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Summary . We compare option pricing results for stochastic volatility models where the un-
derlying volatility process has a specific marginal form. The marginals that we consider are
the Generalised Inverse Gaussian and Tempered Stable distributions; these general cases
have not been implemented previously. We use the continuous time stochastic volatility model
proposed in Barndorff-Nielsen and Shephard (2001b), where the volatility follows the Ornstein-
Uhlenbeck equation driven by a background driving Lévy process. Model developments that in-
corporate long range dependence are also considered, and their merit and practical relevance
discussed. We find that the Generalised Inverse Gaussian and Inverse Gamma marginal dis-
tributions accurately fit real data. Furthermore, we find evidence to suggest that, for many real
data sets, an asset equation with long range dependence is not required. Inference is carried
out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We
develop a general MCMC algorithm that appears to match the performance of other algorithms
that have proved successful in the case of a Gamma marginal model.

1. Introduction

In this paper, we extend the Markov chain Monte Carlo (MCMC) algorithms of Roberts
et al. (2004) and Griffin and Steel (2003), to fit the stochastic volatility (SV) models
of Barndorff-Nielsen and Shephard (2001b) with marginal distributions other than the
Gamma, which is the only marginal model yet implemented. In addition, the asset equation
is generalised to incorporate long-range dependence (long-memory) using an approximation
to fractional Brownian motion (fBm). These models are fitted to observed share values
of 14 companies on the NYSE. The empirical performance of the different models is then
compared using predictive densities and option pricing results.

Most option pricing is based on the standard Black-Scholes model (Black and Scholes
(1973)). This model does not fit some observed properties of financial data and there
have been many generalisations of the model to try to explain these. SV models are one
generalisation, where the volatility is allowed to vary over time. For a review of recent SV
models see Carr et al. (2003) and Schoutens (2003).

A new and popular class of continuous time SV models was proposed in Barndorff-
Nielsen and Shephard (2001b) (referred to as the BNS model). For these models, the
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volatility follows an Ornstein-Uhlenbeck (OU) equation, with increments driven by a back-
ground driving Lévy process (BDLP). The volatility process is stationary, with jumps in
volatility caused by jumps in the Lévy process. Between jumps, the volatility decays expo-
nentially at a rate determined by one of the parameters in the OU equation. These models
can therefore explain volatility clustering.

For the BNS model, the marginal distribution of the volatility is completely specified
by the type of BDLP which drives the OU equation, and Barndorff-Nielsen and Shephard
(2001b) derived the relationship between the marginal distribution and BDLP. This al-
lows the practitioner to pick the marginal distribution of the volatility (under certain mild
constraints) and simulate from it using the implied BDLP that must be used to obtain
the chosen marginal distribution. Using stochastic (as opposed to constant) volatility, the
thickness of the tails of the log-returns is increased.

Although the SV models introduced in Barndorff-Nielsen and Shephard (2001b) are at-
tractive, MCMC inference for these models is quite involved. When a Gamma marginal
distribution is used for the volatility, the MCMC inference is somewhat more straightfor-
ward, though still non-trivial. Roberts et al. (2004) and Griffin and Steel (2003) have
performed the MCMC inference for a Gamma marginal distribution and have found the
model to fit observed data well. Inferences for any other marginal distributions have, thus
far, not been obtained; neither, therefore, has the adequacy of the Gamma marginal model,
or the superiority of competing marginal models, been assessed for real financial data. This
is the principal objective of this paper; our interest is to carry out the MCMC inference
using other marginal distributions and to compare their empirical performance for option
pricing and out of sample fit on daily data of a variety of shares on the NYSE.

A further generalisation of the Black-Scholes model is considered, where the Brownian
motion is replaced by a multivariate normal approximation to fractional Brownian motion
(fBm). This model can induce long-memory in the returns. We utilize this model for infer-
ential purposes, in order to assess whether a long range dependence structure is warranted,
rather than to facilitate option pricing, and thus problems associated with arbitrage are
avoided.

1.1. Recent related work
Following the pioneering paper of Barndorff-Nielsen and Shephard (2001b), Griffin and Steel
(2003) and Roberts et al. (2004) examined a simple case of the models we investigate. In
recent work, Nicolato and Venardos (2003) derive the set of equivalent martingale measures
(i.e. the set of all risk neutral measures) and closed-form option prices for simple derivatives,
when the volatility follows the BNS SV model with a Gamma or Inverse Gaussian marginal
distribution. They fit these BNS SV models to option prices on S&P 500 data and compare
this with the fit of affine jump diffusion (AJD) models, using the results of Duffie et al.
(2000). Nicolato and Venardos (2003) find little difference between the performance of the
Gamma and Inverse Gaussian BNS SV models and that the AJD models provide a slightly
better fit to the market option prices. They argue this is partly because the AJD models
have more parameters and suggest using a superposition of BNS SV models so that the
number of parameters of the models are similar.

The use of the Gamma marginal model appears to be motivated by computational
tractability, rather than by any theoretical or practical reasoning. The observed returns are
leptokurtic when considered marginally, and this empirical evidence may be modelled using
a conditional normal error structure with stochastic variance at each time point generated
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from some specified mixing distribution. Although any scale mixture of normals has higher
kurtosis than the normal, an Inverse Gamma marginal model for the volatility is a more
natural than the Gamma, as this induces a Student-t marginal model for the returns.

The contribution of this paper is to fit the BNS SV models to observed log-returns of a
variety of real data sets and to assess which marginal distributions should be used to predict
future asset movement most accurately. This assessment is performed using empirical option
pricing results and predictive densities and both of these techniques naturally penalize over-
parameterized models, so it is not necessary to only compare models with the same number
of parameters. Unlike Nicolato and Venardos (2003), we find the mean and variance of
the of the volatility to be consistent across marginal distributions and some marginals to
perform better than others.

1.2. Plan of this paper
Section 2 introduces the models, whilst Section 3 recalls some important properties of the
BNS SV models and how to simulate from them. These results are used in Section 4, which
describes how MCMC can be used to estimate the unknown parameters of the models.
Section 5 tests the performance of the models on real data and Section 6 concludes.

2. Generalisations of the Black-Scholes equation

The standard Black-Scholes equation with stochastic volatility, σ2 (t), to model the move-
ment of an underlying, S (t), is

dS (t) = µS (t) dt + σ (t)S (t) dW (t) , (1)

where µ is the drift and, in the absence of arbitrage, must be equal to the risk free interest
rate (see Hull (2000)) and W (t) is Brownian motion, so dW (t) ∼ N (0, dt). For simplicity,
we shall assume throughout that the interest rate is constant (see James and Webber (2000)
for a review of interest rate models). Continue assuming that we have T equally spaced
observed log returns, y1, . . . , yT , each separated by ∆ days.

The generalisations considered are using the BNS SV model for σ2 (t) and replacing the
Brownian motion by an approximate fractional Brownian motion. These generalisations are
now introduced.

2.1. The BNS Ornstein-Uhlenbeck Stochastic Volatility model
A thorough description of the BNS SV model is given in Barndorff-Nielsen and Shephard
(2001b); we summarise their approach here.

The returns of financial series are often rescaled so that they are of a reasonable size
and so it is attractive for volatility to have a self-decomposable distribution, as the marginal
distribution is altered in a predictable way by rescaling. Wolfe (1982) proved that σ2 (t)
has a self-decomposable distribution if and only if it can be written as

σ2 (t) =
∫ 0

−∞
exp (s) dz (λt + s) ,

where λ is any positive constant and z (t) is a homogeneous Lévy process (see for exam-
ple Bertoin (1994) and Sato (1999) ), referred to as the background driving Lévy process
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(BDLP). It follows that

σ2 (t) = σ2 (0) e−λt + e−λt

∫ t

0

eλsdz (λs) (2)

or, equivalently,
dσ2 (t) = −λσ2 (t) + dz (λt) . (3)

This SV model is described in Barndorff-Nielsen and Shephard (2001b); the volatility follows
the OU equation (3). Such models have short-memory as the correlation between volatilities
decays exponentially at a rate determined by λ.

The BDLP is constant apart from where it has positive jumps. Thus σ2 (t) jumps
when the BDLP jumps and decays exponentially in-between jumps (where dz (λt) = 0).
Therefore, λ controls both the rate at which jumps occur in σ2 (t) and the rate at which
the volatility decays in-between jumps.

2.2. Integrated Volatility and the Discrete Time Likelihood
The integrated volatility process,

{
σ2∗

t

}
, related to

{
σ2

t

}
is defined as

σ2∗ (t) =
∫ t

0

σ2 (u) du.

This is an important quantity for pricing European options (see Hull and White (1987))
and, for the BNS SV model, it can be shown that

σ2∗ (t) =
1
λ

{
z (λt)− σ2 (t) + σ2 (0)

}
.

This relatively simple form for the integrated volatility is an attractive feature of the model.
The discretely observed or actual volatility is

σ2
i = σ2∗ (i∆)− σ2∗ ((i− 1)∆) . (4)

Barndorff-Nielsen and Shephard (2001b) have shown that

corr
(
σ2

i , σ2
i+s

)
= d (λ∆) e−λ∆(s−1),

where d (λ∆) is independent of s and 0 < d (λ∆) < 1. From equation (1), the log of the
underlying, x (t), satisfies

dx (t) =
{

µ− σ2 (t)
2

}
dt + σ (t) dW (t) (5)

and, if inference about µ and σ2
i is required, the likelihood for y1, . . . , yT is given by noting

that

yi ∼ N

((
µ− σ2

i

2

)
∆, σ2

i ∆
)

. (6)
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2.3. Fractional Brownian Motion (fBm)

A commonly cited “stylised feature” of observed financial data is that series have long-
memory, even though results in the literature are mixed. Some sources suggest that long-
memory is present in the square of the log returns, such as Ding et al. (1993) and Bollerslev
and Mikkelsen (1996), whilst others do not (see for example Krämer et al. (2002)). On
the other hand, Barkoulas et al. (2000) find evidence of long-memory in the returns of the
Greek Stock market. The model in (1) can be generalised to allow for long-memory, should
the observed data require it, using two constructions. We may either induce long-memory
via the volatility process, or leave the volatility process unaltered (so it has short-memory)
but alter the share equation (1) itself. Roberts et al. (2004) and Griffin and Steel (2003)
attempt to induce long-memory using superposition of volatility processes, each with their
own BDLP and correlation parameter, as suggested in Barndorff-Nielsen and Shephard
(2001b). However, although a superposition of finite numbers of volatility processes allows
different BDLPs to describe short-range and longer-range dependencies in the volatility,
the resulting process is still short-memory. In any case, estimating λ accurately is not easy
(even with the single volatility process).

We feel that such a superposition, although theoretically appealing, is of limited practical
use if a real attempt at long-memory modelling is to be made. Additionally, as more
volatility processes are used, identifying the parameters of the component processes would
become problematic. Therefore, we shall instead try to induce long-memory via equation
(1) directly.

Equation (1) is driven by Brownian motion, which has independent increments, as it is
driven by white noise. Fractional Brownian motion (fBm) is a generalisation of Brownian
motion, which can have correlated increments and these increments are called fractional
Gaussian noise (fGn). The strength of this correlation is determined by the Hurst parameter,
0 < H < 1. When 0 < H < 0.5 there is negative correlation and when 0.5 < H < 1.0 there
is positive correlation in the fGn and the fBm has long-memory. When H = 0.5, standard
Brownian motion is recovered. For further details on fBm see Samorodnitsky and Taqqu
(1994).

2.4. fBM and arbitrage

When the asset equation is driven by fBm, if pathwise integration is used for option pricing,
for H 6= 0.5, there are arbitrage opportunities (see Rogers (1997) and Dai and Heyde (1996)).
This problem is not difficult to bypass. A method for constructing a stochastic process with
the same long range dependence behaviour as fBm that does not lead to arbitrage was given
in Rogers (1997). For Gaussian approximations based on such processes that are arbitrarily
close to fBm, fitting model parameters and pricing options give identical results to using
the fBm model. In addition, Cheridito (2003) showed that if trading is restricted to time
points at least a fixed time interval apart, arbitrage may be avoided even with the original
fBm model. Thus fBm-type models should not be rejected for arbitrage reasons alone.
Cajueiro and Fajardo (2003) use fBm to drive the asset equation with constant volatility.
They estimate H = 0.59, for options on Brazilian stocks, by fitting model option prices to
market prices. This suggests that the stocks have long-memory and that Brownian motion
with constant volatility is not capable of accurately modelling the stock movement.
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2.5. A Multivariate Normal Likelihood Approximation
Inference about model parameters using MCMC requires evaluation of the likelihood given
a particular set of parameters of the model. For fGn, the likelihood is not readily available
and so, instead of replacing the white noise with fGn, it is replaced by a multivariate normal
(MVN) approximation to fGn.

For fGn with Hurst parameter, H, the correlation between two increments at discretely
observed times i and j is

Σi,j =
1
2

{
|j − i + 1|2H − 2 |j − i|2H + |j − i− 1|2H

}

see Beran (1994), pg 74. Equation (5) is then replaced by

dx (t) = µdt− σ2 (t)
2

(dt)2H + σ (t) dWMV N (t) ,

where WMV N is the approximation to fBm. The likelihood is

fY (y) =

(
T∏

i=1

1
σi

√
∆

)
fG (g) , (7)

where

gi =
yi −

(
µ∆− σ2

i

2 (∆)2H
)

σi

√
∆

and G ∼ MV N (0,Σ). In the case that H = 0.5, the approximate fBm recovers the original
Brownian motion model.

Evaluating the likelihood in equation (7) requires the computation of |Σ| and Σ−1. For
general matrices, these are O

(
n3

)
calculations and even for relatively small T , calculation

is not feasible. As Σ is a Toeplitz matrix, there are O
(
n2

)
algorithms available (see Ammar

(1996) and Golub and Van Loan (1996)). For the data sets investigated, T = 1000 and
computation is feasible for the O

(
n2

)
algorithms.

2.5.1. Leverage

In practice, negative log returns often generate a larger volatility than positive log returns
of similar magnitude (this is referred to as leverage). It is generally thought that leverage
is most significant in share data (see for example Meyer and Yu (2000)), though there is
evidence that leverage is also present in FX data (see for example McKenzie (2002)), as well
as evidence that it is not present for FX data (see for example Jacquier et al. (2001)). The
BNS SV model of Section 2.1 can be generalised to incorporate the leverage effect, using the
model proposed in Barndorff-Nielsen and Shephard (2001a). This has been implemented in
Griffin and Steel (2003). Although we have also implemented this generalisation, our focus
here is on assessing which marginals are most suitable for stochastic volatility models and
all reported results are without leverage. We found a performance improvement for share
data with the leverage model and no advantage for FX data.
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3. Properties of the BNS SV model

Before estimating the parameters of the models using MCMC, we need to be able to sample
from the discretely observed volatility (see equation (4)), given our chosen self-decomposable
(and therefore infinitely divisible) marginal distribution for σ2 (t). To do this, the relation-
ship between the distribution of σ2 (t) and the BDLP must be known, as well as how to
sample from stochastic integrals with respect to the Lévy process. The required results are
available from Barndorff-Nielsen and Shephard (2001b) and Barndorff-Nielsen and Shep-
hard (2000) and these facilitate the MCMC implementation in Section 4. These results are
now given.

3.1. Relationship between the BDLP and marginal distribution of σ2 (t)
For any self-decomposable distribution, there is a unique BDLP, z (t), that will generate
the required marginal for the volatility in equation (3). The relationship between the
marginal and the BDLP has been derived in Barndorff-Nielsen and Shephard (2001b) and
this relationship is between the Lévy measures of the marginal distribution of the volatility
and z (1). The following famous Theorem can be found, for example, in Bertoin (1994).

Theorem 1. Levy-Khintchine Formula
A distribution, with density fX (x) and characteristic exponent Ψ(λ), is infinitely divisible
if and only if there exists some a ∈ Rd, a positive semi-definite quadratic Q on Rd and
some measure u (x) on Rd/ {0} such that ∀λ ∈ Rd

Ψ(λ) = ia.λ +
1
2
Q (λ) +

∫

Rd

[
1− eiλ.x + iλ.x1{|x|<1}

]
u (x) dx (8)

and ∫ ∞

−∞

(
1 + |x|2

)
u (x) dx < ∞.

Equation (8) is called the Lévy-Khintchine formula , u (x) is the Lévy measure of
fX (x) and Q (λ) is the Gaussian coefficient.

If a self-decomposable marginal distribution for σ2 (t) is chosen, with Lévy measure u (x),
and if z (1) has Lévy measure w (x), Barndorff-Nielsen and Shephard (2000) have shown
that if σ2 (t) follows the OU equation (3), then

w (x) = −u (x)− x
du (x)

dx
(9)

and, if the infinitely divisible marginal distribution for σ2 (t) is chosen, the BDLP is specified
by equation (9).

Using the same notation as Barndorff-Nielsen and Shephard (2001b), define the Tail
Mass function as

W+
p (x) =

∫ ∞

x

w (y) dy = xu (x) (10)

and the Inverse Tail Mass function as

W−1
p (x) = inf

[
y > 0 : W+

p (y) ≤ x
]
, (11)
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where p are the parameters specifying the exact marginal distribution of σ2 (t). These are
both monotonic decreasing functions.

The last result needed, before we can sample from σ2
i , is how to sample from stochastic

integrals with respect to the BDLP, of the form given in equation (2).

3.2. Series representation of Stochastic integrals with respect to the BDLP
Griffin and Steel (2003) have shown that the discretely observed volatility can be written
as

σ2
i =

1
λ

{
ηi,2 − ηi,1 +

(
1− e−λ∆

)
σ2 ((i− 1)∆)

}
, (12)

where {
σ2 (i∆)
z (λi∆)

}
=

{
e−λ∆σ2 ((i− 1)∆)

z (λ (i− 1)∆)

}
+ ηi

and

ηi =





e−λ∆

∫ ∆

0

eλtdz (λt)
∫ ∆

0

dz (λt)





=





e−λ∆

∫ λ∆

0

etdz (t)
∫ λ∆

0

dz (t)





(13)

is a vector of random jumps, equal to a stochastic integral with respect to the BDLP, z (t).
Barndorff-Nielsen and Shephard (2000) proved that if f (s) ≥ 0 for 0 < s < ∆ and, if

f (s) is integrable with respect to dz (s), then

∫ ∆

0

f (s) dz (s) L=
∞∑

i=1

W−1
p (ai/∆) f (∆ei) , (14)

where W−1
p () is the Inverse Tail Mass function as defined in equation (11), ai are the arrival

times of a Poisson process of intensity 1 and ei are independent standard uniform variates
(also independent of ai). Note that W−1

p (ai/∆) ≥ 0 is a decreasing function and that, if it
is non-zero for large ai, the integral can be approximated by truncating the infinite series at
some point. This is similar to the truncation scheme used to sample from Lévy processes in
Walker and Damien (2000). We consider using GIG and TS distributions for the volatility
and the only special case of these distributions, where the terms W−1

p (ai/∆) are zero for
sufficiently large ai, is the Gamma distribution.

Assume that ηi is truncated by discarding all Poisson points which are greater than ac

(so the same truncation scheme is used for each element of the random shock vector). Let
ni be the number of Poisson points which are less than ac for the ith entry of the random
shock vector (i.e. the number of Poisson points which contribute to ηi). The approximation
to equation (13) is then

ηi
L=





e−λ∆
ni∑

j=1

W−1
p

(ai,j

λ∆

)
eλ∆ri,j

ni∑
j=1

W−1
p

(ai,j

λ∆

)





, (15)
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where ai,j and ri,j are Poisson points and uniforms as described previously. Continue with
the notation

A =




a1,1 . . . a1,n1

...
. . .

...
aT,1 . . . aT,nT


 R =




r1,1 . . . r1,n1

...
. . .

...
rT,1 . . . rT,nT


 .

The method to sample from σ2
i is as follows: we select a self-decomposable distribution

for σ2 (t), and find the Lévy measure of this distribution and then the Lévy measure of z (1),
using equation (9). We then truncate the Poisson point process at ac and use equations
(11), (12) and (15) to generate σ2

i . It is not always obvious how to find the Lévy measure
in (1) and this is addressed in Section 4. Details on how ac is chosen are given in Appendix
A.1.1 and A.2.

4. Different marginal distributions for σ2 (t)

To fit the models described in Sections 2.1 and 2.3, the unknown parameters of the mod-
els must be estimated. Typically, in finance literature, these are estimated by minimizing
the sum of the squared difference between model and market option prices. Nicolato and
Venardos (2003) fit the BNS SV models for Gamma and Inverse Gaussian marginal dis-
tributions using this technique. Instead, we fit the models to observed log returns and use
MCMC to estimate the parameters. Roberts et al. (2004) and Griffin and Steel (2003) have
performed this inference when the volatility has a Gamma marginal distribution. Although
easy to implement, the Gamma model is not especially plausible and other distributions
are considered. Initially these distributions, along with their Lévy measures and Inverse
Tail Mass functions, are introduced.

4.1. Different marginal distributions and their Inverse Tail Mass functions
The marginals considered are the Generalised Inverse Gaussian (GIG) and Tempered Stable
(TS) distributions and special cases of these. These are infinitely divisible distributions on
R+ and so are suitable choices for the marginal distribution of σ2 (t) in equation (3). Many
standard distributions are special cases of the GIG and TS distributions.

The TS distribution is less well known than the GIG and its density is difficult to
interpret as it is only available as an infinite series. However, it is a flexible distribution
and the implementation is more straightforward than for the GIG as its Lévy Measure is
simple, leading to a straightforward Inverse Tail Mass function (see equation (11)). Details
on the TS distribution can be found in Tweedie (1984) and Barndorff-Nielsen and Shephard
(2001c).

4.1.1. Generalised Inverse Gaussian: GIG (γ, ν, α)
If X ∼ GIG (γ, ν, α), for γ ∈ R and ν, α > 0, the density is

fX (x) =
(α/ν)γ

2Kγ (να)
xγ−1 exp

{
−1

2
(
ν2x−1 + α2x

)}
, for x > 0,
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where Kν is a modified Bessel function of the third kind. The Lévy measure of X is then

u (x) =
1
x

{
1
2

∫ ∞

0

exp
(
− xξ

2ν2

)
gγ (ξ) dξ + max (0, γ)

}
exp

(
−α2x

2

)
, (16)

where
gγ (x) =

2
xπ2

{
J2
|γ|

(√
x
)

+ N2
|γ|

(√
x
)}−1

and J|ν| and N|ν| are Bessel functions of the first and second kind respectively (see Barndorff-
Nielsen and Shephard (2001b) for proof).

Using equation (10), the Tail Mass function is

W+
γ,ν,α (x) =

{
1
2

∫ ∞

0

exp
(
− xξ

2ν2

)
gγ (ξ) dξ + max (0, γ)

}
exp

(
−α2x

2

)
(17)

and equation (11) implies the Inverse Tail Mass function is

W−1
γ,ν,α (x) = z,

where z satisfies

x =
{

1
2

∫ ∞

0

exp
(
− zξ

2ν2

)
gγ (ξ) dξ + max (0, γ)

}
exp

(
−α2z

2

)
. (18)

Computation of the Inverse Tail Mass function in general for the GIG distribution is feasible
numerically. The value of x for a given z can then be found using a look up table and binary
search. The integral was split into two parts and Gaussian Quadrature was used to evaluate
the integral on a finite domain (that includes the origin). Gauss-Laguerre integration was
used to evaluate the remaining integral on the infinite domain (see Atkinson (1988) for
details on these numerical algorithms). The GIG (γ, ν, α) marginal was implemented, as
well as three standard distributions which are special cases.

Gamma: Ga (ν, α) If X ∼ GIG
(
ν, 0,

√
2α

)
, for ν, α > 0, then X ∼ Ga (ν, α) and the

density is

fX (x) =
αν

Γ (ν)
xν−1e−αx, for x > 0.

Using equation (10), the Tail Mass function is

W+
ν,α (x) = νe−αx

and equation (11) implies the Inverse Tail Mass function is

W−1
ν,α (x) = max

[
0,− log

(
x
ν

)

α

]
.

It is unusual to be able to write W−1
p (x) in such a simple analytic form. Note that only

when x < ν is W−1
p (x) 6= 0. This is the only case of the GIG (γ, ν, α) and TS (κ, ν, α)

distributions where the Inverse Tail Mass function is zero for all sufficiently large x and the
summation in equation (15) need not be truncated. For all the other marginals considered,
the infinite sum which constructs ηi must be truncated. Details on this truncation can be
found in Appendix A.1.1 and A.2.
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Positive Hyperbolic: RPH (ν, α) If X ∼ GIG (1, ν, α), for ν, α > 0, then X ∼ RPH (ν, α)
and the density is

fX (x) =
α

2νK1 (να)
exp

{
−1

2

(
ν2

x
+ α2x

)}
, for x > 0.

The Inverse Tail Mass function is available as a special case of equation (18) and can be
evaluated using a similar method to the one used for the GIG marginal distribution.

Inverse Gamma: IGa (ν, α) If X ∼ GIG
(−ν,

√
2α, 0

)
, for ν, α > 0, then X ∼ IGa (ν, α)

(i.e. the density of the reciprocal of a Ga (ν, α) random variable) and the density is

fX (x) =
αν

Γ (ν)
x−ν−1e−α/x, for x > 0.

The Inverse Tail Mass function is available as a special case of equation (18) and can be
evaluated using a similar method to the one used for the GIG marginal distribution.

4.1.2. Tempered Stable: TS (κ, ν, α)
If X ∼ TS (κ, ν, α), for 0 < κ < 1 and ν, α > 0, the density is

fX (x) = eναfY |κ,ν (x) exp
(
−α1/κ

2
x

)
, for x > 0,

where

fY |κ,ν (x) =
ν−1/κ

2π

∞∑

j=1

(−1)j−1

j!
sin (jκπ) Γ (jκ + 1) 2jk+1

(
xν−1/κ

)−jκ−1

, for x > 0,

is the density function of the positive κ-stable law (see Feller (1971) and Barndorff-Nielsen
and Shephard (2001c)). If κ = 0.5 the Inverse Gaussian distribution is recovered.

The Lévy measure of X is then

u (x) = Ax−B−1e−Cx, (19)

where A = νκ2κ/Γ (1− κ), B = κ and C = α1/κ/2 (see Barndorff-Nielsen and Shephard
(2001c)). For this Lévy measure the Inverse Tail Mass function is

W−1
κ,ν,α (x) =

(
A

x

)1/B

exp

[
−LW

(
C

B

(
A

x

)1/B
)]

, (20)

where LW is the Lambert-W function which satisfies

LW (x) ∗ exp [LW (x)] = x

and is a standard function available numerically. For further details on LW , see Jeffrey
et al. (1996). For the Tempered Stable distribution, an alternative series representation to
equation (14) has been suggested in Rosiński (2000). This series representation avoids the
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calculation of W−1
κ,ν,α (x), though the convergence of the series is slower. When implement-

ing the MCMC for the Tempered Stable marginal, for large κ, many terms in the summation
are required before the answer is sufficiently accurate to truncate. For this reason, the alter-
native representation is not implemented and the Barndorff-Nielsen and Shephard (2000)
series representation is used. Additionally, from an MCMC viewpoint, this representation
has fewer random terms in it, reducing the dimension of the problem on which the MCMC
must be performed. A comparison of the two representations is now given and graphs of
typical sizes of the terms for each series are shown in Figure 1.

Consider ηi,1; For the Barndorff-Nielsen and Shephard (2000) series representation,

ηi,1 = e−λ∆
∞∑

j=1

W−1
κ,ν,α

(ai,j

λ∆

)
eλ∆ri,j

= e−λ∆
∞∑

j=1

(
Aλ∆
ai,j

)1/B

exp

[
−LW

(
C

B

(
Aλ∆
ai,j

)1/B
)]

eλ∆ri,j ,

whilst for the Rosiński (2000) series representation,

ηi,1 = e−λ∆
∞∑

j=1

min

{(
ai,jB

Aλ∆

)−1/B

, eiv
1/B
i

}
eλ∆ri,j ,

where ei
iid∼ exp

(
1
C

)
, vi, ri,j

iid∼ U (0, 1) and ai,j and ri,j are the same as in the Barndorff-
Nielsen and Shephard (2000) representation.

Graphs of the log of the average of the terms for a TS (κ, 1, 1) marginal, using the
two representations given above, when λ = ∆ = 1, can be seen in Figure 1. The terms
e−λ∆ and eλ∆ri,j are not included in these graphs as they are common to both series.
Additional details on the Rosiński (2000) series can be found in Barndorff-Nielsen and
Shephard (2001c), where our results for the Rosiński (2000) representation (dashed line)
can also be verified. Averages were taken over 1,000,000 samples.

Inverse Gaussian: IG (ν, α) If X ∼ TS
(

1
2 , ν, α

)
, for ν, α > 0, then X ∼ IG (ν, α) and the

density is

fX (x) =
νeνα

√
2π

x−3/2 exp
{
−1

2

(
ν2

x
+ α2x

)}
, for x > 0. (21)

From equation (20), the Inverse Tail Mass function, defined in equation (11), is

W−1
ν,α (x) =

1
α2

LW

(
ν2α2

2πx2

)
.

Note that, although the IG (ν, α) is a special case of both the GIG (γ, ν, α) and TS (κ, ν, α)
distributions (when γ = −0.5 and κ = 0.5 ), it is more straightforward to evaluate the
Inverse Tail Mass function given in equation (20) than the one given in (18).

4.1.3. Properties of the six marginal distributions
The first four moments of the distributions we study are readily calculable. Such quantities
are useful for comparing the performance of the six different marginals in capturing observed
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baehaviour; we can inspect the mean/variance/kurtosis of the different distributions, to
ensure that the prior/posterior marginal models for the volatility processes are in some
sense similar. For the Inverse Gamma distribution, the mean, variance and kurtosis are
finite when ν > 1, ν > 2 and ν > 4 respectively, whilst for the Tempered Stable, Inverse
Gaussian, Gamma and Positive Hyperbolic marginals, the mean, variance and kurtosis are
always finite for ν, α > 0. For the six different marginal distributions for σ2 (t), the kurtosis
of the log returns is greater than three and so the tails of the log returns will be heavier
than in the standard Black-Scholes equation with constant volatility.

We are able to pick the marginal distribution for σ2 (t) from a rich class of distributions
and sample from the discretely observed volatility, σ2

i . An outline of the MCMC algorithm
to estimate the parameters is given in Appendix A.1. The methods used to analyze the
empirical performance of the models are now described.

4.2. Comparison with Alternative MCMC approaches
More complicated MCMC algorithms are considered in Roberts et al. (2004). The two
algorithms presented there are tested on six training data sets and the ACF plots of posterior
parameters are examined to compare the performance of each algorithm.‡ For these data
sets, our algorithm and their preferred algorithm perform similarly for four of the six data
sets. For the remaining two (large) data sets, our algorithm gives a more attractive ACF on
one data set and theirs is favourable on the other. For real data sets, our algorithm usually
produces samples that have a lower autocorrelation. This is illustrated in Figure 9, where
the performance of their hybrid algorithm and ours is compared on six real data sets. In
this assessment, the outputs from the algorithms were thinned so that the algorithms ran
for the same length of time. Our conclusion is that the more complicated algorithms do not
appear to offer significant improvements over our more straightforward approach.

5. Performance of the different marginals

The performances of the different marginal distributions are now compared on real data.
The data sets are various shares of companies on the NYSE. The models are compared
using predictive densities, empirical option pricing results and posterior parameter samples
of parameters of the GIG distribution. Each data set is size 1000, with the last observation
on 1st December 2003. Options all expire in 20 days.

5.1. Model Selection: Predictive densities
Assume we have observed log returns, y = {y1, . . . , yT } (on which the model is fitted) and
unseen data Y

′
= {yT+1, . . . , yT+t}, which is not used to fit the model (and so can be

viewed as a random variable). Let θ be a vector of the non-latent parameters specifying
the model. The posterior predictive density is an average of predictions over the posterior
distribution p (θ|y). That is

p
(
Y
′ |y

)
=

∫
p

(
Y
′ |θ

)
p (θ|y) dθ.

For the models under investigation, it is not possible to calculate this posterior analytically,
so B samples from the posterior distribution are taken (using the MCMC method described

‡We are very grateful to Dr Omiros Papaspiliopoulos for providing his code.
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in Appendix A.1) and denoted by θ1, . . . , θB . The estimate for the predictive density is then

p̂
(
Y
′ |y

)
=

1
B

B∑

i=1

p
(
Y
′ |θi, y

)
, (22)

where p
(
Y
′ |θi, y

)
is estimated by averaging the likelihood function given in equation (7)

over many volatilities generated from the non-latent parameters θi. This method is similar
to those described in Pitt and Shephard (1999) and Vrontos et al. (2003). The predictive
density given θi is thus estimated using equation (22), with θi replaced by σj , a volatility

generated using θi. Models, which are fitted to y and have large p̂
(
Y
′ |y

)
, explain the

unseen data, Y
′
, well. This gives a way of comparing the out of sample fit of the different

models.

5.2. Option Pricing
For the option pricing in this section, the asset equation with short range dependence only
is used, and thus arbitrage opportunities are avoided. Pricing is performed under a risk
neutral measure as described by Nicolato and Venardos (2003). All options are European,
expiring in 20 days. The 27 different options, which are not described individually, are all
popular standard options, such as European call, binary call, Parisian, Asian, knock in/out
options etc.

To calculate the fair price of an option which expires at time t, given T observed data
points, the technique used is as follows:-

(1) Perform MCMC on the data set of size T until convergence, so we are sampling from
the posterior of µ, λ, γ, κ, ν, α and H (A, R and σ2 (0∆) are latent parameters).

(2) Simulate σ2
1 , ..., σ2

t |λ, γ, κ, ν, α from equation (12) by generating A, R and σ2 (0∆)
direct from their priors given γ, κ, ν, α.

(3) Perform Monte Carlo integration in t dimensions, simulating the asset forwards (using
µ and H), taking the average discounted payoff, discounting using the constant interest
rate, µ.

(4) go to (2) until enough volatilities have been used so that the expected discounted
payoff given µ, λ, γ, κ, ν, α is sufficiently accurate.

(5) go to (1) and take another sample from the posterior of µ, λ, γ, κ, ν, α and average the
estimates from (4) . Repeat this until this estimate is sufficiently accurate.

The rescaled sum of squared errors between the expected discounted and actual dis-
counted payoff of the options are then examined to compare the performance of the different
models. Histograms of the expected discounted payoff from (4), for real data sets, are given
in Figures 2 and 3.

The fair price of an option is the expected discounted payoff, so prices of the algorithm
are indifferent to risk and risk neutral. Nicolato and Venardos (2003) derive the set of
equivalent martingale measures (i.e. the set of all risk neutral measures) when the volatil-
ity follows the BNS SV model with Gamma or Inverse Gaussian marginals. To test the
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empirical performance of the BNS SV models for risk neutral pricing, only one risk neutral
measure is required and the algorithm described above is used. As options expire in 20 days
and typically µ is small, the discounting in (3) only slightly alters the option price.

5.3. Testing of the option pricing algorithm
Consider the standard Black-Scholes model (with constant volatility) for two of the simplest
standard options: the European call and put (sometimes referred to as a vanilla call and
put as they are standard calls and puts). The European call gives the owner the option to
purchase the asset at a price E at time t. The European Put gives the owner the option to
sell the asset at a price E at time t.

For known constant volatility, σ, and constant interest rate, r, if VC (t, E) is the fair price
(at the present time) of a European call which expires at time t on asset S and VP (t, E) is
the fair price (at the present time) of a European Put on the same asset S, then (see Hull
(2000))

VC (t, E)− VP (t, E) = S (0)− Ee−rt.

For this test, let t = 20, S (0) = 100, E = 97 and r = 0.000133681 (the daily interest
rate corresponding to a rate of 5 per year). The fair price of the call-put is £3.26. For
σ = 0.03, the fair price of the call and put are £7.05 and £3.79 respectively. These can be
calculated by numerical solution of the Black-Scholes equation for the appropriate boundary
conditions.

To test the correct implementation of the option pricing algorithm, training data were
generated from the Black-Scholes model with constant volatility and inference is made on the
non-latent parameters controlling the stochastic volatility model using MCMC. Volatilities
were then generated using these non-latent parameters and the expected discounted payoff,
given these simulated volatilities, is computed using Monte Carlo integration, discounting
the payoff using the estimated interest rate, µ. Samples from the MCMC were taken after a
burn in period of 10,000 iterations, thinning by taking every 250th sample. Here we present
a limited summary of the MCMC analysis, concentrating on the option pricing results only;
For each marginal distribution, the convergence of the method to the correct price can be
seen in Figures 4, 5 and 6. The thick line is the expected result knowing the correct constant
value for σ2.

5.4. Posterior samples of parameter of the GIG marginal distribution
We inspect the posterior distributions of parameters of the GIG distribution to give a
greater understanding of which distributions are suitable for the marginal distribution of
the volatility. Table A.2 lists special cases of the GIG (γ, ν, α) distribution and Figure 7
shows the posterior distribution of γ and ν for the Heinz and Host Marriott data sets. This
figure demonstrates that the Ga distribution is not supported for either data set - this result
is typical for the real data sets investigated - and that for the Heinz data set the only special
case of the GIG distribution which is supported is the IGa.

5.5. Results
The results for the predictive densities and option pricing for real data are now summarized.
For predictive densities, the entries in the tables are the median and 95% credible intervals
on the log scale. For predictive densities over 20 unseen data points, B = 1000 volatilities
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were used to estimate p̂ (Y ′|θi, y) in equation (22) and for 80 unseen data points, B = 10, 000
volatilities were used. For option pricing, the sum of the rescaled squared error between
expected discounted and actual discounted payoff are reported.

5.5.1. Predictive densities over 20 unseen data points and option pricing results

Predictive density and option pricing results are given in Tables 2 and 4. For the predictive
densities, for the three parameter distributions, the GIG has a larger log predictive density
than the TS and so provides a better out of sample fit to the unseen data. For the two
parameter distributions, the Ga has the largest predictive density, though this is not as
large as for the GIG. Boxplots demonstrating the large GIG predictive density are given
in Figure 8. For option pricing, for the three parameter distributions, we find the GIG
to predict the payoff more accurately than the TS and so again the GIG outperforms the
TS. For the two parameter distributions, we find the IGa marginal to predict the expected
discounted payoff of the options most accurately, when using a squared error loss. The
IGa also has a smaller loss than the GIG distribution and demonstrates that if the user
is interested in option pricing, then generalisation to the more complicated GIG density is
not warranted and the IGa distribution should be used instead.

5.5.2. Long-memory modelling: Predictive densities over 80 unseen data points

Results for the long-memory model are given in Table 5. For all data sets, the posterior of H
only has support near 0.5, indicating that the data exhibit weak long-memory behaviour.
As a result, the predictive densities were unable to distinguish consistently between the
short and long-memory models. Coca-Cola Co has the strongest support for long-memory,
as the posterior for the Hurst parameter contains larger values than for the other data sets.
Figure 10 shows posterior histograms of the Hurst parameter for Coca-Cola Co and British
Airways PLC and suggests that for Coca-Cola Co, the long-memory model is required, as
H = 0.5 is not supported. For British Airways PLC there is support for H = 0.5, suggesting
that the long-memory model is not necessary. For all the other data sets, the posteriors
for H are similar to the British Airways PLC share and this suggests that the approximate
fBm generalisation is not necessary and the short-memory model is preferred.

6. Conclusions

We performed MCMC for the BNS OU stochastic volatility models when the volatility
has a Generalised Inverse Gaussian (GIG) or Tempered Stable (TS) marginal distribution.
Gamma, Positive Hyperbolic, Inverse Gamma and Inverse Gaussian marginals are special
cases of the GIG and TS and these are implemented individually. To allow for long-memory
in the share equation, the Brownian motion is replaced by an approximation to fractional
Brownian motion. The models were tested empirically on real data using predictive densities
and squared-error loss between expected and actual discounted option payoffs.

For the different marginal distributions, we found the Generalised Inverse Gaussian
marginals to perform best for predicting unseen data and the Inverse Gamma marginal
to perform best for option pricing; the log returns are then approximately Student-t dis-
tributed. If the focus of the user is option pricing, the generalisation to the more flexible
Generalised Inverse Gaussian is unnecessary, as the Inverse Gamma provides more accurate
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predictions. For the long-memory model, we are unable to identify any performance dif-
ference empirically, using predictive densities, between the generalised and original models.
However, the posterior densities of the Hurst parameter often have a considerable support
for H = 0.5, indicating that there is no evidence for the long-memory model, and that the
generalisation to fBm is not necessary for the data sets examined.

A. Appendix

A.1. MCMC algorithm
The MCMC was tested thoroughly on simulated data to ensure its correct implementation,
before the real data were studied. Several specific points are worthy of particular discussion.

A.1.1. Truncation of the random shock vector

To use the approximation for the random shock vector given in equation (15), the critical
value at which the Poisson points are truncated, ac, must be chosen. If only terms from the
Poisson Point process which contribute at least ztol to the summation are included, then

W−1
p

( ac

λ∆

)
= ztol

and so
ac = λ∆W+

p (ztol) ,

which can be evaluated using the Tail Mass functions given in Section 4.1.
For the Gamma distribution, we choose ztol = 0 as the summation only has a finite num-

ber of non-zero terms. For the Positive Hyperbolic and Inverse Gamma distributions, we
typically choose ztol = 0.001. For the Tempered Stable and Inverse Gaussian distributions,
a more advanced truncation scheme is used, which uses knowledge of the asymptotic behav-
iour of the Inverse Tail Mass function. This truncation method can be found in Appendix
A.2. When sampling from the model, these truncations generate marginal distributions
with the correct mean and variance for a wide range of parameter values, as well as the
correct correlation structure for the volatility process.

Whenever a move in a non-latent parameter alters ac, in order to maintain a consistent
level of accuracy, Poisson points and uniforms must be added/removed at the same time as
this non-latent parameter move. Such moves require Reverse Jump MCMC (see for example
Green (1995)).

A.1.2. Treating σ2 (0∆) as an unknown parameter

Equation (12) requires σ2 (0∆) to be known. For all distributions other than the Tem-
pered Stable, this is treated as a latent parameter, with a prior the same as the marginal
distribution used for σ2 (t). This idea was suggested by J.E. Griffin in his comment to
Barndorff-Nielsen and Shephard (2001b).

For the Tempered Stable marginal, it is difficult to evaluate the density, particularly for
small arguments (techniques to evaluate the Tempered Stable density can be found in Nolan
(1997)) and so a different representation for σ2 (0∆) is used. Rosiński (2000) has shown
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that, when a TS (κ, ν, α) marginal is used for σ2 (t), the distribution of σ2 (0∆) is given by

σ2 (0∆) L=
∞∑

i=1

min
{(aiκ

B

)−1/κ

, eiv
1/κ
i

}
, (23)

where ai are the arrival times of a Poisson process with intensity 1, ei
iid∼ exp

(
1
C

)
and

vi
iid∼ U (0, 1) (all independent of each other) and

B =
(

νκ2κ

Γ (1− κ)

)
C =

α1/κ

2
.

This representation is used in Barndorff-Nielsen and Shephard (2001c). To be consistent
with the representation used in equation (15), we use the equivalent representation

σ2 (0∆) L=
∞∑

i=1

W−1
κ,ν,α (a0,j) , (24)

avoiding evaluation of the Tempered Stable density.

A.1.3. Priors
The joint prior is of the form

p
(
σ2 (0∆) , µ, λ, γ, κ, ν, α, H, A, R

)
= p

(
σ2 (0∆)

)
p (µ) p (λ) p (γ) p (κ) p (ν) p (α) p (H) p (A) p (R) .

The priors used for real data are given in Table 1. The quantity σ2 (0∆) is not treated as an
additional parameter for the Tempered Stable distribution as the representation in equation
(24) is used instead.

For testing purposes, the hyperparameter in the Gamma prior for λ, lp is taken to be
0.001, although it has been argued by Griffin and Steel (2003) that for observed data, lp = 1
is more appropriate and this is used on real data in Section 5.5. Typically np and ap are
chosen to be small (say 0.001) so that the priors are reasonably flat. These two priors
are not for the original GIG parameters but are priors for the parameters of the specific
marginal.

For the TS (κ, ν, α) distribution, in the limit as κ tends to 1, the volatility becomes
constant. We wish to largely exclude this possibility in the analysis of real data series.
Thus an informative prior for κ is used that has most of its weight away from 1 (for training
data, it thought legitimate to use a U (0, 1) prior, as some constant volatility simulated series
were studied). For the Inverse Gamma marginal, a Ga (1, np) prior is used for (ν − 4) so
the mean, variance and kurtosis of the log returns are finite. For the Hurst parameter,
H, a U (0.5, 1) prior is used (rather than U (0, 1)), as we do not want negative correlation
between the increments in the fGn approximation.

A.1.4. Proposals
The interest rate, µ, is on the entire real line and the proposal is

µ
′ ∼ N (µ, c) ,
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where c is tuned to give suitable acceptance rates. The parameter ν is on R+ and the
proposal is

ν
′ ∼ Ga (c, c/ν) ,

where again c is tuned to give suitable acceptance rates. Similar proposals are used for
σ2 (0∆) , λ and α, which are also on R+. κ and H are positive parameters on a finite
range. These are transformed onto R+ and a Gamma local move is performed but on the
transformed parameter, with appropriate amendment of the acceptance probability.

Whenever a new parameter is proposed, which alters the truncation point of the Poisson
points, ac, we propose to add (or remove) Poisson points and uniforms to keep a consistent
accuracy throughout the simulation. The addition of Poisson points and uniforms are
proposed direct from their priors, whilst the removal of points is deterministic (because of
the nature of reverse jump MCMC). The acceptance probability for a move in ν is then
given by

min


1,

l
(
yi|

(
σ2

i

)′)

l (yi|σ2
i )

p
(
ν
′
)

p (ν)

q
(
ν
′ → ν

)

q (ν → ν′)


 ,

with similar acceptance probabilities for other parameters.
After proposing a move for each parameter, we perform a sweep through all the Poisson

points and uniforms, proposing to update each row of A and R in order, again, with pro-
posals direct from their priors. For these moves, as proposals are direct from their priors,
the acceptance probability is

min


1,

l
(
yi|

(
σ2

i

)′)

l (yi|σ2
i )


 .

The order of the updates is κ, γ, ν, α, λ, H, σ2 (0) , µ and then the first row of A and R are
updated together, then the second row until all rows have had a proposed update. When
the Tempered Stable marginal is used, the σ2 (0) update is replaced by an update of the
Poisson points which specify σ2 (0) in equation (24).

A.2. Improved Truncation for the Tempered Stable marginal
Assume an initial truncation has been made as suggested in Appendix A.1.1. Now consider
the error term, Ri, for ηi,2 (note that the terms for ηi,1 are less than the terms for ηi,2).
Recall equation (15)

ηi,2 =
∞∑

j=1

W−1
ν,α

(ai,j

λ∆

)
.

At present, let the truncation of the Poisson point process be at ac,1, so

ηi,2 =
ni∑

j=1

W−1
ν,α

(ai,j

λ∆

)
+ Ri,

where nj is the number of Poisson Points occurring before ac,1 and

Ri =
∞∑

j=ni+1

W−1
ν,α

(ai,j

λ∆

)
.
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Assume that for the Ri summation, all the ai,j are large and asymptotic assumptions can
be made.

The central idea is then to approximate Ri analytically and pick a new truncation point
(if the accuracy is not sufficient) which makes Ri small. This requires knowledge of the
exact form of the Inverse Tail Mass function.

For the Tempered Stable marginal, the Lévy measure is given by equation (19) and using
equations (10) and (11), for large x we have

W−1
ν,α (x) = z ≈ B1/C 1

x1/C
.

Consider truncating ai,j at d > ac,1 and dropping the ordering of the Poisson Points. The
error, Ri, will be approximately

Ri ≈ (Bλ∆)1/C
ni,2∑

j=1

1

u
1/C
i,j

,

where ni,2 ∼ Po (d− ac,1) is the number of the Poisson Points in (ac,1, d) and ui,j
iid∼ U (ac,1, d)

is also independent of ni,2. Taking expectations for constant ni,2, we have

E [Ri|ni,2] ≈ ni,2 (Bλ∆)1/C
E

[
u
−1/c
i,j

]

= ni,2 (Bλ∆)1/C

(
C

1− C

) (
a

C−1
C − d

C
1−C

d− ac,1

)
.

Taking the expectation with respect to ni,2 gives

E [Ri] = (Bλ∆)1/C

(
C

1− C

) (
a

C−1
C − d

C
1−C

)
.

Noting that 0 < B = κ < 1 and letting d →∞ gives

E [Ri] ≈
(

C

1− C

)
(Bλ∆)1/C

a
C−1

C
c,1 ,

so consider using the new truncation point

ac,2 =
{

E [Ri]
(

1− C

C

)} C
C−1

(Bλ∆)
1

1−C ,

where E [Ri] is now the expected error in the summation that we would like (for our sim-
ulations we chose E [Ri] = 0.001). The maximum of ac,1 and ac,2 can then be used as
previously.

For the Inverse Gaussian(ν, α) distribution (TS
(

1
2 , ν, α

)
), B = ν/

√
2π and C = 1

2 and

ac,2 =
(λν∆)2

2π

1
E [Ri]

.
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Schoutens, W. (2003). Lévy Processes in Finance: Pricing Financial Derivatives. Wiley.

Tweedie, M. (1984). An index which distinguishes between some important exponential
families. In J. Ghosh and J. Roy (Eds.), Proceedings of the Indian Statistical Institute
Golden Jubilee Conference on Statistics: Applications and New Directions, pp. 579–604.

Vrontos, D., P. Dellaportas, and N. Politis (2003). Inference for some multivariate ARCH
and GARCH models. Journal of Forecasting 22, 427–446.

Walker, S. G. and P. Damien (2000). Representation of Lévy processes without Gaussian
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Table 1. Priors for the MCMC. ‡ M is the marginal distribution that is used for σ2 (t).
p
(
σ2 (0∆) |ν, α

)
= M (ν, α) ‡

p (µ) = N(0, 0.00042)
p (λ) = Ga (1, lp)

p (γ) = N
(
0, 52

)
p (κ) = Beta (1, 15)
p (ν) = Ga (1, np)
p (α) = Ga (1, ap)
p (H) = U (0.5, 1)

Table 2. Median and 95% credible intervals of predictive densities for GIG, TS and IG, Ga,
RPH and IGa distributions.

Share GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α)

British Airways PLC -33.6 (-34.1, -33.0) -34.4 (-38.4, -33.0) -33.9 (-34.8, -33.0)
Citigroup Inc -28.8 (-29.8, -28.0) -34.9 (-38.6, -32.6) -29.5 (-31.0, -28.1)
Coca-Cola Co -33.0 (-33.8, -32.3) -38.0 (-40.7, -36.6) -35.0 (-36.2, -33.9)
General Motors Corp -45.6 (-46.2, -45.0) -46.3 (-47.2, -45.8) -46.0 (-46.4, -45.6)
HJ Heinz Co -24.9 (-27.0, -24.0) -34.8 (-42.6, -29.2) -27.8 (-31.0, -25.1)
Host Marriott Corp -36.2 (-37.0, -35.2) -36.5 (-37.4, -35.6) -35.9 (-36.7, -35.2)
JP Morgan Chase & Co -26.0 (-28.6, -24.4) -25.9 (-28.3, -24.4) -25.9 (-27.5, -24.4)
Kellogg Co -35.9 (-36.4, -35.5) -37.8 (-39.9, -36.6) -36.5 (-37.4, -35.8)
McDonald’s Corp -48.1 (-48.5, -47.6) -48.9 (-49.5, -48.3) -48.5 (-49.2, -48.0)
Microsoft -24.9 (-27.1, -23.1) -26.3 (-32.2, -23.8) -24.1 (-25.8, -22.6)
Procter & Gamble Co -28.2 (-28.8, -27.7) -28.0 (-28.7, -27.4) -28.0 (-28.8, -27.3)
S&P 500 -32.8 (-33.4, -32.3) -37.4 (-41.9, -35.5) -33.6 (-34.9, -32.5)
Textron Inc -42.6 (-42.9, -42.2) -42.7 (-43.3, -42.2) -42.6 (-43.0, -42.2)
Time Warner Inc -31.8 (-32.2, -31.4) -37.4 (-44.3, -32.8) -32.3 (-33.8, -31.3)

Ga (ν, α) RPH (ν, α) IGa (ν, α)

British Airways PLC -34.0 (-34.8, -33.3) -34.0 (-34.9, -33.3) -34.7 (-35.5, -34.1)
Citigroup Inc -28.8 (-30.0, -28.0) -29.2 (-30.8, -28.0) -31.3 (-32.5, -29.9)
Coca-Cola Co -34.9 (-36.3, -33.9) -34.9 (-36.1, -34.0) -35.8 (-37.2, -34.7)
General Motors Corp -45.9 (-46.3, -45.5) -46.0 (-46.4, -45.5) -46.0 (-46.4, -45.6)
HJ Heinz Co -26.1 (-28.6, -24.5) -26.3 (-30.2, -23.8) -30.4 (-32.7, -27.9)
Host Marriott Corp -36.1 (-36.9, -35.4) -36.2 (-37.1, -35.5) -37.6 (-38.2, -37.1)
JP Morgan Chase & Co -24.4 (-26.1, -23.0) -25.2 (-27.0, -23.7) -29.1 (-30.5, -27.7)
Kellogg Co -36.3 (-37.0, -35.7) -36.5 (-37.5, -35.8) -37.1 (-38.0, -36.4)
McDonald’s Corp -48.8 (-49.7, -48.3) -48.7 (-49.7, -48.2) -50.0 (-51.3, -48.7)
Microsoft -22.4 (-24.4, -21.2) -23.4 (-25.7, -21.8) -27.8 (-29.2, -26.3)
Procter & Gamble Co -28.6 (-29.2, -28.1) -29.2 (-30.5, -28.4) -29.2 (-30.2, -28.4)
S&P 500 -33.6 (-34.9, -32.5) -33.5 (-35.0, -32.4) -34.4 (-35.7, -33.2)
Textron Inc -42.6 (-43.0, -42.1) -42.6 (-43.0, -42.2) -42.5 (-42.8, -42.2)
Time Warner Inc -32.1 (-33.2, -31.5) -32.4 (-35.1, -31.5) -33.3 (-34.8, -32.1)

Table 3. Special cases of the GIG distribution, with conventional two parameter representation.
Form of GIG (γ, ν, α) distribution Standard two parameter family

GIG
(
ν, 0,

√
2α

)
Ga (ν, α)

GIG (1, ν, α) RPH (ν, α)

GIG
(
−ν,

√
2α, 0

)
IGa (ν, α)

GIG
(
− 1

2
, ν, α

)
IG (ν, α)
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Table 4. Summaries of option payoff errors for different marginal distributions; rescaled squared errors.
Option Pricing GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α) Ga (ν, α) RPH (ν, α) IGa (ν, α)

British Airways PLC 1.02 1.26 1.01 1.02 1.01 1.00
Citigroup Inc 1.00 0.99 1.00 1.00 1.00 1.00
Coca-Cola Co 1.04 1.04 1.07 1.05 1.05 1.00
General Motors Corp 1.01 0.99 1.01 1.01 1.00 1.00
HJ Heinz Co 1.01 0.97 1.03 1.03 1.05 1.00
Host Marriott Corp 1.01 1.24 1.04 1.00 1.00 1.00
JP Morgan Chase & Co 1.00 0.99 1.00 1.00 1.00 1.00
Kellogg Co 1.04 0.99 1.04 1.05 1.04 1.00
McDonald’s Corp 1.02 1.11 1.00 0.99 0.99 1.00
Microsoft 1.01 1.14 1.04 1.03 1.02 1.00
Procter & Gamble Co 0.99 1.01 1.01 0.99 1.03 1.00
S&P 500 1.00 1.01 1.00 0.99 0.99 1.00
Textron Inc 1.00 0.98 1.00 0.99 1.00 1.00
Time Warner Inc 1.00 0.99 1.00 0.99 1.00 1.00

Sum 14.16 14.70 14.26 14.15 14.19 14.00

Table 5. Median and 95% credible intervals of predictive densities over 80 unseen data points of models with
Brownian and approximate fractional Brownian motion.

Predictive Density Brownian Motion Approximate fBm PS for H

British Airways PLC -168.5 (-170.0, -166.1) -168.2 (-170.5, -166.1) 0.512 (0.501, 0.548)
Citigroup Inc -112.1 (-115.9, -109.6) -112.1 (-116.4, -109.7) 0.505 (0.501, 0.523)
Coca-Cola Co -137.6 (-141.7, -135.3) -138.3 (-143.2, -135.5) 0.523 (0.502, 0.563)
General Motors Corp -160.4 (-161.9, -158.9) -160.2 (-161.6, -158.5) 0.512 (0.500, 0.542)
HJ Heinz Co -131.6 (-135.5, -129.1) -131.6 (-135.7, -129.1) 0.503 (0.500, 0.517)
Host Marriott Corp -143.0 (-145.6, -140.7) -143.1 (-145.3, -140.8) 0.512 (0.503, 0.551)
JP Morgan Chase & Co -105.1 (-112.3, -99.2) -105.0 (-111.8, -99.3) 0.510 (0.501, 0.540)
Kellogg Co -124.8 (-127.9, -122.9) -125.7 (-130.0, -123.6) 0.504 (0.501, 0.514)
McDonald’s Corp -164.0 (-167.6, -161.3) -164.5 (-169.3, -161.9) 0.510 (0.502, 0.535)
Microsoft -93.9 (-101.9, -86.7) -92.3 (-100.5, -86.0) 0.506 (0.501, 0.529)
Procter & Gamble Co -113.9 (-115.1, -112.8) -115.1 (-117.4, -113.0) 0.508 (0.500, 0.528)
S&P 500 -138.7 (-141.7, -137.1) -138.5 (-141.1, -137.0) 0.507 (0.500, 0.530)
Textron Inc -150.9 (-152.8, -149.6) -151.0 (-152.9, -149.6) 0.518 (0.501, 0.554)
Time Warner Inc -115.5 (-119.0, -114.0) -115.1 (-118.7, -113.5) 0.510 (0.502, 0.535)
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Fig. 1. Graphs of the log of the individual terms for the Barndorff-Nielsen and Shephard (2000) and
Rosiński (2000) series representation for the TS (κ, 1, 1) distribution.
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Fig. 2. Histograms of the expected discounted payoff for different posterior samples from the MCMC,
for an arithmetic Asian option on Microsoft shares. The dashed line is the actual discounted payoff.
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Fig. 3. Histograms of the expected discounted payoff for different posterior samples from the MCMC,
for knock in option with vanilla call payoff on Procter & Gamble Co shares. The dashed line is the
actual discounted payoff.
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Fig. 6. Graphs of the estimated fair price of vanilla call-put for constant volatility, σ = 0.03.
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