATION MATRIX (with scalar X)

$$
I(\theta)=E_{X \mid \theta}\left[S(X ; \theta) S(X ; \theta)^{T}\right]=-E_{X \mid \theta}[\Psi(X ; \theta)]
$$

- FULL LIKELIHOOD INFORMATION MATRIX (with vector $X=\left(X_{1}, \ldots, X_{n}\right)$)

$$
I_{n}(\theta)=E_{X \mid \theta}\left[S_{n}(X ; \theta) S_{n}(X ; \theta)^{T}\right]=-E_{X \mid \theta}\left[\Psi_{n}(X ; \theta)\right]=n I(\theta)
$$

- ESTIMATORS

$$
\begin{aligned}
& \widehat{I}_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} S\left(X_{i} ; \theta\right) S\left(X_{i} ; \theta\right)^{T}=-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(X_{i}, \widetilde{\theta}_{n}\right) \quad \text { estimator of } I(\theta) \\
& \widehat{I}_{n}^{n}(\theta)=n \widehat{I}_{n}(\theta)=\sum_{i=1}^{n} S\left(X_{i} ; \theta\right) S\left(X_{i} ; \theta\right)^{T}=-\sum_{i=1}^{n} \Psi\left(X_{i}, \theta\right) \quad \text { estimator of } I_{n}(\theta)
\end{aligned}
$$

- ESTIMATES (OBSERVED INFORMATION) (with observed data)

$$
\begin{aligned}
& \widehat{\mathcal{I}}_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} S\left(x_{i} ; \theta\right) S\left(x_{i} ; \theta\right)^{T}=-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(x_{i}, \theta\right) \quad \text { estimate of } I(\theta) \\
& \widehat{\mathcal{I}}_{n}^{n}(\theta)=n \widehat{\mathcal{I}}_{n}(\theta) \quad \text { estimate of } I_{n}(\theta)
\end{aligned}
$$

