M3S3/M4S3

ASSESSED COURSEWORK 1

Deadline: Friday 26th November 12.00pm
 Please hand in to the General Office

1. The Lindeberg-Feller Central Limit Theorem for independent, but not necessarily identically distributed, zero mean random variables can be re-stated as follows: Let $\left\{X_{n j}, j=1,2, \ldots, n\right\}$, for $n=1,2,3, \ldots$, define a triangular lattice, with $E\left[X_{n j}\right]=0$ for all n, j, and suppose $\operatorname{Var}\left[X_{n j}\right]=\sigma_{n j}^{2}$. Let

$$
\begin{equation*}
T_{n}=\sum_{j=1}^{n} X_{n j} \tag{1}
\end{equation*}
$$

and let $v_{n}^{2}=\operatorname{Var}\left[T_{n}\right]=\sum_{j=1}^{n} \sigma_{n j}^{2}$. Then

$$
\frac{T_{n}}{v_{n}} \xrightarrow[\rightarrow]{\mathfrak{L}} Z \sim N(0,1) \quad \text { so that } \quad T_{n} \sim A N\left(0, v_{n}^{2}\right)
$$

if

$$
\begin{equation*}
\frac{1}{v_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} I_{\left\{\left|X_{n j}\right| \geq \varepsilon v_{n}\right\}}\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

for every $\varepsilon>0$, where (2) is the Lindeberg condition in a slightly different form.
(a) Show that the Lindeberg-Feller Theorem applies for the triangular lattice defined by the independent random variables

$$
X_{n j}=\left\{\begin{array}{rr}
-1 & \text { with probability } \frac{1}{2} \\
1 & \text { with probability } \frac{1}{2}
\end{array} \quad j=1,2, \ldots, n \text { and } n=1,2,3 \ldots\right.
$$

and find an asymptotic normal approximation for T_{n} as defined by (1).
[4 MARKS]
(b) Does the Lindeberg-Feller Theorem apply for the triangular lattice defined by the following independent random variables ?

$$
X_{n j}=\left\{\begin{array}{rr}
-j & \text { with probability } \frac{1}{2} \\
j & \text { with probability } \frac{1}{2}
\end{array} \quad j=1,2, \ldots, n \text { and } n=1,2,3 \ldots\right.
$$

If so, find an asymptotic normal distribution for T_{n} as defined by (1).
[6 MARKS]
2.. (i) Suppose $\left\{X_{n}\right\}$ are a sequence of random variables with $X_{n} \sim \operatorname{Poisson}(\lambda)$ for real parameter $\lambda>0$. Find an asymptotic normal approximation for the distribution of random variable

$$
Y_{n}=\bar{X}_{n} \exp \left\{-\bar{X}_{n}\right\}
$$

which can be used as the basis for a hypothesis test about $P[X=1]=\lambda e^{-\lambda}$.
[5 MARKS]
(ii) The success parameter, θ, in a Bernoulli experiment is to be estimated from a sequence of independent trials. For which (if any) values of θ does experimental procedure A yield an estimator with asymptotic normal distribution having a lower variance than procedure B ?

PROCEDURE A: n trials are carried out and the number X of successes is recorded: estimator is

$$
\widehat{\theta}_{A}=\frac{X}{n}
$$

PROCEDURE B: n paired trials are carried out and the number Y of pairs of successes is recorded: estimator is

$$
\widehat{\theta}_{B}=\sqrt{\frac{Y}{n}}
$$

(the probability of a pair of successes on any paired trial in procedure B is $\phi=\theta^{2}$; the maximum likelihood estimator of ϕ is $\widehat{\phi}=Y / n$, and thus by invariance $\theta=\sqrt{\phi}$ is estimated by $\sqrt{\widehat{\phi}}=\sqrt{Y / n}$.
[5 MARKS]

