
M3/M4S3 STATISTICAL THEORY II
PROPERTIES OF MEASURABLE FUNCTIONS

The function f defined with domain E ⊂ Ω, for measurable space (Ω,F), is Borel measurable

with respect to F if the inverse image of set B, defined as

f−1 (B) ≡ {ω ∈ E : f (ω) ∈ B}

is an element of sigma-algebra F , for all Borel sets B of R (strictly, of the extended real number system
R
∗, including ±∞ as elements). The following conditions are each necessary and sufficient for f to be
measurable

(a) f−1 (A) ∈ F for all open sets A ⊂ R∗

(b) f−1 ([−∞, x)) ∈ F for all x ∈ R∗

(c) f−1 ([−∞, x]) ∈ F for all x ∈ R∗

(d) f−1 ([x,∞]) ∈ F for all x ∈ R∗

(e) f−1 ((x,∞]) ∈ F for all x ∈ R∗

NOTES:

(i) Recall that the Borel sigma-algebra in R, B, is the smallest (or minimal) sigma-algebra con-
taining all open sets (that is, essentially, sets of the form

(a, b) or [a, b]′

for a < b ∈ R) which are known as the Borel sets in R.

(ii) It is possible to extend this definition to a general topological space Ω equipped with a topology,
that is, a collection, T , of sets in Ω that (I) T contains ∅ and Ω, (II) T is closed under finite
intersection, and (III) if A is a sub-collection of T , A ⊂ T , and A1, A2, A3, ... ∈ A, then

∞⋃

i=1

Ai ∈ T .

In this context, it is possible to define a general Borel sigma-algebra on Ω; the open sets are
the elements T1, T2, T3, ... of the topology T , and the Borel sets are the elements of the smallest
sigma-algebra generated by T , σ (T ). However, we will not be studying general toplogical spaces;
we shall restrict attention to R, and thus refer to the Borel sets and the Borel sigma-algebra,
meaning the Borel sets/sigma-algebra defined on R.

(iii) Strictly, a function f is aBorel function if, forB ∈ B, f−1 (B) ∈ σ (T ); however, we will generally
consider measure spaces (Ω,F) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.
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EXAMPLE Consider Lebesgue measure, m, defined for real numbers a < b (on the Borel sigma-
algebra on R, B) by

m ([a, b]) = m ((a, b)) = m ((a, b]) = m ([a, b)) = b− a.

Suppose f is an increasing function on R. Then the set A ≡ f−1 ([−∞, x]) is an interval in R, and thus
f is measurable with respect to Lebesgue measure, as the measure of A, m(A), is well-defined. Now
consider the function g defined by g(x) = x for x ∈ R. This function is measurable with respect to
Lebesgue measure (on B), as it is increasing. However, consider the sigma-algebra, Z, generated by
the sets {∅, (−∞, 0] , (0,∞) ,R} .Then

g−1 ((−∞, 1]) /∈ Z

so g is not measurable on Z.

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1 MEASURABILITY UNDER COMPOSITION
Let g1 and g2 be measurable functions on E ⊂ Ω with ranges in R∗. Let f be a Borel function from
R
∗ × R∗ into R∗. Then the composite function h, defined on E by

h (ω) = f (g1 (ω1) , g2 (ω2))

is measurable.

Proof. The function g = (g1, g2) has domain E and range R∗ × R∗, and is measurable as g1 and g2
are measurable, and denote h = f ◦ g (the operator ◦ indicates composition, i.e.

h (ω1, ω2) = (f ◦ g) (ω1, ω2) if h (ω1, ω2) = f (g (ω1, ω2)) = f (g1 (ω1) , g2 (ω2)) .

If B ∈ B, then f−1 (B) is a Borel set as f is a Borel function. Thus the inverse image under h,

h−1 (B) = g−1
(
f−1 (B)

)

is measurable as g1 and g2, and hence g, are measurable.

Corollary. If g is a measurable function from E into R∗, and f is a continuous function from R
∗ into

R
∗, then h = f ◦ g is measurable.

Theorem 2 MEASURABILITY UNDER ELEMENTARY OPERATIONS
Let g1 and g2 be measurable functions defined on E ⊂ Ω into R∗, and let c be any real number. Then
all of the following composite and other related functions are measurable

g1 + g2, g1 + c, g1g2, cg1, g1/g2, |g1|
c , g1 ∨ g2, g1 ∧ g2, g

+
1 , g

−
1 .

Proof. In each case, we examine the domain of the composite function to ensure measurability in the
Borel sigma-algebra. Consider g1 + g2; this is not defined on the set

{ω : g1 (ω) = −g2 (ω) = ±∞}

(as ∞±∞ is not defined), but this set is measurable, and so is the domain of g1 + g2. Let
f (x1, x2) = x1 + x2 be a continuous function defined on R

∗ × R∗. Then, by Theorem 1 and its
corollary, g1 + g2 is measurable. Taking g2 = c proves that g1 + c is measurable.

2



The function g1g2 is defined everywhere on E; it’s measurability follows from Theorem 1, setting
f (x1, x2) = x1x2. Setting g2 = c proves that cg1 is measurable.

The function g1/g2 is defined everywhere except on the union of sets

{ω : g1 (ω) = g2 (ω) = 0} ∪ {ω : ±g1 (ω) = ±g2 (ω) =∞}

Similarly, if c = 0, |g1|
c is defined except on

{ω : g1 (ω) = ±∞} ;

if c < 0, it is defined except on
{ω : g1 (ω) = 0} .

If c > 0, it is defined everywhere. All of these sets are measurable Thus, we consider in turn
functions

f (x1, x2) = x1/x2 f (x) = xc

and use Theorem 1.

The functions g1 ∨ g2, g1 ∧ g2 are defined everywhere; so we consider functions

f(x1, x2) = max {x1, x2} f(x1, x2) = min {x1, x2}

and again use Theorem 1. Finally, setting g2 = 0 yields the measurability of g
+
1 and g

−
1 .

Theorem 3 If g1 and g2 are measurable functions on a common domain, then each of the sets

{ω : g1 (ω) < g2 (ω)} {ω : g1 (ω) = g2 (ω)} {ω : g1 (ω) > g2 (ω)}

is measurable.

Proof. Since g1 and g2 are measurable, then f = g1 − g2 is measurable, and thus the two sets

{ω : f (ω) > 0} {ω : f (ω) = 0}

are measurable. Since
{ω : g1 (ω) < g2 (ω)} ≡ {ω : f (ω) > 0}

and
{ω : g1 (ω) = g2 (ω)} ≡ {ω : f (ω) = 0} ∪ {ω : g1 (ω) = g2 (ω) = ±∞}

then {ω : g1 (ω) < g2 (ω)} and {ω : g1 (ω) = g2 (ω)} are measurable, and so is

{ω : g1 (ω) ≤ g2 (ω)} ≡ {ω : g1 (ω) < g2 (ω)} ∪ {ω : g1 (ω) = g2 (ω)} .
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Theorem 4 MEASURABILITY UNDER LIMIT OPERATIONS
If {gn} is a sequence of measurable functions, the functions sup

n

gn and inf
n
gn are measurable.

Proof. Let g = sup
n

gn. Then for real x, consider

g−1n ([−∞, x]) ≡ {ω : gn (ω) ≤ x}

and
g−1 ([−∞, x]) ≡ {ω : g (ω) ≤ x} .

If g = sup
n

gn, then gn ≤ g for all n, and

g (ω) ≤ x =⇒ gn (ω) ≤ x so that ω ∈ g−1 ([−∞, x]) =⇒ ω ∈ g−1n ([−∞, x])

so that
g−1 ([−∞, x]) ⊆ g−1n ([−∞, x])

for all n. Thus, in fact

g−1 ([−∞, x]) =
⋂

n

g−1n ([−∞, x])

and hence g is measurable, as the intersection of measurable sets is measurable. The result for inf
n

follows by noting that
inf
n
gn = − sup

n

(−gn) .

Theorem 5 MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions limsup

n

gn and lim inf
n

gn are measurable.

Proof. This follows from Theorem 4, as

lim sup
n

gn = inf
k

{

sup
n≥k

gn

}

and lim inf
n

gn = sup
k

{
inf
n≥k

gn

}

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Recall the definition of a simple function ψ,

ψ (ω) =
k∑

i=1

aiIAi (ω)

for real constants a1, ..., ak and measurable sets A1, ..., Ak, for some k = 1, 2, 3, .... Note that any such
simple function, can be re-expressed as a simple function defined for a partition of Ω, E1, ...,El,

ψ (ω) =
l∑

i=1

eiIEi (ω)

by suitable choice of the constants e1, ..., ek.
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Theorem 6 A non-negative function on Ω is measurable if and only if it is the limit of an increasing
sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the
simple function ψn on Ω by

ψn (ω) =
m

2n
if
m

2n
≤ g (ω) <

m+ 1

2n

for m = 0, 1, 2, ..., n2n − 1, and
ψn (ω) = n if n ≤ g (ω) .

Then {ψn} is an increasing sequence of non-negative simple functions. Since

|ψn (ω)− g (ω)| <
1

2n
if n > g (ω)

and ψn (ω) = n if g (ω) =∞, then, for all ω,

ψn (ω)→ g (ω)

and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is
measurable by Theorem 5.

Theorem 7 A function g defined on Ω is measurable if and only if it is the limit of a sequence of
simple functions.

Proof. Suppose that g is measurable. Then g+ and g− are measurable and non-negative, and thus
can be represented as limits of simple functions

{
ψ+n
}
and

{
ψ−n
}
, by the Theorem 6. Consider the

sequence of simple functions defined by
{
ψ+n − ψ

−
n

}
; this sequence converges to g+ − g− = g, and we

have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 5.
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