M3/M4S3 STATISTICAL THEORY II INTEGRAL WITH RESPECT TO MEASURE : KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular, the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the theorems, we have a general measure space $(\Omega, \mathcal{F}, \nu)$, and measurable set $E \in \mathcal{F}$.

Theorem 1 Lebesgue Monotone Convergence Theorem

If $\{f_n\}$ is an increasing sequence of nonnegative measurable functions, and if

$$\lim_{n \to \infty} f_n = f \qquad almost \ everywhere$$

then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Proof. Let the (real) sequence $\{i_n\}$ be defined by

$$i_n = \int_E f_n d\nu$$

Then, by a previous result

$$i_n = \int_E f_n d\nu \le \int_E f_{n+1} d\nu = i_{n+1} \qquad \text{as } f_n \le f_{n+1}$$

so $\{i_n\}$ is increasing. Let *L* denote the (possibly infinite) limit of $\{i_n\}$. Now, since $f_n \leq f$ almost everywhere for all *n*, we have (by the same previous result) that

$$\int_{E} f_n d\nu \le \int_{E} f d\nu \Longrightarrow L \le \int_{E} f d\nu.$$
(1)

Now consider constant c with 0 < c < 1, and let ψ be any simple function satisfying $0 \le \psi \le f$. Let

$$E_{n} \equiv \{\omega : \omega \in E \text{ and } c\psi(\omega) \leq f_{n}(\omega)\}$$

and as $E_n \subseteq E$, E_n is measurable, and because $f_n \leq f_{n+1}$, $E_n \subseteq E_{n+1}$ for all n, so $\{E_n\}$ is increasing. Let the limit of the $\{E_n\}$ sequence be denoted

$$F = \bigcup_{i=1}^{\infty} E_n.$$

The set $E \cap F'$ has measure zero, because $\lim_{n \to \infty} f_n = f$ a.e. and $0 \le c\psi \le \psi \le f$. Hence, as $E_n \subseteq E$

$$\int_{E} f_n d\nu \ge \int_{E_n} f_n d\nu \ge \int_{E_n} c\psi d\nu = c \int_{E_n} \psi d\nu.$$

Taking the limit as $n \to \infty$,

$$L = \lim_{n \to \infty} \int_E f_n d\nu \ge c \lim_{n \to \infty} \int_{E_n} \psi d\nu = c \int_F \psi d\nu = c \int_E \psi d\nu$$

the final step following as $E \cap F'$ has measure zero. Thus, as this holds for all c such that 0 < c < 1, we must have that

$$L \ge \int_E \psi d\nu$$

whenever $0 \le \psi \le f$. Hence L is an upper bound the integral of such a simple function on E. But, by the supremum definition from lectures, the integral of f with respect to ν on E is the **least** upper bound on the integral of such simple functions on E. Hence

$$L \ge \int_E f d\nu. \tag{2}$$

Thus, combining (1) and (2), we have that

$$L = \lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu.$$

Theorem 2 Fatou's Lemma (or Lebesgue-Fatou Theorem)

If $\{f_n\}$ is a sequence of non-negative measurable functions, and if

$$\liminf_{n \to \infty} f_n = f \qquad almost \ everywhere$$

then

$$\int_{E} f d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\}$$

Proof. The function $\liminf_{n \to \infty} f_n$ is measurable (by the measure theory handout result). For $k = 1, 2, 3, \dots$ let

$$h_k = \inf\left\{f_n : n \ge k\right\}.$$

Then, by definition of infimum, $h_k \leq f_k$ for all k, and thus

$$\int_{E} h_k d\nu \le \int_{E} f_k d\nu \quad \text{for all } k \quad \Longrightarrow \quad \liminf_{k \to \infty} \left\{ \int_{E} h_k d\nu \right\} \le \liminf_{k \to \infty} \left\{ \int_{E} f_k d\nu \right\}. \tag{3}$$

Now $\{h_k\}$ is an increasing sequence of non-negative functions, we have in the limit

$$\lim_{k \to \infty} h_k = \liminf_{n \to \infty} f_n = f$$

almost everywhere. Now, by the Monotone Convergence Theorem,

$$\lim_{k \to \infty} \left\{ \int_E h_k d\nu \right\} = \int_E \left\{ \lim_{k \to \infty} h_k \right\} d\nu = \int_E f d\nu$$

Hence, by (3),

$$\int_{E} f d\nu \le \liminf_{k \to \infty} \left\{ \int_{E} f_k d\nu \right\}$$

Some corollaries follow immediately from this important theorem

1. If $E_1, E_2, ..., E_n$ are disjoint, with $\bigcup_{i=1}^n E_i \equiv E$, and f is non-negative, then

$$\int_E f d\nu = \sum_{i=1}^n \left\{ \int_{E_i} f d\nu \right\}$$

Proof: Let $\{\psi_k\}$ be an increasing sequence of simple functions that converge to f, where

$$\psi_k = \sum_{j=1}^{m_k} a_{kj} I_{A_{kj}}$$

say. Then,

$$\int_{E} \psi_{k} d\nu = \sum_{j=1}^{m_{k}} a_{kj} \nu \left(E \cap A_{kj} \right) = \sum_{j=1}^{m_{k}} \sum_{i=1}^{n} a_{kj} \nu \left(E_{i} \cap A_{kj} \right) \qquad \text{as the } E_{i} \text{ are disjoint}$$
$$= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{m_{k}} a_{kj} \nu \left(E_{i} \cap A_{kj} \right) \right\} = \sum_{i=1}^{n} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\}$$

by hence the monotone convergence theorem,

$$\int_{E} f d\nu = \lim_{k \to \infty} \left\{ \int_{E} \psi_{k} d\nu \right\} = \lim_{k \to \infty} \left\{ \sum_{i=1}^{n} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\} \right\} = \sum_{i=1}^{n} \left\{ \lim_{k \to \infty} \left\{ \int_{E_{i}} \psi_{k} d\nu \right\} \right\}$$
$$= \sum_{i=1}^{n} \left\{ \int_{E_{i}} \left\{ \lim_{k \to \infty} \psi_{k} \right\} d\nu \right\} = \sum_{i=1}^{n} \left\{ \int_{E_{i}} f d\nu \right\}.$$

2. Now consider a **countable** (rather than merely finite) collection $\{E_i\}$ with $\bigcup_{i=1}^{\infty} E_i \equiv E$. Then if f is non-negative

$$\int_{E} f d\nu = \sum_{i=1}^{\infty} \left\{ \int_{E_{i}} f d\nu \right\}$$

Proof: For each positive integer n, let $A_n \equiv \bigcup_{i=1}^n E_i$, and define $f_n = I_{A_n} f$. Then $\{f_n\}$ is an increasing sequence of non-negative functions, that converges to f (on E). Hence

$$\int_{E} f d\nu = \lim_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\} = \lim_{n \to \infty} \left\{ \int_{A_n} f d\nu \right\} = \lim_{n \to \infty} \left\{ \sum_{i=1}^n \left\{ \int_{E_i} f d\nu \right\} \right\} = \sum_{i=1}^\infty \left\{ \int_{E_i} f d\nu \right\}$$

3. Let f be a non-negative function on Ω . Then the function defined on \mathcal{F} by

$$\varphi\left(E\right) = \int_{E} f d\nu$$

is a measure. The only part of the definition of a measure that needs verifying is the countable additivity, by the last result, we have directly that

$$\varphi\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \varphi\left(E_i\right)$$

when the $\{E_i\}$ are disjoint.

For the results above (and the results proved in lectures), we have considered only the integrals of non-negative measurable functions. We now extend them for general measurable functions, using the decomposition into positive and negative part functions $f = f^+ - f^-$ where both f^+ and f^- are measurable and non-negative, and we have

$$\int_E f d\nu = \int_E f^+ d\nu - \int_E f^- d\nu.$$

Recall that we say that f is integrable if both f^+ and f^- are integrable, and now denote the set of all functions integrable on E with respect to ν by $\mathcal{L}_E(\nu)$. From previous arguments we have that

 $f \in \mathcal{L}_{E}(\nu) \Leftrightarrow f^{+} \text{ and } f^{-} \in \mathcal{L}_{E}(\nu)$

Some results can be proved for the functions in this class.

Lemma 1 If $\nu(E) = 0$, then

$$f \in \mathcal{L}_E(\nu)$$
 and $\int_E f d\nu = 0$

Proof. We have by definition

$$\int_{E} f d\nu = \int_{E} f^{+} d\nu - \int_{E} f^{-} d\nu = 0 - 0 = 0$$

Lemma 2 If $f \in \mathcal{L}_{E_2}(\nu)$ and $E_1 \subset E_2$, then $f \in \mathcal{L}_{E_1}(\nu)$.

Proof. By a result from lectures

$$\int_{E_1} f^+ d\nu \le \int_{E_2} f^+ d\nu \quad \text{and} \quad \int_{E_1} f^- d\nu \le \int_{E_2} f^- d\nu$$

Lemma 3 If $\{E_n\}$ is a sequence of disjoint sets with $\bigcup_{n=1}^{\infty} E_n \equiv E$, and $f \in \mathcal{L}_E(\nu)$, then

$$\int_{E} f d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_n} f d\nu \right\}$$

Proof. The previous Lemma ensures that $f \in \mathcal{L}_{E_n}(\nu)$ as $E_n \subset E$ for all n. By using the result proved earlier, that if f is non-negative then

$$\int_{E} f d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_n} f d\nu \right\}$$

we use the positive and negative part decompositions

$$\int_{E} f d\nu = \int_{E} f^{+} d\nu - \int_{E} f^{-} d\nu = \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f^{+} d\nu \right\} - \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f^{+} d\nu \right\}$$
$$= \sum_{n=1}^{\infty} \left[\int_{E_{n}} f^{+} d\nu - \int_{E_{n}} f^{-} d\nu \right]$$
$$= \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} (f^{+} - f^{-}) d\nu \right\} = \sum_{n=1}^{\infty} \left\{ \int_{E_{n}} f d\nu \right\}$$

Corollary. If $f \in \mathcal{L}_{\Omega}(\nu)$, then the function φ defined on \mathcal{F} by

$$\varphi\left(E\right) = \int_{E} f d\nu$$

is additive.

Proof. As for previous result.

Lemma 4 If f = g a.e. on E, and if $g \in \mathcal{L}_E(\nu)$, then $f \in \mathcal{L}_E(\nu)$ and

$$\int_E f d\nu = \int_E g d\nu$$

Proof. Define $A \equiv \{\omega : \omega \in E, f(\omega) = g(\omega)\}$. Then $E \cap A'$ has measure zero, and

$$\int_E f^+ d\nu = \int_A f^+ d\nu = \int_A g^+ d\nu = \int_E g^+ d\nu$$

and

$$\int_{E} f^{-} d\nu = \int_{A} f^{-} d\nu = \int_{A} g^{-} d\nu = \int_{E} g^{-} d\nu$$

Adding these equations, we have immediately that $f \in \mathcal{L}_{E}(\nu)$ and

$$\int_E f d\nu = \int_E g d\nu$$

Lemma 5 If $f \in \mathcal{L}_{E}(\nu)$ and c is any real number, then $cf \in \mathcal{L}_{E}(\nu)$ and

$$\int_{E} (cf) \, d\nu = c \int_{E} f d\nu$$

Proof. Consider only the non-trivial case $c \neq 0$. Suppose first c > 0, and let g be a non-negative function. For any simple function ψ , say

$$\psi = \sum_{i=1}^{k} a_i I_{A_i}$$

we have

$$\psi \leq g \Leftrightarrow c\psi \leq cg.$$

and

$$\int_{E} (c\psi) \, d\nu = \sum_{i=1}^{k} (ca_i) \, \nu \, (E \cap A_i) = c \sum_{i=1}^{k} a_i \nu \, (E \cap A_i) = c \int_{E} \psi \, d\nu$$

Therefore

$$\int_{E} (cf) \, d\nu = c \int_{E} f d\nu$$

by the supremum definition, and the result follows for c > 0 using this result, and the decomposition $cf = cf^+ - cf^-$. For c < 0, write

$$cf = (-c) f^{-} - (-c) f^{+}$$

so that the result follows, as -c > 0.

Lemma 6 If $f, g \in \mathcal{L}_{E}(\nu)$, then $f + g \in \mathcal{L}_{E}(\nu)$ and

$$\int_E \left(f+g\right) d\nu = \int_E f d\nu + \int_E g d\nu$$

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let $\left\{\psi_n^{(f)}\right\}$ and $\left\{\psi_n^{(g)}\right\}$ be increasing sequences of simple functions with limits f and g respectively. Then $\left\{\psi_n^{(f)} + \psi_n^{(g)}\right\}$ has limit f + g, and as

$$\int_E \left(\psi_n^{(f)} + \psi_n^{(g)}\right) d\nu = \int_E \psi_n^{(f)} d\nu + \int_E \psi_n^{(f)} d\nu$$

(see this result by using the measure definition of the integral of a simple function), we have, taking the limit as $n \to \infty$,

$$\int_{E} (f+g) \, d\nu = \int_{E} f d\nu + \int_{E} g d\nu.$$

Now consider the general case; define the following subsets of E

$$E_{1} \equiv \{\omega : f(\omega) \ge 0, g(\omega) \ge 0\}$$

$$E_{2} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0\}$$

$$E_{3} \equiv \{\omega : f(\omega) \ge 0, g(\omega) < 0, (f+g)(\omega) \ge 0\}$$

$$E_{4} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0, (f+g)(\omega) \ge 0\}$$

$$E_{5} \equiv \{\omega : f(\omega) \ge 0, g(\omega) < 0, (f+g)(\omega) < 0\}$$

$$E_{6} \equiv \{\omega : f(\omega) < 0, g(\omega) \ge 0, (f+g)(\omega) \ge 0\}$$

Then $E_n, n = 1, 2, ..., 6$ are disjoint, and $\bigcup_{n=1}^{6} E_n \equiv E$. By the Lemma 3, proving that

$$\int_{E_n} \left(f + g\right) d\nu = \int_{E_n} f d\nu + \int_{E_n} g d\nu$$

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so consider for example set E_3 . Then on E, the functions f, -g and f + g are non-negative, and threfore by part one of this proof,

$$\int_{E_3} f d\nu = \int_{E_3} (-g) \, d\nu + \int_{E_3} (f+g) \, d\nu = -\int_{E_3} g d\nu + \int_{E_3} (f+g) \, d\nu$$

and the result follows.

Lemma 7 The function $f \in \mathcal{L}_{E}(\nu)$ if and only if $|f| \in \mathcal{L}_{E}(\nu)$. In this instance,

$$\left| \int_E f d\nu \right| \le \int_E |f| \, d\nu.$$

Proof. We have identified previously that f is integrable if the positive and negative part functions are integrable, and this is the case if and only if the function

$$|f| = f^+ + f^-$$

is integrable. If this is the case, then

$$\left|\int_{E} f d\nu\right| = \left|\int_{E} f^{+} - f^{-} d\nu\right| \le \left|\int_{E} f^{+} d\nu\right| + \left|\int_{E} f^{-} d\nu\right| = \int_{E} |f| d\nu$$

Corollary. If $g \in \mathcal{L}_{E}(\nu)$, and $|f| \leq g$, then $f \in \mathcal{L}_{E}(\nu)$

Lemma 8 If $f, g \in \mathcal{L}_E(\nu)$, and $f \leq g$ a.e. on E, then

$$\int_E f d\nu \leq \int_E g d\nu$$

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.

Proof. We have $g - f \ge 0$, so the result follows from Integral Result (e) from lectures, and Lemma 6.

Corollary. If $v(E) < \infty$, and $m \le f \le M$ on E, for real values m and M, then by considering simple functions $\psi_m = mI_E$ and $\psi_M = MI_E$, for which $\psi_m \le f \le \psi_M$, we have

$$m\upsilon\left(E\right) \leq \int_{E} f d\nu \leq M\upsilon\left(E\right)$$

Lemma 9 Suppose $f, g \in \mathcal{L}_{E}(\nu)$, and that for $A \subset E$,

$$\int_A f d\nu \le \int_A g d\nu$$

Then $f \leq g$ a.e. on E.

Proof. Let $F_1 \equiv \{\omega : \omega \in E, f(\omega) \ge g(\omega)\}$, so that $f - g \ge 0$ on F_1 . Thus, by the assumption of the Lemma,

$$\int_{F} \left(f - g \right) d\nu = 0$$

and hence by f - g = 0 or f = g a.e. on F_1 , by Integral Result (f) from lectures.

Corollary. If $f, g \in \mathcal{L}_E(\nu)$ and if

$$\int_A f d\nu = \int_A g d\nu$$

for $A \subset E$, then f = g a.e. on E.

Theorem 3 Lebesgue Dominated Convergence Theorem

If $\{f_n\}$ is a sequence of measurable functions, and if

$$\lim_{n \to \infty} f_n = f \qquad almost \ everywhere$$

and $|f_n| \leq g$ for all n, for some $g \in \mathcal{L}_E(\nu)$, then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Proof. $\{f_n\}$ and f are measurable functions. By using Fatou's Lemma (Theorem 2) on non-negative sequence $\{g + f_n\}$

$$\int_{E} (g+f) \, d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} (g+f_n) \, d\nu \right\}$$

so that

$$\int_{E} f d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\}.$$
(4)

Similarly, by applying the result to $\{g - f_n\}$, we have that

$$\int_{E} (g-f) \, d\nu \le \liminf_{n \to \infty} \left\{ \int_{E} (g-f_n) \, d\nu \right\} \qquad \therefore \qquad -\int_{E} f \, d\nu \le \liminf_{n \to \infty} \left\{ -\int_{E} f_n \, d\nu \right\}$$

Multiplying through by -1, we have by properties of lim sup and lim inf that

$$\int_{E} f d\nu \ge \limsup_{n \to \infty} \left\{ \int_{E} f_n d\nu \right\}$$
(5)

and hence combining (4) and (5), we have by definition

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu$$

Corollary. If $\{f_n\}$ is a uniformly bounded sequence (bounded above and below by a pair of real constants) of measurable functions such that

$$\lim_{n \to \infty} f_n = f \qquad \text{almost everywhere}$$

and if $v(E) < \infty$, then

$$\lim_{n \to \infty} \int_E f_n d\nu = \int_E f d\nu.$$

LEBESGUE-STIELTJES INTEGRALS ON \mathbb{R} .

Rather than considering a general sample space Ω , we now consider the specific case when $\Omega \equiv \mathbb{R}$, with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will often be expressed in terms of (or be generated by) an increasing **real** function F on E. Let E be a set in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

$$\int_{E} g d\nu = \int_{E} g dF \quad \text{or} \quad \int_{E} g d\nu = \int_{E} g(x) dF(x)$$

with special cases

$$\int_{a}^{b} g \, dF = \int_{(a,b]} g \, dF \qquad \text{and} \qquad \int_{-\infty}^{\infty} g \, dF = \int_{\mathbb{R}} g \, dF$$