ASSESSED COURSEWORK 1

SOLUTIONS

1.(a) We have $E\left[X_{n j}\right]=0, \operatorname{Var}\left[X_{n j}\right]=E\left[X_{n j}^{2}\right]=1$, for all n and j, so $v_{n}^{2}=n$. Now, for fixed $\varepsilon>0$

$$
E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{array}{ll}
0 & \text { if } 1<\varepsilon \sqrt{n} \\
n & \text { if } 1 \geq \varepsilon \sqrt{n}
\end{array}= \begin{cases}0 & \text { if } 1 / \sqrt{n}<\varepsilon \\
n & \text { if } 1 / \sqrt{n} \geq \varepsilon\end{cases}\right.
$$

so that

$$
\sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{aligned}
0 & \text { if } 1 / \sqrt{n}<\varepsilon \\
n^{2} & \text { if } 1 / \sqrt{n} \geq \varepsilon
\end{aligned}\right.
$$

and

$$
\frac{1}{v_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{array}{ll}
0 & \text { if } 1 / \sqrt{n}<\varepsilon \\
n & \text { if } 1 / \sqrt{n} \geq \varepsilon
\end{array} .\right.
$$

Thus, in the limit as $n \rightarrow \infty, 1 / \sqrt{n} \rightarrow 0$, so

$$
\frac{1}{v_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right] \rightarrow 0
$$

as required for the Lindeberg condition to be met. Hence

$$
\frac{T_{n}}{\sqrt{n}} \stackrel{\mathscr{L}}{\rightarrow} Z \sim N(0,1) \quad \text { and } \quad T_{n} \sim A N(0, n)
$$

[4 MARKS]
(b) We have $E\left[X_{n j}\right]=0, \operatorname{Var}\left[X_{n j}\right]=E\left[X_{n j}^{2}\right]=j^{2}$, so

$$
\begin{equation*}
v_{n}^{2}=\sum_{j=1}^{n} j^{2}=\frac{1}{6} n(n+1)(2 n+1) \tag{1}
\end{equation*}
$$

Note that $v_{n}^{2}=O\left(n^{3}\right)$ Now, for fixed $\varepsilon>0$

$$
E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{array}{rl}
0 & \text { if } j<\varepsilon v_{n} \\
j^{2} & \text { if } j \geq \varepsilon v_{n}
\end{array}=\left\{\begin{aligned}
0 & \text { if } j / v_{n}<\varepsilon \\
j^{2} & \text { if } j / v_{n} \geq \varepsilon
\end{aligned}\right.\right.
$$

so that, taking the smallest possible j in the strict inequality

$$
\sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{aligned}
0 & \text { if } 1 / v_{n}<\varepsilon \\
s_{n}(\varepsilon) & \text { if } 1 / v_{n} \geq \varepsilon
\end{aligned}\right.
$$

where $0<s_{n}(\varepsilon) \leq v_{n}^{2}$ and $s_{n}(\varepsilon)$ is given by the sum in (1) suitably truncated, unless $n \geq \varepsilon v_{n}$.

$$
\frac{1}{v_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right]=\left\{\begin{array}{rl}
0 & \text { if } 1 / v_{n}<\varepsilon \\
s_{n} / v_{n} & \text { if } 1 / v_{n} \geq \varepsilon
\end{array} .\right.
$$

Thus, in the limit as $n \rightarrow \infty, 1 / v_{n} \rightarrow 0$, so

$$
\frac{1}{v_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right] \rightarrow 0
$$

as required for the Lindeberg condition to be met. Hence

$$
\frac{T_{n}}{\sqrt{\frac{1}{6} n(n+1)(2 n+1)}} \stackrel{\mathfrak{L}}{\rightarrow} Z \sim N(0,1) \quad \text { and } \quad T_{n} \sim A N\left(0, \frac{n(n+1)(2 n+1)}{6}\right)
$$

[6 MARKS]
2. (i) We have from the standard Central Limit Theorem that

$$
\sqrt{n}\left(\bar{X}_{n}-\lambda\right) \stackrel{\mathfrak{L}}{\rightarrow} Z \sim N(0, \lambda)
$$

as $E\left[X_{i}\right]=\operatorname{Var}\left[X_{i}\right]=\lambda$. Hence

$$
\bar{X}_{n} \sim A N\left(\lambda, \frac{\lambda}{n}\right)
$$

as $n \rightarrow \infty$. Let $g(x)=x e^{-x}$, so that

$$
\dot{g}(x)=e^{-x}(1-x)
$$

which is continuous on \mathbb{R} and thus by Cramer's Theorem in the univariate setting

$$
\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g(\lambda)\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\lambda} \sim N\left(0,\{\dot{g}(\lambda)\}^{2} \lambda\right)
$$

that is

$$
\sqrt{n}\left(Y_{n}-\lambda e^{-\lambda}\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\lambda} \sim N\left(0, e^{-2 \lambda}(1-\lambda)^{2} \lambda\right)
$$

and

$$
Y_{n} \sim A N\left(\lambda e^{-\lambda}, \frac{e^{-2 \lambda}(1-\lambda)^{2} \lambda}{n}\right)
$$

When $\lambda=1$, this yields only

$$
Y_{n} \xrightarrow{\mathfrak{L}} \lambda e^{-\lambda}
$$

which is correct, but not useful as an asymptotic distribution.
[5 MARKS]
(ii) In Procedure A, we have by the Central Limit Theorem

$$
\sqrt{n}\left(\frac{X}{n}-\theta\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\theta} \sim N(0, \theta(1-\theta))
$$

and thus

$$
\widehat{\theta}_{A}=\frac{X}{n} \sim A N\left(\theta, \frac{\theta(1-\theta)}{n}\right) .
$$

Similarly, for Procedure B

$$
\sqrt{n}\left(\frac{Y}{n}-\theta^{2}\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\theta} \sim N\left(0, \theta^{2}\left(1-\theta^{2}\right)\right) .
$$

Let $\phi=\theta^{2}$. Now, setting $g(x)=\sqrt{x}$, we have

$$
\dot{g}(x)=\frac{1}{2 \sqrt{x}}
$$

which is continuous when $x \neq 0$, and thus by Cramer's Theorem

$$
\sqrt{n}\left(g\left(\frac{Y}{n}\right)-g(\phi)\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\theta} \sim N\left(0, \phi(1-\phi)\{\dot{g}(\phi)\}^{2}\right)
$$

or

$$
\sqrt{n}\left(\sqrt{\frac{Y}{n}}-\sqrt{\phi}\right)=\sqrt{n}\left(\sqrt{\frac{Y}{n}}-\theta\right) \stackrel{\mathfrak{L}}{\rightarrow} Z_{\theta} \sim N\left(0, \frac{\phi(1-\phi)}{4 \phi}\right)=N\left(0, \frac{(1-\phi)}{4}\right)
$$

yielding

$$
\widehat{\theta}_{B}=\sqrt{\frac{Y}{n}} \sim A N\left(\theta, \frac{\left(1-\theta^{2}\right)}{4 n}\right)
$$

Thus the asymptotic variance is smaller for procedure A when

$$
\frac{\theta(1-\theta)}{n}<\frac{\left(1-\theta^{2}\right)}{4 n}
$$

that is, when

$$
4 \theta<(1+\theta)
$$

or

$$
3 \theta<1
$$

This holds for θ where $0<\theta<\frac{1}{3}$.
[5 MARKS]

