
M3/M4S3 STATISTICAL THEORY II

DIFFERENTIATION AND INTEGRATION

1. EXCHANGING THE ORDER OF DIFFERENTIATION AND INTEGRATION
Let (Ω,F , ν) be a general measure space, and for fixed θ ∈ R, let f (ω; θ) be a Borel function on Ω.

Suppose that
∂f (ω; θ)

∂θ

exists almost everywhere for θ ∈ (a, b) ⊂ R, and that

∣∣∣∣
∂f (ω; θ)

∂θ

∣∣∣∣ ≤ g (ω) a.e.

for an integrable function g on Ω. Then for each θ ∈ (a, b), then
∂f (ω; θ)

∂θ
is integrable, and

d

dθ

{∫
f (ω; θ) dν

}
=

∫
∂f (ω; θ)

∂θ
dν

by the Lebesgue Dominated Convergence Theorem.

2. TRANSFORMATION/CHANGE OF VARIABLE
Let (Ω,F, ν) be a general measure space,and let f be a measurable function from (Ω,FΩ) to (Λ,FΛ).

The induced measure by f is denoted by

ν ◦ f−1

is a measure defined for B ∈ FΛ by

ν ◦ f−1 (B) = ν (f ∈ B) = ν
(
f−1 (B)

)
.

If g is a Borel function on (Λ,FΛ), then

∫

Ω

(g ◦ f) dν =

∫

Λ

g d
(
ν ◦ f−1

)
.

This is a change of variable formula for Lebesgue-Stieltjes integral.

3. PRODUCT SPACES AND PRODUCT MEASURE

Definition 1 A measure ν on (Ω,F) is termed sigma-finite (σ−finite) if and only if there exists a
sequence {Ai} of sets in F such that

∞⋃

i=1

Ai ≡ Ω

and ν (Ai) <∞ for all i = 1, 2, 3, ...
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Theorem 1 Let (Ωi,Fi, νi) for i = 1, 2 be σ−finite measure spaces. Then for each E ∈ F1 ×F2 the
function fE defined on Ω1 by

fE (ω1) = ν2 (Eω1)

where
Eω1 ≡ {ω2 : (ω1, ω2) ∈ E}

for fixed ω1 is ν1−measurable. In addition, the set function ν defined on F1 ×F2 by

ν (E) =

∫

Ω1

fE dν1 =

∫

Ω1

ν2 (Eω1) dν1

is a σ-finite measure that is uniquely determined by the fact

ν (A1 ×A2) = ν1 (A1) ν2 (A2)

for A1 ∈ F1 and A2 ∈ F2.

Corollary. The function gE defined on Ω2 by

gE (ω2) = ν1 (Eω2)

where
Eω2 ≡ {ω1 : (ω1, ω2) ∈ E}

for fixed ω2 is ν2−measurable, and

∫

Ω1

fE dν1 =

∫

Ω2

gE dν2.

Definition 2 Product Measure
Let (Ωi,Fi, νi) i = 1, 2, ..., k be measure spaces with σ−finite measures. Then there exists a unique
σ−finite measure on the product sigma-algebra

σ (F1 ×F2 × ...×Fk)

called the product measure. It is denoted

ν1 × ν2 × ...× νk

and is defined by

ν1 × ν2 × ...× νk (A1 ×A2 × ...×Ak) =

k∏

i=1

νi (Ai)

for all Ai ∈ Fi, i = 1, 2, ..., k.
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4. ITERATED AND DOUBLE INTEGRATION: FUBINI’S THEOREM
Let νi be a σ−finite measure on (Ωi,Fi) for i = 1, 2, and let f be a Borel function on

(Ω1,F1)× (Ω2,F2)

whose integral with respect to product measure ν1 × ν2 exists. For each ω2 ∈ Ω2, define function fω2
on Ω1 by

fω2 (ω1) = f (ω1, ω2) ω1 ∈ Ω1

with a similar definition for fω1 on Ω2

fω1 (ω2) = f (ω1, ω2) ω2 ∈ Ω2.

(these functions are called sections). Then fω2 is ν1-measurable, and fω1 is ν2-measurable. If the
two integrals ∫

Ω1

fω2 (ω1) dν1 and

∫

Ω2

fω1 (ω2) dν2

exist for each ω2 and ω1 respectively, then functions α and β defined, respectively, by

α (ω1) =

∫

Ω2

fω1 (ω2) dν2 β (ω2) =

∫

Ω1

fω2 (ω1) dν1

for ω1 ∈ Ω1 and ω2 ∈ Ω2 are measurable. If these functions are integrable wrt ν1 and ν2 respectively,
then we denote the iterated integral of f by

∫

Ω1

{∫

Ω2

fω1 (ω2) dν2

}
dν1 ≡

∫

Ω1

{∫

Ω2

f (ω1, ω2) dν2

}
dν1

which can also be denoted ∫ {∫

Ω1×Ω2

f (ω1, ω2) dν2

}
dν1.

This is, in general, distinct from the double integral of f wrt the product measure

∫

Ω1×Ω2

f (ω1, ω2) d (ν1 × ν2)

The next theorem gives conditions when the double integral is equal to the iterated integral.

Theorem 2 FUBINI’S THEOREM
Let (Ωi,Fi, νi) for i = 1, 2 be σ−finite measure spaces, and let f be a ν1 × ν2-measurable function
defined on Ω1 × Ω2. Then

(a) If f is non-negative, then the functions α and β defined, respectively, on Ω1 and Ω2 by

α (ω1) =

∫

Ω2

fω1 (ω2) dν2 β (ω2) =

∫

Ω1

fω2 (ω1) dν1

are measurable, and

∫

Ω1×Ω2

f (ω1, ω2) d (ν1 × ν2) =

∫

Ω1

{∫

Ω2

f (ω1, ω2) dν2

}
dν1 =

∫

Ω2

{∫

Ω1

f (ω1, ω2) dν1

}
dν2 (1)
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(b) If ∫

Ω2

{∫

Ω1

|f (ω1, ω2)| dν1

}
dν2

is finite, then f is integrable.

(c) If f is integrable, then almost every section of f is integrable, and the functions α (.) and β (.) are
integrable, and (1) holds.

Proof. (a) We establish

∫

Ω1×Ω2

f (ω1, ω2) d (ν1 × ν2) =

∫

Ω1

{∫

Ω2

f (ω1, ω2) dν2

}
dν1

and deduce the rest of the result, as it is symmetric in indices 1 and 2. Suppose, initially, that
f = IE . Then

β (ω2) =

∫

Ω1

(IE)ω2 dν1 = ν (Eω2)

is a ν2 measurable function, and by Theorem 1, equation (1) holds, and therefore it also holds for all
simple functions, by the additivity of measures established previously. To prove the result for
non-negative integrals, we use the Lebesgue Monotone Convergence Theorem. If f is a non-negative
function, there is an increasing sequence, {ψn} , of simple functions which converges to f . Hence

∫

Ω1×Ω2

f (ω1, ω2) d (ν1 × ν2) = lim
n→∞

∫

Ω1×Ω2

ψn (ω1, ω2) d (ν1 × ν2) .

Now, each section of a simple function is simple, and also lim
n→∞

(ψn)ω2 = fω2 . Thus the function

βn (ω2) =

∫

Ω1

(ψn)ω2 dν1 n = 1, 2, ...

defines an increasing sequence of non-negative measurable functions with

lim
n→∞

βn = β where β (ω2) =

∫

Ω1

fω2 (ω1) dν1.

and hence β is measurable with

∫

Ω2

{∫

Ω1

f (ω1, ω2) dν1

}
dν2 =

∫

Ω2

β (ω2) dν2 = lim
n→∞

∫

Ω2

βn (ω2) dν2 = lim
n→∞

∫

Ω2

{∫

Ω1

ψndν1

}
dν2

and this proves the result.

(b) This result follows from (a) applied to the function |f | .

(c) This result follows as if f is integrable, then so are the positive and negative part functions f+ and
f−, and thus by (a) these non-negative functions are integrable, and the iterated integrals are finite.
Thus the iterated integral(s) of f is finite. Finally, the function β defined above is finite a.e., since
its integral with respect to ν2 is finite (this integral is merely one of the parts of the iterated integral).
Thus fω2 (and by symmetry of argument, fω1) is integrable a.e. for all ω2 (as is fω1 for any ω1).
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