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Summary

We extend the currently most popular models for the volatility of financial time se-

ries, Ornstein-Uhlenbeck stochastic processes, to more general non Ornstein-Uhlenbeck

models. In particular, we investigate means of making the correlation structure in the

volatility process more flexible. For one model, we implement a method for introducing

quasi long-memory into the volatility model. We demonstrate that the models can be

fitted to real share price returns data, and that results indicate that for the series we

study, the long-memory aspect of the model is not supported.

Some key words: Volatility; Long-memory; Fractional Ornstein-Uhlenbeck Process; Power

decay process

1. Introduction

This paper describes the development of a class of continuous time stochastic volatility

(SV) models for use in statistical finance. Some of these models are generalisations of the

SV models of Barndorff-Nielsen & Shephard (2001a) and have a more flexible correlation

structure than the exponential decay of the BNS-SV models. The models we consider

are motivated by the recent work of Wolpert & Taqqu (2005), and are novel in the

context of SV modelling. In this paper, we utilize Markov chain Monte Carlo (MCMC)

algorithms to perform inference for the models, applied to simulated and real share data.

Our MCMC algorithms exploit a series representation of the latent volatility process that

is a Lévy process without a Gaussian component. We describe the adaptation of the

MCMC algorithms to this more general inferential setting.
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1·1 Volatility Modelling

Most option pricing in finance is based on the standard Black-Scholes model (Black &

Scholes (1973)). It is well-known that this model does not fit some observed properties

of financial data and many generalisations have been proposed. SV models are one

generalisation, where the volatility is allowed to vary over time. For a review of recent

SV models see Carr et al. (2003) and Schoutens (2003).

The most popular continuous time SV model was proposed in Barndorff-Nielsen

& Shephard (2001a) (referred to as the BNS model), where the volatility follows an

Ornstein-Uhlenbeck (OU) equation, with increments driven by a background driving

Lévy process (BDLP). The volatility process is stationary, with jumps in volatility caused

by jumps in the Lévy process. Between jumps, the volatility decays exponentially at a

rate determined by one of the parameters in the OU equation. For the BNS model,

the marginal distribution of the volatility is completely specified by the type of BDLP

which drives the OU equation, and is independent of the rate of exponential decay of

the volatility process.

1·2 Extending the Ornstein-Uhlenbeck Model

In the BNS-SV model the unknown volatility exhibits short-range dependence, or short-

memory. It has been noted that the returns series can exhibit long-range dependence, or

long-memory. One approach to long-memory modelling in this context has been to use

process superposition: Roberts et al. (2004) and Griffin & Steel (2003) attempt to induce

long-memory using superposition of volatility processes each with its own BDLP and cor-

relation parameter - this result is theoretically justified by a theorem in Barndorff-Nielsen

& Shephard (2001a). This model is deficient in a number of ways. First, although a

superposition of finite numbers of volatility processes allows different BDLPs to describe

short-range and longer-range dependencies in the volatility, the resulting process is still

short-memory. Secondly, inference for the set of λs is not straightforward. Thus, super-

position, although theoretically appealing, is of limited practical use if a real attempt at

long-memory modelling is to be made.
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1·3 Contribution of this paper

The stochastic processes utilized in this paper were introduced in Wolpert & Taqqu

(2005), and are novel in the modelling of volatility. The purpose of this paper is to

introduce a new class of stochastic volatility models and some of its properties, along

with methods to simulate from them. In this paper, we use the series representation

of the stochastic processes given in Barndorff-Nielsen & Shephard (2000) to facilitate

computational inference. A useful property of one of the proposed models is that it does

not use superposition to produce long-memory. Specifically on the long-memory issue, we

introduce a volatility process whose correlation structure decays asymptotically like t−λ,

where λ > 1 is a parameter of the model, such that in the limit as λ → 1, long-memory

structure is recovered.

2. Volatility Process representations

2·1 The Barndorff-Nielsen and Shephard Model

The returns of financial series are often rescaled so that they are of a reasonable size and

so it is attractive for volatility to have a self-decomposable distribution, as the marginal

distribution is altered in a predictable way by rescaling. Wolfe (1982) proved that σ2 (t)

has a self-decomposable distribution if and only if it can be written as

σ2 (t) =
∫ 0

−∞
exp (s) dz (λt + s) ,

where λ is any positive constant and z (t) is a homogeneous Lévy process (see for example

Bertoin (1994) and Sato (1999)), referred to as the background driving Lévy process

(BDLP). It follows that

σ2 (t) = σ2 (0) e−λt + e−λt

∫ t

0
eλsdz (λs) (2.1)

or, equivalently,

dσ2 (t) = −λσ2 (t) + dz (λt) . (2.2)

This SV model is described in Barndorff-Nielsen & Shephard (2001a).

The BDLP is constant apart from where it has positive jumps. Thus σ2 (t) jumps

when the BDLP jumps and decays exponentially in-between jumps (where dz (λt) = 0).
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Therefore, λ controls both the rate at which jumps occur in σ2 (t) and the rate at which

the volatility decays in-between jumps.

For any self-decomposable distribution, there is a unique BDLP, z (t), that will gen-

erate the required marginal for the volatility in equation (2.2). The relationship between

the marginal and the BDLP is given by the Lévy-Khintchine Formula (see, for example,

Bertoin (1994)), and an important component of this representation is the Lévy mea-

sure, denoted here u (x). The Lévy measure plays an integral part in the simulation

procedures described below.

If a self-decomposable marginal distribution for σ2 (t) is chosen, with Lévy measure

u (x), and if z (1) has Lévy measure w (x), Barndorff-Nielsen & Shephard (2000) have

shown that if σ2 (t) follows the OU equation (2.2), then

w (x) = −u (x)− x
du (x)

dx
(2.3)

and, if the infinitely divisible marginal distribution for σ2 (t) is chosen, the BDLP is

specified by equation (2.3). Following Barndorff-Nielsen & Shephard (2001a), define the

Tail Mass function as

W+
p (x) =

∫ ∞

x
w (y) dy = xu (x)

and the Inverse Tail Mass function as

W−1
p (x) = inf

[
y > 0 : W+

p (y) ≤ x
]
, (2.4)

where p are the parameters specifying the exact marginal distribution of σ2 (t). These

are both monotonic decreasing functions.

We now study two specific examples.

• The Generalized Inverse Gaussian Marginal The Generalized Inverse Gaus-

sian (GIG) model is considered extensively by Barndorff-Nielsen & Shephard (2001a),

and inference for this general model is described in Gander & Stephens (2004). If

X ∼ GIG (γ, ν, α), for γ ∈ R and ν, α > 0, the marginal density is

fX (x) =
(α/ν)γ

2Kγ (να)
xγ−1 exp

{
−1

2
(
ν2x−1 + α2x

)}
, for x > 0,
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where Kν is a modified Bessel function of the third kind. The Lévy measure of X

is then

u (x) =
1
x

{
1
2

∫ ∞

0
exp

(
− xξ

2ν2

)
gγ (ξ) dξ + max (0, γ)

}
exp

(
−α2x

2

)
, (2.5)

where

gγ (x) =
2

xπ2

{
J2
|γ|

(√
x
)

+ N2
|γ|

(√
x
)}−1

and J|ν| and N|ν| are Bessel functions of the first and second kind respectively.

Special cases of this distribution include the Gamma, Inverse Gamma, Inverse

Gaussian and Positive Hyperbolic. It is thus a flexible model that can be used for

modelling real volatility processes. For example, in Gander & Stephens (2004),

evidence is presented to suggest that the Inverse Gamma is preferable (in terms of

out of sample prediction) for modelling the volatility of stocks on the New York

Stock Exchange (NYSE).

• The Tempered Stable Marginal Another process considered in Gander &

Stephens (2004) is the Tempered Stable process TS (κ, ν, α). If X ∼ TS (κ, ν, α),

for 0 < κ < 1 and ν, α > 0, the marginal density is

fX (x) = eναfY |κ,ν (x) exp

(
−α1/κ

2
x

)
, for x > 0,

where, for x > 0,

fY |κ,ν (x) =
ν−1/κ

2π

∞∑

j=1

(−1)j−1

j!
sin (jκπ) Γ (jκ + 1) 2jk+1

(
xν−1/κ

)−jκ−1

is the density function of the positive κ-stable law (see Feller (1971) and Barndorff-

Nielsen & Shephard (2001b)); if κ = 0.5 the Inverse Gaussian distribution is

recovered. The Lévy measure of X is then

u (x) = Ax−B−1e−Cx, (2.6)

where A = νκ2κ/Γ (1− κ), B = κ and C = α1/κ/2. For this Lévy measure the

Inverse Tail Mass function is

W−1
κ,ν,α (x) =

(
A

x

)1/B

exp

[
−LW

(
C

B

(
A

x

)1/B
)]

,
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where LW is the Lambert-W function which satisfies

LW (x) exp [LW (x)] = x (2.7)

and is a standard function available numerically. For further details on LW , see

Jeffrey et al. (1996).

The last result needed, before we can sample from σ2
i , is how to sample from stochastic

integrals with respect to the BDLP, of the form given in equation (2.1).

2·2 Integrated Volatility

The integrated volatility process,
{
σ2∗

t

}
, related to

{
σ2

t

}
is defined as

σ2∗ (t) =
∫ t

0
σ2 (u) du.

This is an important quantity for pricing European options and, for the BNS-SV model,

it can be shown that

σ2∗ (t) =
1
λ

{
z (λt)− σ2 (t) + σ2 (0)

}
.

This relatively simple form for the integrated volatility is an attractive feature of the

model. The discretely observed or actual volatility is

σ2
i = σ2∗ (i∆)− σ2∗ ((i− 1)∆) . (2.8)

Barndorff-Nielsen & Shephard (2001a) have shown that

corr
{
σ2

i , σ
2
i+s

}
= d (λ∆) e−λ∆(s−1),

where d (λ∆) is independent of s and 0 < d (λ∆) < 1. The log of the underlying asset,

x (t), satisfies

dx (t) =
{

µ− σ2 (t)
2

}
dt + σ (t) dW (t)

and, if inference about µ and σ2
i is required, the likelihood for y1, . . . , yT is given by

noting that

yi ∼ N

((
µ− σ2

i

2

)
∆, σ2

i ∆
)

.



Inference for Volatility Processes 7

2·3 The Griffin and Steel Representation

Griffin & Steel (2003) have shown that the discretely observed volatility can be written

as

σ2
i =

1
λ

{
ηi,2 − ηi,1 +

(
1− e−λ∆

)
σ2 ((i− 1)∆)

}
, (2.9)

where 



σ2 (i∆)

z (λi∆)





=





e−λ∆σ2 ((i− 1)∆)

z (λ (i− 1)∆)





+ ηi

and

ηi =





e−λ∆

∫ ∆

0
eλtdz (λt)

∫ ∆

0
dz (λt)





=





e−λ∆

∫ λ∆

0
etdz (t)

∫ λ∆

0
dz (t)





(2.10)

is a vector of random jumps, equal to a stochastic integral with respect to the BDLP,

z (t).

Barndorff-Nielsen & Shephard (2000) proved that if f (s) ≥ 0 for 0 < s < ∆ and, if

f (s) is integrable with respect to dz (s), then
∫ ∆

0
f (s) dz (s) L=

∞∑

i=1

W−1
p (ai/∆) f (∆ei) , (2.11)

where W−1
p () is the Inverse Tail Mass function as defined in equation (2.4), ai are the

arrival times of a Poisson process of intensity 1 and ei are independent standard uniform

variates (also independent of ai). Note that W−1
p (ai/∆) ≥ 0 is a decreasing function

and that, if it is non-zero for large ai, the integral can be approximated by truncating

the infinite series at some point.

Assume that ηi is truncated by discarding all Poisson points which are greater than

ac (so the same truncation scheme is used for each element of the random shock vector).

Let ni be the number of Poisson points which are less than ac for the ith entry of the

random shock vector (i.e. the number of Poisson points which contribute to ηi). The

approximation to equation (2.10) is then

ηi
L=





e−λ∆
ni∑

j=1
W−1

p

(ai,j

λ∆

)
eλ∆ri,j

ni∑
j=1

W−1
p

(ai,j

λ∆

)





, (2.12)
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where ai,j and ri,j are Poisson points and uniforms as described previously. We let A

and R be the matrices of the ai,j and ri,j .

The method to sample from σ2
i is as follows: we select a self-decomposable distribu-

tion for σ2 (t), and find the Lévy measure of this distribution and then the Lévy measure

of z (1), using equation (2.3). We then truncate the Poisson point process at ac and use

equations (2.4), (2.9) and (2.12) to generate σ2
i . Details on how ac might be chosen are

given in Gander & Stephens (2004).

3. Ornstein-Uhlenbeck processes: Alternative representation

The OU process defined in equation (2.2) has solution

σ2 (t) =
∫ t

−∞
f2 (λ, t, s) dz (λs) (3.1)

=
∫ ∞

0
f1 (λ, t, s) dz (λs) +

∫ t

0
f2 (λ, t, s) dz (λs) (3.2)

= e−λtσ2 (0) + e−λt

∫ t

0
eλsdz (λs) ,

where the two Lévy processes of equation (3.2) are independent copies of each other (i.e.

series representations for the stochastic integrals use independent realisations from the

same Lévy process) and

f1 (λ, t, s) = e−λ(t+s) f2 (λ, t, s) = e−λ(t−s).

The process has correlation structure corr
(
σ2 (t) , σ2 (t + j)

)
= exp (−λj) and σ2 (t)

is stationary and positive for a wide range of functions f1 and f2. Barndorff-Nielsen

& Shephard (2001a) mention using models with more general functions f1 and f2 and

decide to concentrate on OU models, where f1 and f2 are as described above.

The timing of the BDLP, dz (λs) in equation (2.2) is chosen so that λ does not

influence the marginal distribution of σ2 (t). Rather than equation (3.2), consider an

amended version

σ2 (t) =
∫ ∞

0
f1 (λ, t, s) dz (s) +

∫ t

0
f2 (λ, t, s) dz (s) = I1,t + I2,t. (3.3)

This is the same representation as used in Wolpert & Taqqu (2005). Unlike equation

(3.2), the timing (and the rate of jumps of the Lévy process) now does depend on λ,
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unlike the representations used for BNS-SV models, where the rate of jumps of the Lévy

process is not influenced by λ.

Simulation from the OU process is relatively straightforward because the time de-

pendent term of f1 and f2 can be removed from the stochastic integrals of equation

(3.2) and this allows I1,t to be written in terms of the volatility at time zero, σ2 (0),

in equation (3.3). If the OU equation is generalized, so integrands are not of the form

f1 (t, s) = g1,1 (t) g1,2 (s), then σ2 (t) can no longer be expressed in terms of σ2 (0). For

general f1 and f2, it is also not possible to separate the t and s terms in I2,t. This makes

simulating from such models more complicated than the original BNS-SV OU models.

4. Simulation from the generalized model

We now describe how to sample from the models of the previous section. Consider the

approximation for I1,t,

I1,t ≈
∫ d

0
f1 (λ, t, s) dz (s) ,

where d is large enough so the approximation is sufficiently accurate. The Barndorff-

Nielsen & Shephard (2000) series representation is then

∫ d

0
f1 (λ, t, s) dz (s) L=

n1,j∑

j=0

W−1
p (aj/d) f1 (λ, t, rj) , (4.1)

where da1,c is the value at which the Poisson point process (order statistics of uniform

random variables) is truncated, n1,j ∼ Po (da1,c), aj are the order statistics of n1,j

U (0, da1,c) random variables, rj
iid∼ U (0, d), all variables are independent and W−1

p () is

the Inverse Tail Mass function as defined previously. For every t, the same Poisson points,

aj , and uniforms, rj , are used and this induces the correlation in I1,t, so I1,t = e−λtσ2 (0)

for the OU case. This allows us to sample from I1,t.

For the finite integral, the situation is more complex. Previously a series representa-

tion was used, based on independent Poisson point processes and uniforms and this was

possible because the volatility could be written in terms of the previous volatility and a

stochastic integral (independent of previous stochastic integrals). Further, the stochastic

integrals were unaltered by t. For more general functions than f2 (λ, t, s) = e−λ(t−s), it
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is not possible to write the volatility in terms of previous volatilities, though we are able

to express the integral as a summation of integrals on disjoint domains and then use

independent series representations for these integrals. The second integral at time t− 1

is

I2,t−1 =
∫ t−1

0
f2 (λ, t− 1, s) dz (s)

and now consider I2,t|I2,t−1

I2,t =
∫ t−1

0
f2 (λ, t, s) dz (s) +

∫ t

t−1
f2 (λ, t, s) dz (s) . (4.2)

The domains of these two integrals are disjoint and so any realisations from these integrals

use independent series representations. Equation (4.2) can be rewritten as

I2,t =
t−2∑

j=0

∫ j+1

j
f2 (λ, t, s) dz (s) +

∫ t

t−1
f2 (λ, t, s) dz (s)

but the integrals of the summation are also disjoint, so by the independent increments

assumption,

I2,t
L=

t−2∑

j=0

∫ 1

0
f2 (λ, t, s + j) dz (s) +

∫ 1

0
f2 (λ, t, s + t− 1) dz (s)

=
t−1∑

j=0

∫ 1

0
f2 (λ, t, s + j) dz (s) ,

where integral terms in the sum are all with respect to independent realisations of the

BDLP (as they represent partitions of the integrals in equation (4.2)). This gives t

disjoint independent integrals and these can be simulated using the series representation

derived in Barndorff-Nielsen & Shephard (2000) and given in equation (2.11). If the

series are again truncated by discarding all Poisson points which are greater than a2,c,

then the series representation is

I2,t
L=

t−1∑

j=0

n2,j∑

i=0

W−1
p (a2,j,i) f2 (λ, t, r2,j,i + j) , (4.3)

where n2,j ∼ Po (a2,c), a2,j are the order statistics of n2,j U (0, a2,c) random variables,

r2,j,i
iid∼ U (0, 1), all variables are independent of each other and W−1

p () is the Inverse Tail

Mass function as defined previously. For the OU process, simulating using these series

representations gives the properties of σ2 (t) that were discussed in Gander & Stephens
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(2004). This is illustrated in Figure 1). We are now able to simulate from processes of the

form of equation (3.3) for general f1 and f2. Note that simulating from the instantaneous

volatility using the series representation of equation (4.3) is an order t2 algorithm, unlike

the series representation that was used for the OU process in previous inference schemes

(Roberts et al. (2004), Griffin & Steel (2003), Gander & Stephens (2004)) which are of

order t. We now consider which forms of these functions should be examined.

5. General SV models driven by Lévy processes

We retain the assumption that equation (2.1) is driven by the homogeneous BDLP, z (t),

where z (1) has Lévy measure

w (x) = −u (x)− xu (x) ,

where u (x) is the Lévy measure of the marginal distribution of the BNS-SV model with

the same BDLP. We will focus on marginal distributions on the positive real line, so z

is a subordinator. The Lévy-Khintchine formula for z (1) is

log E
{

eiθz(1)
}

=
∫ ∞

−∞

(
eiθx − 1

)
w (x) dx,

and w (x) is zero for x ≤ 0. We shall develop models for the SV process using the

approach introduced in Wolpert & Taqqu (2005) in a different modelling context. Full

details can be found in that paper; here we give brief details of the representation,

concentrating on moment-properties of the resulting stochastic processes. In section 6

we give details of the MCMC algorithms used to make inferences from simulated and

real data.

5·1 Utilizing the Wolpert and Taqqu Representation

Consider a moving average process, {Xt}, with representation

Xt =
∫ t

0
f (t, s) dz (s) ,

where z (s) is a Lévy process. The function G (s) is non-anticipating with respect to

dz (s) if G (s) cannot be used to predict future movement in dz (s). The process

Xt =
∫ tn

t0

G (s) dz (s)
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is then also non-anticipating. Consider non-anticipating moving average models for σ2 (t)

of the form

σ2 (t) =
∫ t

−∞
h1 (t− s) dz (s) , (5.1)

where the Lévy measure of z (1) is w (x) and h1 (t− s) ≥ 0 for s < t (so σ2 (t) has only

positive jumps). Ignoring the timing of the BDLP, this is a generalisation of the solution

given in equation (3.1). Therefore

σ2 (t) =
∫ ∞

−∞
h (t− s) dz (s) , (5.2)

where h (x) = h1 (x) if x ≥ 0 and zero otherwise. For models of the form of equation

(5.2), the negative of the characteristic exponent is

log E
{

eiθσ2(t)
}

= log E
{

exp
(

iθ

∫ ∞

−∞
h (t− s) dz (s)

)}

= log E



exp


iθ

∞∑

j=−∞

∫ (j+1)∆

j∆
h (t− s) dz (s)








and as σ2 (t) is non-anticipative,

log E
{

eiθσ2(t)
}

= log E



exp


iθ

∞∑

j=−∞
h (t− j∆) (z ((j + 1) ∆)− z (j∆))








= log E





∞∏

j=−∞
exp (iθh (t− j∆) zj (∆))



 ,

where zj (t) are independent and identical homogeneous Lévy processes with Lévy mea-

sure w (x). Then

log E
{

eiθσ2(t)
}

=
∞∑

j=−∞

∫ ∞

−∞
{exp (iθh (t− j∆)x)− 1}w (x) dx

and letting ∆ → 0 this gives

log E
{

eiθσ2(t)
}

=
∫ ∞

−∞

∫ ∞

−∞
{exp (iθh (t− s) x)− 1}w (x) dxds

and

log E
{

eiθσ2(t)
}

=
∫ ∞

−∞

∫ ∞

0

(
eiθxh(s) − 1

)
dsw (x) dx, (5.3)
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The variance and covariance of the process can be calculated by considering the joint

characteristic function in the usual way. We have

Cov
{
σ2 (t) , σ2 (0)

}
= τ2

∫ ∞

0
h1 (t + s) h1 (s) ds

where τ2 is the marginal variance induced by the model, and the process variance is

given by

Var
{
σ2 (t)

}
= τ2

∫ ∞

0
h2

1 (s) ds, (5.4)

which we require to be finite. The correlation at lag t is

ρ (t) =

∫ ∞

0
h1 (|t|+ s)h1 (s) ds
∫ ∞

0
h2

1 (s) ds

. (5.5)

By picking suitable functions for h1 (x), we are able to generate from a wide range

of distributions and correlation structures which have Lévy measure and correlation

structure specified by equations (5.3) and (5.5) respectively. In general, the discretely

observed volatility in equation (2.8) is not readily available and this makes it difficult

- although not impossible - to fit SV models of this form using the discretely observed

volatility. Three examples of the flexibility of models of this form are now given, before

fractional Ornstein-Uhlenbeck processes are introduced.

5·2 Ornstein-Uhlenbeck process

The marginal distribution of the BNS-SV OU volatility models is unaltered by the λ

parameter. Rather than using this representation of the OU process, consider instead

using h1 (t− s) =
√

2λe−λ(t−s) in equation (5.1). This is the OU process used in Wolpert

& Taqqu (2005) where λ influences the marginal distribution of σ2 (t). The correlation

specified by equation (5.5) is ρ (t) = e−λt as for the BNS-SV OU models. The relationship

between the marginal and λ is now given, when the BDLPs of Barndorff-Nielsen &

Shephard (2001a) drive the OU process.

Substituting r = xh (s) in equation (5.3) implies the negative of the characteristic

exponent is
1
λ

∫ ∞

0

∫ x
√

2λ

0

{
eitr − 1

}
r−1w (x) drdx
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and exchanging the order of integration, this is

1
λ

∫ ∞

0

∫ ∞

r/
√

2λ

{
eitr − 1

}
r−1w (u) dxdr

and so σ2 (t) has Lévy measure

1
λ

r−1

∫ ∞

r/
√

2λ
w (x) dx =

1
λ

r−1 [−xu (x)]∞
r/
√

2λ
=

1
λ
√

2λ
u

(
r/
√

2λ
)

.

When the BDLP that gives a GIG (γ, ν, α) marginal for the BNS-SV OU model is used

to drive the OU equation, using equation (2.5), the Lévy measure of σ2 (t) is

1
λ

r−1

[{
1
2

∫ ∞

0
exp

(
− xξ

2ν2
√

2λ

)
gγ (ξ) dξ + max (0, γ)

}
exp

(
− α2x

2
√

2λ

)]
.

In general, it is not possible to write the distribution of σ2 (t) in terms of a GIG distri-

bution because of the complex nature of the integrand. However, to illustrate the use of

these models, we use the BDLP which gives a Ga (ν, α) (GIG
(
ν, 0,

√
2α

)
) distribution

for the BNS-SV model, so the integral is zero. Then

σ2 (t) ∼ Ga

(
ν

λ
,

α√
2λ

)
.

This marginal distribution is verified in Figure 1, which also confirms that the correlation

structure is e−λt, as given by equation (5.5). The simulation results of Figure 1 are

as the theory suggests. This demonstrates the correct implementation of the series

representation of Section 3 for the OU process.

When the BDLP, which gives a TS (κ, ν, α) marginal for the BNS-SV OU model, is

used to drive equation (5.7), using equation (5.6) and equation (2.6), the Lévy measure

of σ2 (t) is

A
′
r−B

′−1e−C
′
x,

where

A
′
=

A

λ (2λ)κ/2
, B

′
= B and C

′
=

C√
2λ

and A,B and C are as defined under equation (2.6). From this it can be shown that

σ2 (t) ∼ TS
(
κ, νλ−1 (2λ)−κ/2 , α (2λ)−κ/2

)

and so the IG-OU BDLP generates σ2 (t) ∼ IG (with different parameters).
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5·3 Power Decay process

We now consider a SV model whose correlation decays asymptotically like a power, and

thus that has the potential to exhibit long-memory behaviour. Let

h1 (t− s) =
1

(α + β |t− s|)λ
(5.6)

in equation (5.1). We consider the case λ > 1 only, as this ensures that the correlation

is monotonically decreasing in |t− s|. We will focus on the case α = 1, as other α values

do not offer a richer correlation structure, as their effect only rescales the β parame-

ter. Substituting r = xh (s) in equation (5.3) implies the negative of the characteristic

exponent is

1
βλ

∫ ∞

−∞

∫ 1

0

(
eitr − 1

)
x1/λr−(1+1/λ)drw (x) dx.

Therefore the Lévy measure of σ2 (t) is

1
βλ

r−(1+1/λ)

∫ 1

0
x1/λw (x) dx.

Both the Lévy measure and correlation structure of σ2 (t) can be expressed in terms of

standard numerical functions, though these expressions are complex. For this reason we

focus on the cases λ = 1.5 and λ = 2, which will be used for simulation purposes later.

In the case of the Ga( ν, α2)-OU BDLP, the Lévy measure is

3ν

5α
1/3
2

e−α2/2WM

(
1
3
,
5
6
, α2

)
r−5/3 λ = 1.5

ν

2
√

α2

{√
πerf

(√
α2

)− 2
√

α2e
−α2

}
r−3/2 λ = 2,

where erf is the error function, WM (µ, ν, z) is the Whittaker-M special function

WM (a, b, z) = e−z/2zb+1/2Φ
(

1
2

+ b− a, 1 + 2b, z
)

and Φ is the confluent hypergeometric function

Φ(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
eztta−1(1− t)b−a−1dt.
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Both functions are available numerically. These models are limiting cases of the TS (1/λ, ν2, α3)

distribution as α3 → 0 (where ν2 is determined by ν, α2 and λ). The correlation is spec-

ified by equation (5.5) and is

4
β2

(
2 + βt− 2

√
1 + βt

)

t2
√

1 + βt
λ = 1.5

3
β3t3 (1 + βt)

{
2 (1 + βt) log

(
1

1 + βt

)
+ βt (2 + βt)

}
λ = 2.

The asymptotic decay of the correlation is proportional to

lim
t→∞

∫ ∞

0

1

{(1 + βs) (1 + β (t− s))}λ
ds,

truncating the integral at some large K (¿ t) gives the correlation proportional to

lim
t→∞

∫ K

0

1

{(1 + βs) (βt)}λ
ds

and so the asymptotic decay in the correlation is t−λ. In the limit as λ → 1, the

asymptotic decay in the correlation tends to t−1 so the model approaches a long-memory

model. For λ = 1.5 the correlation decays asymptotically like t−3/2, and for λ = 2 it

decays like t−2, and so on. This gives a slower decay than the BNS-SV OU models.

Figure 2 are ACF plots for simulations of size 50, 000 from this process, when β = 0.1

and for λ = 1.5 and λ = 2, using the Ga (1, 1)−OU BDLP and demonstrate the correct

decay of the correlation of the volatility process.

As λ increases the asymptotic decay of the process increases. The dashed line shows

the theoretical correlation and suggests that the series representation of Section 3 has

been implemented correctly. The β parameter can be used to further control the corre-

lation structure. Figure 2 are the same ACF plots as Figure 3 but for β = 1.

For β = 1, the initial decay in the correlation is faster than when β = 0.1. Models

with h1 (t− s) given by equation (5.6) can control the initial decay of the volatility

through the β parameter and the asymptotic decay by the λ parameter.
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5·4 Fractional Ornstein-Uhlenbeck process

Rather than using the Ornstein-Uhlenbeck process, we consider the OU process with

solution

σ2 (1, t) =
√

2λ

∫ t

−∞
e−λ(t−s)dz (s) , (5.7)

as was used in Section 5·2.

The Riemann-Liouville operator of fractional integration of a function, f (s) , is de-

fined by

aD
−nf (s) =

1
Γ (n)

∫ t

a
(t− s)n−1 f (s) ds, (5.8)

where D−n is the n-fold integral (see Anh & McVinish (2003) ). Define σ2 (κ, t) as

σ2 (κ, t) =
∫ t

−∞
λe−λ(t−s)σ2 (κ− 1, t) (s) ds, (5.9)

for κ 6= 1 (the κ = 1 case has been covered in Section 5·2). It can be shown that

σ2 (κ, t) =
√

2λ

∫ t

−∞

λκ−1

Γ (κ)
(t− s)κ−1 e−λ(t−s)dz (s)

(see Wolpert & Taqqu (2005)). The process σ2 (κ, t) is therefore called the fractional

Ornstein-Uhlenbeck Lévy (or fOUL) process, as it is of the form of equation (5.8) with

n = κ and

f (s) =
√

2λλκ−1e−λ(t−s).

Equations (5.7) and (5.9) are equivalent to those used in Wolpert & Taqqu (2005) to

define fOUL processes. Again, unlike the BNS-SV OU models, the marginal distribution

of the volatility is influenced by λ for these OU processes. We shall not change the

timing of the BDLP to avoid this, as although this is possible with the OU solution, for

the fOUL solution, κ also alters the marginal and it is difficult to manipulate equation

(5.9) to ensure this is not the case (and therefore we will be unable to make the marginal

independent of both λ and κ). Wolpert & Taqqu (2005) use fOUL processes to model the

Telecom process and are interested in the covariance function of these processes, whilst

we are usually concerned with the correlation function. The fOUL process is a special

case of equation (5.2), when

h (x) =
√

2λ
λκ−1

Γ (κ)
xκ−1e−λx x ≥ 0
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and zero otherwise. The variance of the process is given by equation (5.4) and we restrict

our attention to the finite variance processes, where κ > 1/2. Equation (5.5) gives the

correlation function

ρκ (t) =
2

Γ (κ− 1/2)

(
λt

2

)κ−1/2

Kκ−1/2 (λ |t|) .

For small lags, the correlation decays like a power for the fOUL process (unlike the OU

process). Although the fOUL process has a more flexible correlation structure than the

OU, both processes decay exponentially for large lags and do not have long-memory.

The decay of the correlation for small lags is controlled by κ and the decay for large lags

is determined by λ. Figure 4 demonstrates how the correlation structure varies with κ

for constant λ = 0.1.

Unfortunately, using a similar method to that used in Section 5·2, to calculate the

marginal distribution of the volatility, it is difficult to derive the Lévy measure or distri-

bution of σ2 (κ, t) for fOUL processes in general for the commonly used BDLPs.

As before, consider the homogeneous BDLP, z (t), with Lévy measure

w (x) = −u (x)− xu (x) ,

where u (x) is the Lévy measure of the marginal distribution of the BNS-SV model with

the same BDLP. From equation (5.7), the negative of the characteristic exponent of

σ2 (κ, t) is

log E
{

eitσ2(κ,t)
}

=
∫ ∞

0

∫ ∞

0

(
eituh(s) − 1

)
w (x) dsdx,

where h (s) is given by equation (5.9). Previously, we performed the substitution r =

uh (s) and more care must be taken to perform this substitution for general h (s) as,

for some κ values, the substitution is not one-to-one on the domain of integration. The

difficulties for the case 1/2 < κ < 1 are discussed below.

The substitution r = uh (s) is one-to-one on R+ for 1/2 < κ < 1 (unlike when κ > 1).

However, this is still more complex than for the OU process, as

dr = uh
′
(s) ds

and
1

uh′ (s)
=

1
uh (s)

s

(κ− 1− λs)
= r−1 h−1 (r/u)

(κ− 1− λh−1 (r/u))
,
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where

h−1 (s) = x1/(1−κ) exp

{
−LW

(
λx1/(1−κ)

1− κ

)}
.

and LW is the Lambert-W function of equation (2.7). Then

log E
{

eitσ2(κ,t)
}

=
∫ ∞

0

∫ ∞

0

{
eitr − 1

}
r−1 h−1 (r/u)

(λh−1 (r/u) + 1− κ)
drw (u) du

and σ2 (κ, t) has Lévy measure

r−1

∫ ∞

0

h−1 (r/u)
(λh−1 (r/u) + 1− κ)

w (u) du.

Due to the complex nature of h−1, it is not possible to simplify this further, even when

we have a Ga−OU BDLP. This demonstrates that both λ and κ specify the exact form

of the marginal distribution of σ2 (κ, t). Even for specific κ values (such as κ = 3/4) it

is not possible to evaluate this integral analytically.

We will concentrate on simulating from such models with the Ga−OU BDLP, as this

gives finite summations in equations (4.1) and (4.3) and the Inverse Tail Mass function

is available directly. Using the numerical methods, along with the series representation

of Section 3, allows us to simulate from integrals with respect to any of the BDLPs used

in Gander & Stephens (2004).

Even though we were unable to derive the marginal distribution of the volatility for

this BDLP, empirical results suggest the volatility might be Gamma distributed when

the Ga−OU BDLP is used to drive the fOUL process.

6. Inference using MCMC

Inference for continuous-time stochastic volatility models has been attempted using

MCMC. For example, MCMC algorithms to estimate the parameters of the BNS-SV OU

models have been described in Roberts et al. (2004), Griffin & Steel (2003) and Gander

& Stephens (2004). The algorithm in the final reference simulates from the stochastic

integral of equation (2.10) using the series representation of equation (2.12). For a data

set of size N this is an O (N) algorithm. For the models described in this paper, in

general, we need to sample from stochastic integrals of the form of equation (3.3) and

can use a similar series representation, given in equations (4.1) and (4.3), which gives an

O
(
N2

)
algorithm to sample from the instantaneous volatilities, σ2 (0∆) , . . . , σ2 (N∆).
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6·1 Likelihood construction and Approximation

The likelihood for BNS-SV OU models in Gander & Stephens (2004) is specified by the

discretely observed volatility, σ2
i , defined in equation (2.8) as

σ2
i =

∫ i∆

(i−1)∆
σ2 (u) du,

which has a simple form for the BNS-OU-SV models. In general, for the models of this

paper, this discretely observed volatility is

∫ i∆

(i−1)∆

∫ ∞

0
f1 (λ, u, s) dz (s) du +

∫ i∆

(i−1)∆

∫ t

0
f2 (λ, u, s) dz (s) du.

As the time dependent term of σ2 (t) cannot be separated from the stochastic integral

term, this cannot be simplified to a single integral, as was the case for the BNS-SV OU

models. The series representations for the models of this paper are slower to implement

because of the O (t) series representation of equation (4.3). The double integrals for

the discretely observed volatility are very intensive to compute, and are not currently

feasible as part of an MCMC algorithm. Fortunately, however, the instantaneous and

discretely observed volatilities have similar properties and so we can fit the models of

this paper using the same likelihood as before but with the approximation

σ2
i =

∫ i∆

(i−1)∆
σ2 (u) du ≈ σ2 ((i− 1)∆) ∆.

Alternatively, we could use the approximation

∫ i∆

(i−1)∆
σ2 (u) du ≈ σ2 (i∆) ∆,

or use the trapezium rule to make the approximation

∫ i∆

(i−1)∆
σ2 (u) du ≈

{
σ2 (i∆)− σ2 ((i− 1)∆)

2

}
∆.

For simulation purposes, each approximation gives similar results. For this reason we

use the approximation σ2
i ≈ σ2 (i∆)∆, as the correlation structure of σ2 (i∆) is already

known and gives a simple correlation structure for σ2
i .

To test the correct fit of the models to observed data, we examine the observed and

theoretical correlation structure of the square of the log returns, given the estimated
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model parameters. To estimate corr
{
y2

i , y
2
i+s

}
for s > 0, we make the approximation

yi ∼ N
(
0, σ2 (i∆)

)
, then E

{
y2

i

}
= E

{
σ2 (i∆)

}
and so

Cov
{
y2

i , y
2
i+s

}
= E

{(
σ2 (i∆)X2

i − σ2 (i∆)
)(

σ2 ((i + s)∆) X2
i+1 − σ2 ((i + s)∆)

)}

= ρ (s)Var
{
σ2 (i∆)

}
,

where Xi
iid∼ N (0, 1) is independent of the volatility process and ρ (t) is as given in

equation (5.5). We also have

Var
{
y2

i

}
= Var

{
y2

i+s

}
= Var

{
σ2 (i∆)

}
Var

{
X2

i

}
= 2Var

{
σ2 (i∆)

}

and so corr
{
y2

i , y
2
i+s

}
= ρ (s) /2.

The MCMC algorithm is the same as previously, using the new stochastic integrals

and series representations. Due to the intensive series representation, efficient coding is

very important, so that the models run in sensible time. Note that when the bth row of

Poisson points and uniforms are updated, as

I2,t
L=

t−1∑

j=0

n2,j∑

i=0

W−1
p (a2,j,i) f2 (λ, t, r2,j,i + j) ,

we have that

I
′
2,t|I2,t

L= I2,t −
n2,j∑

i=0

W−1
p (a2,b,i) f2 (λ, t, r2,b,i + b) +

n2,j∑

i=0

W−1
p

(
a
′
2,b,i

)
f2

(
λ, t, r

′
2,b,i + b

)
,

which does not require O
(
t2

)
operations. To further improve the speed, the values

W−1
p (a2,b,i) and f2 (λ, t, r2,b,i + b) can be stored, to avoid repeat calculations.

6·2 Analysis of Simulated Data

We will focus on the Ga−OU BDLP to facilitate algorithm run time, though any of the

previous BDLPs could be used. As an approximate comparison, the MCMC algorithm

for the Ga-OU BDLP for the non-OU models requires similar amounts of CPU time

as the MCMC algorithm for the most general OU-driven SV model, the BNS-OU-SV

model with Generalized Inverse Gaussian marginal. In the simulation study, we studied

inference for data sets of size N = 1000. Our objective is to show that MCMC inference

is feasible, and to illustrate its use for training and real data. We concentrate on the
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Power Decay and fOUL processes. For the Power Decay process, we use a Ga (1, 0.1)

prior for λ + 1 and a Ga (1, 0.5) prior for β. For the fOUL process, we use a Ga (1, 0.5)

prior for λ and a Ga (1, 2/3) prior for κ + 1
2 .

Posterior distributions for λ and β for the Power Decay process on training data

are shown in Figure 5, where 100, 000 iterations were taken (and thinned by recording

every 10th value) after a burn-in of 10, 000. The posterior supports the true values from

which the data were generated for the Power Decay process. Correct inferences for the

simulated fOUL process are obtained as for the Power Decay process and so details are

omitted here for brevity.

From these results, it is evident that the MCMC algorithm is working correctly, and

we now attempt to fit the models to the S&P 500 data set.

6·3 Analysis of the S&P 500 Data

We now study a real share index returns series, namely the S&P 500 index taken from

29th November 1999 to 1st December 2003, a total of N = 1000 observations, similar to

the data set analyzed in Griffin & Steel (2003). Posterior histograms of the parameters

determining the correlation of the square of the log returns are given in Figures 6 and 7.

10, 000 iterations were taken, thinning by recording every 10th value, after a burn-in of

10, 000. The posterior for λ supports small λ values and fits a volatility process which

decays asymptotically at a rate between t−1 and t−3. The posterior is not concentrated

at λ = 1, so the volatility process does not have long-memory. These graphs are ACF

plots of the square of the log returns and the theoretical distribution of the square of

the log returns of the fitted processes for one set of parameters, taken after MCMC had

converged. Figure 8 demonstrates the Power Decay and fOUL models accurately fitting

the correlation structure.

Thus the Power Decay and fOUL volatility models adequately capture the behaviour

of the autocorrelation observed in the S&P 500 data. Analysis (not reported here) using

a BNS-OU-SV model revealed that the exponential decay in correlation characteristic of

the standard OU-SV model cannot capture the observed behaviour of the autocorrela-

tion, confirming the analysis of Griffin & Steel (2003).
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7. Discussion

Wolpert & Taqqu (2005) consider a class of stochastic processes driven by Lévy processes.

We recall these models and suggest they could be used for stochastic volatility models

because of their rich correlation structure. We describe how to simulate from such models

and some of the properties of them. Although the models of this paper can have a more

flexible correlation structure than the BNS-SV models, they are less tractable because the

stochastic integrands have a more complex form. For example, for the BNS-SV model,

the relationship between the BDLP and marginal distribution of the volatility is simple,

whilst for the models of this paper it is often not available analytically. The models

of this paper require a more complex series representation and this makes simulation

slower. Therefore MCMC inference for these models, using the series representation of

this paper and a similar algorithm to that of Gander & Stephens (2004) is more involved,

although still feasible, for the Ga−OU BDLP.

ACKNOWLEDGEMENT: The authors are very grateful for the helpful comments of
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noise. Journal of Applied Mathematics and Stochastic Analysis 16, 97–119.

Barndorff-Nielsen, O. E. & Shephard, N. (2000). Modelling by Lévy processes for
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Bertoin, J. (1994). Lévy Processes. Chapman and Hall.

Black, F. & Scholes, M. S. (1973). The pricing of options and corporate liabilities.

Journal of Political Economy 81, 637–654.

Carr, P., Geman, H., Madan, D. P. & Yor, M. (2003). Stochastic volatility for
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Figure 1: ACF of the OU process of Wolpert & Taqqu (2005) for λ = 0.1 for a Ga(1, 1)−
OU BDLP using the series representation of Section 3.
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Figure 2: ACF of the Power Decay volatility process for β = 0.1, λ = 1.5 and λ = 2.
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Figure 3: ACF of the Power Decay volatility process for β = 1, λ = 1.5 and λ = 2.
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Figure 4: ACF of the fOUL process for λ = 0.1, κ = 0.75 and κ = 1.5.
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Figure 5: Histograms of the posterior distribution of λ and β for training data. True

values indicated by vertical dotted lines.
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Figure 6: Power Decay process: Histograms of λ and β for S&P 500 data.
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Figure 7: fOUL process: Histograms of λ and κ for S&P 500 data.
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Figure 8: ACF of the square of the log returns of S&P 500 data and theoretical ACF of

the fitted Power Decay and fOUL processes.


