M3/M4S3 STATISTICAL THEORY II PROPERTIES OF MEASURABLE FUNCTIONS

The function f defined with domain $E \subset \Omega$, for measurable space (Ω, \mathcal{F}), is Borel measurable with respect to \mathcal{F} if the inverse image of set B, defined as

$$
f^{-1}(B) \equiv\{\omega \in E: f(\omega) \in B\}
$$

is an element of sigma-algebra \mathcal{F}, for all Borel sets B of \mathbb{R} (strictly, of the extended real number system \mathbb{R}^{*}, including $\pm \infty$ as elements). The following conditions are each necessary and sufficient for f to be measurable
(a) $f^{-1}(A) \in \mathcal{F}$ for all open sets $A \subset \mathbb{R}^{*}$
(b) $f^{-1}([-\infty, x)) \in \mathcal{F}$ for all $x \in \mathbb{R}^{*}$
(c) $f^{-1}([-\infty, x]) \in \mathcal{F}$ for all $x \in \mathbb{R}^{*}$
(d) $f^{-1}([x, \infty]) \in \mathcal{F}$ for all $x \in \mathbb{R}^{*}$
(e) $f^{-1}((x, \infty]) \in \mathcal{F}$ for all $x \in \mathbb{R}^{*}$

NOTES:

(i) Recall that the Borel sigma-algebra in \mathbb{R}, \mathcal{B}, is the smallest (or minimal) sigma-algebra containing all open sets (that is, essentially, sets of the form

$$
(a, b) \quad \text { or } \quad[a, b]^{\prime}
$$

for $a<b \in \mathbb{R}$) which are known as the Borel sets in \mathbb{R}.
(ii) It is possible to extend this definition to a general topological space Ω equipped with a topology, that is, a collection, \mathcal{T}, of sets in Ω that (I) \mathcal{T} contains \emptyset and Ω, (II) \mathcal{T} is closed under finite intersection, and (III) if \mathcal{A} is a sub-collection of $\mathcal{T}, \mathcal{A} \subset \mathcal{T}$, and $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{A}$, then

$$
\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{T}
$$

In this context, it is possible to define a general Borel sigma-algebra on Ω; the open sets are the elements $T_{1}, T_{2}, T_{3}, \ldots$ of the topology \mathcal{T}, and the Borel sets are the elements of the smallest sigma-algebra generated by $\mathcal{T}, \sigma(\mathcal{T})$. However, we will not be studying general toplogical spaces; we shall restrict attention to \mathbb{R}, and thus refer to the Borel sets and the Borel sigma-algebra, meaning the Borel sets/sigma-algebra defined on \mathbb{R}.
(iii) Strictly, a function f is a Borel function if, for $B \in \mathcal{B}, f^{-1}(B) \in \sigma(\mathcal{T})$; however, we will generally consider measure spaces (Ω, \mathcal{F}) and say that f is a Borel function if it is Borel measurable, as defined in the first paragraph above.

EXAMPLE Consider Lebesgue measure, m, defined for real numbers $a<b$ (on the Borel sigmaalgebra on \mathbb{R}, \mathcal{B}) by

$$
m([a, b])=m((a, b))=m((a, b])=m([a, b))=b-a .
$$

Suppose f is an increasing function on \mathbb{R}. Then the set $A \equiv f^{-1}([-\infty, x])$ is an interval in \mathbb{R}, and thus f is measurable with respect to Lebesgue measure, as the measure of $A, m(A)$, is well-defined. Now consider the function g defined by $g(x)=x$ for $x \in \mathbb{R}$. This function is measurable with respect to Lebesgue measure (on \mathcal{B}), as it is increasing. However, consider the sigma-algebra, \mathcal{Z}, generated by the sets $\{\emptyset,(-\infty, 0],(0, \infty), \mathbb{R}\}$.Then

$$
g^{-1}((-\infty, 1]) \notin \mathcal{Z}
$$

so g is not measurable on \mathcal{Z}.

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1 MEASURABILITY UNDER COMPOSITION

Let g_{1} and g_{2} be measurable functions on $E \subset \Omega$ with ranges in \mathbb{R}^{*}. Let f be a Borel function from $\mathbb{R}^{*} \times \mathbb{R}^{*}$ into \mathbb{R}^{*}. Then the composite function h, defined on E by

$$
h(\omega)=f\left(g_{1}\left(\omega_{1}\right), g_{2}\left(\omega_{2}\right)\right)
$$

is measurable.
Proof. The function $g=\left(g_{1}, g_{2}\right)$ has domain E and range $\mathbb{R}^{*} \times \mathbb{R}^{*}$, and is measurable as g_{1} and g_{2} are measurable, and denote $h=f \circ g$ (the operator \circ indicates composition, i.e.

$$
h\left(\omega_{1}, \omega_{2}\right)=(f \circ g)\left(\omega_{1}, \omega_{2}\right) \quad \text { if } \quad h\left(\omega_{1}, \omega_{2}\right)=f\left(g\left(\omega_{1}, \omega_{2}\right)\right)=f\left(g_{1}\left(\omega_{1}\right), g_{2}\left(\omega_{2}\right)\right)
$$

If $B \in \mathcal{B}$, then $f^{-1}(B)$ is a Borel set as f is a Borel function. Thus the inverse image under h,

$$
h^{-1}(B)=g^{-1}\left(f^{-1}(B)\right)
$$

is measurable as g_{1} and g_{2}, and hence g, are measurable.
Corollary. If g is a measurable function from E into \mathbb{R}^{*}, and f is a continuous function from \mathbb{R}^{*} into \mathbb{R}^{*}, then $h=f \circ g$ is measurable.

Theorem 2 MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g_{1} and g_{2} be measurable functions defined on $E \subset \Omega$ into \mathbb{R}^{*}, and let c be any real number. Then all of the following composite and other related functions are measurable

$$
g_{1}+g_{2}, g_{1}+c, g_{1} g_{2}, c g_{1}, g_{1} / g_{2},\left|g_{1}\right|^{c}, g_{1} \vee g_{2}, g_{1} \wedge g_{2}, g_{1}^{+}, g_{1}^{-}
$$

Proof. In each case, we examine the domain of the composite function to ensure measurability in the Borel sigma-algebra. Consider $g_{1}+g_{2}$; this is not defined on the set

$$
\left\{\omega: g_{1}(\omega)=-g_{2}(\omega)= \pm \infty\right\}
$$

(as $\infty \pm \infty$ is not defined), but this set is measurable, and so is the domain of $g_{1}+g_{2}$. Let $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ be a continuous function defined on $\mathbb{R}^{*} \times \mathbb{R}^{*}$. Then, by Theorem 1 and its corollary, $g_{1}+g_{2}$ is measurable. Taking $g_{2}=c$ proves that $g_{1}+c$ is measurable.

The function $g_{1} g_{2}$ is defined everywhere on E; it's measurability follows from Theorem 1 , setting $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Setting $g_{2}=c$ proves that $c g_{1}$ is measurable.

The function g_{1} / g_{2} is defined everywhere except on the union of sets

$$
\left\{\omega: g_{1}(\omega)=g_{2}(\omega)=0\right\} \cup\left\{\omega: \pm g_{1}(\omega)= \pm g_{2}(\omega)=\infty\right\}
$$

Similarly, if $c=0,\left|g_{1}\right|^{c}$ is defined except on

$$
\left\{\omega: g_{1}(\omega)= \pm \infty\right\}
$$

if $c<0$, it is defined except on

$$
\left\{\omega: g_{1}(\omega)=0\right\}
$$

If $c>0$, it is defined everywhere. All of these sets are measurable Thus, we consider in turn functions

$$
f\left(x_{1}, x_{2}\right)=x_{1} / x_{2} \quad f(x)=x^{c}
$$

and use Theorem 1.
The functions $g_{1} \vee g_{2}, g_{1} \wedge g_{2}$ are defined everywhere; so we consider functions

$$
f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\} \quad f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}
$$

and again use Theorem 1. Finally, setting $g_{2}=0$ yields the measurability of g_{1}^{+}and g_{1}^{-}.
Theorem 3 If g_{1} and g_{2} are measurable functions on a common domain, then each of the sets

$$
\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \quad\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\} \quad\left\{\omega: g_{1}(\omega)>g_{2}(\omega)\right\}
$$

is measurable.
Proof. Since g_{1} and g_{2} are measurable, then $f=g_{1}-g_{2}$ is measurable, and thus the two sets

$$
\{\omega: f(\omega)>0\} \quad\{\omega: f(\omega)=0\}
$$

are measurable. Since

$$
\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \equiv\{\omega: f(\omega)>0\}
$$

and

$$
\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\} \equiv\{\omega: f(\omega)=0\} \cup\left\{\omega: g_{1}(\omega)=g_{2}(\omega)= \pm \infty\right\}
$$

then $\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\}$ and $\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\}$ are measurable, and so is

$$
\left\{\omega: g_{1}(\omega) \leq g_{2}(\omega)\right\} \equiv\left\{\omega: g_{1}(\omega)<g_{2}(\omega)\right\} \cup\left\{\omega: g_{1}(\omega)=g_{2}(\omega)\right\} .
$$

Theorem 4 MEASURABILITY UNDER LIMIT OPERATIONS

If $\left\{g_{n}\right\}$ is a sequence of measurable functions, the functions $\sup _{n} g_{n}$ and $\inf _{n} g_{n}$ are measurable.
Proof. Let $g=\sup _{n} g_{n}$. Then for real x, consider

$$
g_{n}^{-1}([-\infty, x]) \equiv\left\{\omega: g_{n}(\omega) \leq x\right\}
$$

and

$$
g^{-1}([-\infty, x]) \equiv\{\omega: g(\omega) \leq x\} .
$$

If $g=\sup _{n} g_{n}$, then $g_{n} \leq g$ for all n, and

$$
g(\omega) \leq x \Longrightarrow g_{n}(\omega) \leq x \quad \text { so that } \quad \omega \in g^{-1}([-\infty, x]) \Longrightarrow \omega \in g_{n}^{-1}([-\infty, x])
$$

so that

$$
g^{-1}([-\infty, x]) \subseteq g_{n}^{-1}([-\infty, x])
$$

for all n. Thus, in fact

$$
g^{-1}([-\infty, x])=\bigcap_{n} g_{n}^{-1}([-\infty, x])
$$

and hence g is measurable, as the intersection of measurable sets is measurable. The result for $\inf _{n}$ follows by noting that

$$
\inf _{n} g_{n}=-\sup _{n}\left(-g_{n}\right) .
$$

Theorem 5 MEASURABILITY UNDER LIMINF/LIMSUP
If $\left\{g_{n}\right\}$ is a sequence of measurable functions, the functions $\limsup g_{n}$ and $\liminf _{n} g_{n}$ are measurable.
Proof. This follows from Theorem 4, as

$$
\limsup _{n} g_{n}=\inf _{k}\left\{\sup _{n \geq k} g_{n}\right\} \quad \text { and } \quad \liminf _{n} g_{n}=\sup _{k}\left\{\inf _{n \geq k} g_{n}\right\}
$$

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Recall the definition of a simple function ψ,

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega)
$$

for real constants a_{1}, \ldots, a_{k} and measurable sets A_{1}, \ldots, A_{k}, for some $k=1,2,3, \ldots$ Note that any such simple function, can be re-expressed as a simple function defined for a partition of $\Omega, E_{1}, \ldots, E_{l}$,

$$
\psi(\omega)=\sum_{i=1}^{l} e_{i} I_{E_{i}}(\omega)
$$

by suitable choice of the constants e_{1}, \ldots, e_{k}.

Theorem 6 A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the simple function ψ_{n} on Ω by

$$
\psi_{n}(\omega)=\frac{m}{2^{n}} \quad \text { if } \quad \frac{m}{2^{n}} \leq g(\omega)<\frac{m+1}{2^{n}}
$$

for $m=0,1,2, \ldots, n 2^{n}-1$, and

$$
\psi_{n}(\omega)=n \quad \text { if } n \leq g(\omega)
$$

Then $\left\{\psi_{n}\right\}$ is an increasing sequence of non-negative simple functions. Since

$$
\left|\psi_{n}(\omega)-g(\omega)\right|<\frac{1}{2^{n}} \quad \text { if } n>g(\omega)
$$

and $\psi_{n}(\omega)=n$ if $g(\omega)=\infty$, then, for all ω,

$$
\psi_{n}(\omega) \rightarrow g(\omega)
$$

and we have found the sequence required for the result.
Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is measurable by Theorem 5 .

Theorem 7 A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g^{+}and g^{-}are measurable and non-negative, and thus can be represented as limits of simple functions $\left\{\psi_{n}^{+}\right\}$and $\left\{\psi_{n}^{-}\right\}$, by the Theorem 6. Consider the sequence of simple functions defined by $\left\{\psi_{n}^{+}-\psi_{n}^{-}\right\}$; this sequence converges to $g^{+}-g^{-}=g$, and we have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 5 .

