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Summary

In this paper we present an extension of population-based Markov chain Monte Carlo

(MCMC) to the variable dimension case. One of the main challenges in MCMC based

inference is that of simulating from high and trans-dimensional target measures, where

standard reversible jump MCMC methods do not adequately traverse the support of the

target. We develop population methods to overcome these difficulties, and give a result

proving the uniform ergodicity of these population algorithms. We use this result to

demonstrate the superiority in terms of convergence rate of the transition kernel over

a reversible jump sampler for a Bayesian variable selection problem. We also give an

example of a population algorithm for a Bayesian multivariate mixture model with an

unknown number of components. We apply the model to a gene expression data set

of size 1000 points in 6 dimensions and show that our algorithm out performs some

competing Markov chain samplers.

Some key words : Reversible jump Markov chain Monte Carlo, Uniform ergodicity,

Bayesian variable selection, Mixture models

1. Introduction

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) and its

adaptation to the trans-dimensional case (Green, 1995) has provided a general framework

to perform statistical inference for complex target probability measures π(x)λ(dx), on
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measure space (X,B(X), λ), using (with B(X) denoting a countably generated σ−algebra

and λ a σ−finite measure on X) a Markov transition kernel K. In this article we focus on

reversible jump Markov chain Monte Carlo (RJMCMC) for state space X =
⋃
k∈K

(
{k}×

Xk
)
, K ⊆ N, Xk ⊆ Rk. Recent applications of RJMCMC include classification and

regression (Denison et al., 2002) and mixture modelling (Richardson and Green, 1997),

with particular emphasis on model determination. However, it is generally the case, for

multimodal, variable dimension distributions that naive (vanilla) samplers entirely fail

to move around the support of the target; see Brooks et al. (2003) for example.

To deal with these problems, several MCMC approaches have been suggested, in-

cluding: simulated tempering (Brooks et al., 2002), auxiliary variable methods (Brooks

et al., 2003) and tempered transitions (Jennison et al., 2003); see Green (2003b) for

an up-to-date review. Methods other than MCMC, that may be used for difficult sim-

ulation problems, include dynamic weighting (Liu et al., 2001) and sequential Monte

Carlo (Del Moral et al., 2004), but the discussion of such (non-MCMC) methods is

beyond the scope of this paper. One method used for difficult sampling problems in

fixed dimensional spaces, that have not been used in the variable dimension case, are

population-based methods (Liang & Wong, 2001; Liu, 2001).

1·1 Population-based Markov chain Monte Carlo

Population-based Markov chain Monte Carlo operates by embedding the target into

a sequence of N independent distributions and simulating the N parallel chains, as in

parallel tempering (Geyer, 1991; Hukushima & Nemoto, 1996), whilst allowing the chains

to interact via various crossover moves; we give a summary of the population MCMC

approach in Section 3 - see Liu (2001) for an extensive review. It is straightforward, from

a theoretical standpoint, to extend this approach to the variable dimension case and we

consider whether such an approach is worthwhile.

The main advantage of population-based simulation over other methods is the fact

that the population simultaneously represent many properties of the target distribution.

This is particularly useful in trans-dimensional simulation, when it can be difficult to

construct efficient dimension changing proposals. Green (2003b) notes that some MCMC
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methods retain information about which states have been visited (e.g. the product space

approach (Carlin & Chib, 1995; Godsill, 2001)), whilst standard reversible jump ‘forgets’

where it once was. The first approach can provide a mode jumping property not present

in standard reversible jump, namely, the ability to jump a large number of dimensions

that would take a substantial time under the standard approach. Conversely, the second

approach will have greater capacity to discover new states that are consistent with the

target. It is clear that an algorithm which can combine both properties is likely to

perform well; the objective of this paper is to construct such an algorithm.

1·2 Contribution and Structure of Paper

One aspect of population-based MCMC that is rarely considered in the literature (an

exception is Madras and Zheng (2003)), are the theoretical improvements, if any, over

standard MCMC methods. In this article we present a result which ensures the uniform

ergodicity of a population transition kernel and allows the construction of population

algorithms which are preferable, in theory, to their single chain counterparts. We demon-

strate this with an example in Bayesian variable selection.

In investigations of difficult sampling problems, one is quickly drawn to the conclusion

that there is not often one single method that is guaranteed to work. However, population

methods naturally accommodate multiple strategies in MCMC simulation which improve

the ability of the sampler to traverse the state space. In our main example we show

how to combine the methods of parallel chains (Geyer, 1991), tempering (e.g. Geyer

& Thompson, 1995), snooker algorithms (Gilks, et. al., 1994), partitioning of the state

space (Atachade & Liu, 2004)) and delayed rejection (Green & Mira, 2001). We believe

that such methods will not necessarily perform adequately individually, but together can

provide a superior MCMC sampler.

This paper is organised as follows. In Section 2 we provide an illustrative example

related to the clustering of gene expression data via Bayesian multivariate mixture mod-

els. In Section 3 we introduce population-based reversible jump. In Section 4 we present

new theoretical results that indicate why population methods can lead to superior perfor-

mance compared to single chain algorithms. In Section 5, we present population MCMC
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moves for the mixture model example. In Section 6 we provide a comparison of vanilla,

simulated tempering (Geyer & Thompson, 1995) and population samplers for the mix-

ture model example. In Section 7 we conclude with a discussion, detailing extensions to

our approach.

2. An Illustrative Example: Finite Mixture Modelling

Mixture models are typically used to model heterogeneous data, or as a simple means

of density estimation; see McLachlan & Peel (2000) for an overview. Bayesian analysis

using mixtures with an unknown number of components has only fairly recently been

implemented (see Richardson & Green (1997), and in the multivariate context Stephens

(2000) and Dellaportas & Papageorgiou (2004)).

2·1 Model

Let y1, . . . ,yn denote observed data that lie on support yi ∈ Y ⊆ Rr. We assume that

the yi, i = 1, . . . , n, are i.i.d with density:

p(yi|η,w, k) =
k∑

j=1

wjf(yi;ηj)

where η = (η1, . . . ,ηk) are component specific parameters, the weights w = (w1, . . . , wk)

are such that
∑k

j=1wj = 1, wj ≥ 0 ∀j, p(·) denotes an arbitrary probability mass/density

function and f(·) is the component density. For our model, we restrict ourselves to the

cases where f(·) is either multivariate normal, Nr(µ,Λ) or multivariate t, Tr(µ,Λ, s),

where (µ,Λ) are the location, scale parameters and s is the degrees of freedom for the

t-density.

In specifying the priors, we follow Stephens (2000). The mean vectors for each compo-

nent are taken to be independent Nr(ξ,κ−1). The Λj are independently IWr(2α
′, 2β),

where IWr(·, ·) is the inverse Wishart distribution. We take

β ∼ W(2g, (2h)−1) where Wr(·, ·) is the Wishart distribution

w ∼ D(δ) where D(·) is the symmetric Dirichlet distribution

k ∼ U{1,...,kmax} where US is the discrete uniform distribution on countable set S.
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When using the multivariate t-distribution, the degrees of freedom are assumed known.

Thus, we have a prior structure as follows

p(w,µ,Λ,β, k) =

[ k∏

j=1

p(µj)p(Λj |β)

]

p(β)p(w|k)p(k).

2·2 Data Processing and Prior Distributions

For our example we consider the problem of clustering gene expression data as in Yeung

et al. (2001) and Heard et al. (2004). The data consist of n = 4221 genes, with the level

of gene expression in the parasite Plasmodium measured at r = 46 time points. The data

are discussed in Bozdech et al. (2003). Even with modern computing power applying

a fully Bayesian analysis to such data is not practical, we thus propose to preprocess

the data, and to reduce the (n, r)-dimensional data to (l, q) dimensions. We achieve

this by adopting a K-means partitioning approach to reduce n to l, and then principal

components to reduce r to q. We selected l = 1000 and q = 6.

Our priors are set in a similar way to Stephens (2000). We set ξ to be the midpoint of

the observed data in its corresponding dimension. κ is taken to be diag(1/R2
1, . . . , 1/R

2
r)

where Rq is the range of the data in dimension q = 1, . . . , r. Additionally g = r/2, δ = 1

and α′ = α+(r+1)/2, where α = 3. Finally h is diag(100r/(2α′R2
1), . . . , 100r/(2α′R2

r)).

2·3 Performance of Vanilla Sampler

The vanilla reversible jump sampler outlined in Appendix 1 was implemented for the

data above. For illustration we use a t-distribution on four degrees of freedom as the

component density in our mixture model and set kmax = 20.

We ran the reversible jump algorithm from two different starting points, dispersed

with respect to the dimensionality. The code (written in C) was run on a Pentium 4, 3

Ghz machine and took about three hours on average. The sampled values of k can be seen

in Figure 1; we can observe extremely poor mixing (all variable dimension acceptance

rates below 1%). We can see that there appears to be support between k = 3 − 5

components, but also at k = 9− 11 (note for longer runs of the sampler, the same poor

mixing behaviour was observed). The main problem is that the vanilla sampler cannot
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jump between these two modes. (We note that any potential lack of convergence cannot

be attributed to the absence of Harris recurrence: we started the algorithm with a draw

from an absolutely continuous distribution).

sweep (x10)

k

0 5000 10000 15000 20000 25000

2
4

6
8

10
12

Figure 1: Sampled values of k using the vanilla reversible jump algorithm, for two chains

started at different points. The algorithm was run for 250000 sweeps, every 10th sample

was taken.

Some of the poor performance of the vanilla algorithm can be attributed to the

difference in dimensionality between different mixture models. To jump from a k to

a k + 1 component mixture model, we need to draw 1 + r + r(r + 1)/2 = 28 random

variables, so we will need proposals/jump functions that are more tailored than those

used in the vanilla sampler. In addition, since we can seldom jump between models, the

state of the chain spends a long time adapting to the data, making it even less likely

that we jump. Whilst global moves might be constructed (as noted by Green (2003a),

they are more likely to produce better mixing than the local moves attempted here),

dimension matching dictates that this will be difficult to achieve efficiently.

2·4 Alternative Algorithms

Possible MCMC methods that might be used to deal with the problems encountered here

may be the auxiliary variable method of Brooks et al. (2003) or product space methods,

but both are problematic, as they require significant user-input.
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Constructing proposal distributions by creating an approximation of the target in

each dimension using fixed dimensional MCMC is complicated by the label-switching

problem (see Jasra et al. (2005)). Additionally, to achieve adequate mixing, the fixed

dimensional simulation will need to be carried out using some non-standard MCMC

approach; see Jasra et al. (2005) for example.

Delayed rejection (Green & Mira, 2001) and tempered transitions (Jennison et al., 2003)

also often do not provide a solution to the problems highlighted by this example. For the

former method, insufficient information is learnt at the first stage rejection to provide

a significantly improved second stage proposal, whereas for the latter, it often takes a

large number of intermediate simulations (e.g. 100) to provide a reasonable proposal,

but even so, the performance gain is not always substantial.

3. Population-Based Reversible Jump

We now consider population-based reversible jump algorithms. First we give details

of the population MCMC method, and then study the theoretical properties of the

algorithm, in particular its uniform ergodicity.

3·1 The Population MCMC Method

Consider a sequence of densities {πN} with respect to measure λ on measure space

(Xi,B(Xi)), Xi =
⋃
k∈K

(
{k}×Xik

)
, i = 1, . . . , N . Xik is the support of the ith distribution

in dimension k, for which in most cases will be identical to the original target and for

the remainder of the paper π1 ≡ π.

Now suppose we have a modified target density π∗ (with respect to measure λ×· · ·×λ

(product N times) on measurable space (X1× · · · ×XN ,B(X1)× · · · ×B(X1))), such that

π∗(x,k) =
N∏

i=1

πi(xi, ki) (xi, ki) ∈ Xi

where x = (x1, . . . , xN ) and k = (k1, . . . , kN ).

For the auxiliary distributions (i.e. πi, i = 2, . . . , N ) we take πi ∝ πζi , 1 = ζ1 > · · · >

ζN > 0, where {ζN} are inverse temperature parameters. This is the standard approach,
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but other settings include taking ζi = 1 for each i; see Del Moral et al. (2004) for further

discussion.

We generate N parallel (variable dimension) chains, in order that we can explore

the target correctly. We seek to use the extra information of N chains at different

temperatures to allow large moves in dimension of the chain of interest as well as allowing

improved performance in more local moves (within and between dimensions). One of the

main problems of parallel tempering is the minimal interactions between the chains. Thus

we seek a more population-based approach to justify the increased cost in computation.

Since we need only make sure that all moves used satisfy detailed balance, and that

any dimension changing move satisfies the dimension matching constraints of Green

(1995), the population approach is valid.

We now give a theoretical justification for using the population approach. In particu-

lar, we show that population MCMC algorithms can be constructed so that the Markov

chain is uniformly ergodic.

4. Some Theory for Population Samplers

We now consider some theory for population samplers.

4·1 Uniform Ergodicity and Small Sets

We will concentrate on the concept of uniform ergodicity (see Roberts & Rosenthal

(2004) for further details).

Definition 1. A Markov chain (Xn) with invariant measure π is uniformly ergodic if:

||Kn(x, ·)− π(·)||TV ≤ Mψn

where || · ||TV is the total variation distance, M <∞ and ψ ∈ (0, 1).

Definition 2. A set A ∈ B(X) is small if there exists n0 ∈ N, ε > 0 and a non-trivial

probability measure ν(dx) such that

Kn0(x,A) ≥ εν(A) ∀x ∈ A. (4.1)
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Inequality (4.1) is known as the minorization condition. A set is termed (n0, ε, ν) small

if the minorization condition is satisfied. The following theorem is a well-known result

for Markov chains (see Roberts & Rosenthal (2004) for example).

Theorem. Consider a Markov transition kernel K with invariant probability measure

π(dx), x ∈ X. If the state space X is small then K is uniformly ergodic. Furthermore

the total variation distance ||Kn(x, ·)− π(·)||TV is bounded by:

R =
(
1− ε

)
⌊
n
n0

⌋

with n0 and ε the parameters in the minorization condition (4.1).

Thus to compare convergence speed, if we can establish that both algorithms are

uniformly ergodic then we have a way to compare the algorithms by computing (n0, ε).

4·2 Main Result

We now demonstrate that population MCMC approaches can be constructed to exhibit

uniform ergodicity. For the following Theorem we denote a mutation (Markov transition)

kernel as KM and an exchange kernel KE . A mutation move is a Metropolis-Hastings

kernel (or cycle/mixture of such kernels) which attempts to change a single member of

the population, dependent only on the current state of the chain for that member. An

exchange move is a Metropolis-Hastings kernel which proposes to swap the current states

of two different members of the population.

We set χ∗(dx) =
∏N
i=1 χi(dxi), xi ∈ X ∀i, and assume that χi � λ. We denote the

density for χi as πi and to avoid difficulties πi(x) > 0 ∀x ∈ X, i = 1, . . . , N (i.e. that each

density has the same support). Additionally, we denote a vector with its ith element

missing as x−i and with only its ith and jth elements as xi,j . We now give our main

theoretical result;

Theorem. Consider K̃ an aperiodic, χ∗-irreducible Markov transition kernel with in-
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variant measure χ∗ and

K̃(x, dx′) =

(

τKM + (1− τ)KE

)

(x, dx′)

KM (x, dx′) =






N∏

i=1

Kxi(xi, dx
′
i)δx−i(dx−i) (i)

N∑

i=1

τiKxi(xi, dx
′
i)δx−i(dx−i) (ii)

KE(x, dx′) =
N−1∑

i=1

N∑

l=i+1

εilKE(xi,l, dx′i,l)δx−(i,l)
(dx−(i,l))

with

τ, τi, εil ∈ (0, 1),
N∑

i=1

τi = 1,
N−1∑

i=1

N∑

l=i+1

εil = 1

and Kxi is an aperiodic, χi-irreducible mutation (Markov) kernel with invariant measure

χi, i = 1, . . . , N . Suppose that, Kxj∗ is uniformly ergodic (j∗ ∈ {1, . . . , N}) and for each

i 6= j∗ ∃%i ∈ (0,∞) such that πi(x) ≤ %iπj∗(x) ∀x ∈ X. Then K̃, under either (i) or (ii),

is uniformly ergodic.

See Appendix 2 for the proof.

Remark 1. The assumption of uniform ergodicity for Kxj∗ is not too restrictive. In

many applications (e.g. Bayesian analyses for which the MLE exists) a proposal under

the independence sampler can be found which ensures uniform ergodicity, but at the cost

of being a poor proposal for π. However, if applied to a flatter (related) distribution, this

proposal will perform quite well, that is, applied to a flat distribution in the population.

The assumption πi(x) ≤ %iπj∗(x) ∀x ∈ X is quite reasonable and would apply in the

framework described here, when π is bounded, for the case j∗ = N . The idea is that the

uniform rate of convergence for one of the densities in the system is propagated through

it.

Remark 2. The Theorem shows in simple cases, where we can design uniformly

ergodic chains for the target π (which are likely to perform well in practice), how to

compare population and single chain approaches. In other words we can construct a

population sampler which has a faster rate of convergence to π∗ (and hence π) which
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justifies the increased cost in computation. Additionally, we can observe the popula-

tion kernels which are likely to provide good mixing for more complex examples. We

demonstrate the above in the following example.

4·3 Example: Bayesian Variable Selection

Consider the statistical model:

yi = γ0 +

kmax∑

j=1

ϑjγjB(xij) +$i

with $i i.i.d N (0, σ2), ϑj ∈ {0, 1}, γj ∈ R and B(·) a basis function. If we consider the

conjugate prior specification: p(γ|σ, k) = Nk(m,σ2V ), p(σ2) = IG(a, b) (where IG(·, ·)

is the inverted Gamma distribution) and

p(ϑ) =
1

kmax + 1

(
kmax

k

)−1

k = 0, . . . , kmax

then we can integrate out the parameters and sample from a distribution on a finite state

space.

We generated 100 data points from a linear model, with kmax = 8 (i.e. 256 states)

and zij ∼ N (0, 0.0012), i = 1, . . . , 100, j = 1, . . . , kmax − 1, zikmax ∼ N (0, 10002) and

set xij = zij + zikmax , j = 1, . . . , kmax − 1 and xikmax = −7zikmax . Finally we simulated

yi ∼ N (1 +
∑7

j=1 zij , 0.0012). The extreme variances were chosen to ensure that there

was model uncertainty on either no or all of the covariates. The posterior probability of

a null model was 0.55 and 0.33 for the saturated model. This is a typical situation for

which a standard MCMC sampler would fail to move around the state space easily.

To sample from the posterior distribution we use an MCMC algorithm similar to

that detailed in Denison et al. (2002), that is, the reversible jump algorithm comprises

of three moves: birth, death and flip.

The birth move comprises of proposing to add a covariate not currently in the model,

chosen uniformly among those available. The reverse death move seeks to remove a

covariate, currently in the model, uniformly at random. Finally the flip move which

seeks to add a covariate not currently in the model, whilst removing an existing one.
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Moves are selected, conditional on the current state of the chain. See Denison et al. (2002)

for further details.

Since the state space is finite, it is clear that an ergodic Markov chain with appropriate

stationary distribution is uniformly ergodic. To construct an appropriate ν (i.e. that leads

to a large ε), we used the approach discussed in chapter 6 of Robert & Casella (2004).

Let Kn
ij (i, j ∈ X) denote the n step transition probability and suppose that inf

i
{Kn

ij} > 0

for some j, then ∀j

Kn
ij ≥ inf

l
{Kn

lj} = ευj

say, where

υj =
inf
i
{Kn

ij}
∑

l∈X

inf
i
{Kn

il}
and ε =

∑

l∈X

inf
i
{Kn

il}.

For the algorithm discussed above, we found that the bound on the rate of conver-

gence was reasonably similar for n0 = 1000 to n0 = 5000; thus we focus upon the pair

(1000, 3.63× 10−3).

For a population sampler, suppose we take a single auxiliary distribution:

π2(ϑ2|x,y) ∝ L(x,y;ϑ2)ζp(ϑ2)

with ζ = 0.01. We concentrate upon a kernel which updates ϑ1 and ϑ2 via the RJ

algorithm described above and after every 10 iterations proposes an exchange (in the

spirit of a restart distribution in Tierney (1994)). (Note that the Theorem can still

be applied and we will use the uniform ergodicity of the RJ kernel for the auxiliary

distribution).

It can be shown that the (n0, ε) pair for the population sampler (using the approach

above to construct a measure in the minorization condition) is (21, 6.01×10−4). A graph

comparing the bounds on total variation distance can be seen in Figure 2.

In Figure 2 we observe that the bound on the total variation distance suggests a

much faster rate of convergence for the population algorithm, indeed M0.01 = 5.27× 106

(the number of iterations to achieve a bound on the total variation distance less than

0.01) for the vanilla algorithm and M0.01 = 159552 for the population algorithm, that is,

it is significantly faster.
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Figure 2: Plot of the Bound on the Total Variation Distance for Sampling from a

Bayesian Linear Model. We used a reversible jump algorithm similar to that in Denison

et al. (2002) (unbroken) and a Population algorithm (dash-dot).

We can see, for this example, a simple extension of the original algorithm to include

an auxiliary distribution that provides a good proposal (for the original target) and allows

efficient movement around the state space, leads to substantially improved convergence

properties. For this example, there would be little extra coding effort and the CPU time

would not be substantially longer than for the original RJ algorithm.

5. Population Moves for Mixture Example

Now that we have established, for difficult problems, that population methods can lead

to faster convergence, we discuss how to implement population moves for our mixture

example. Our notation is such that θ = (θ1, . . . , θN ), with θi = (ηi,wi,βi, ki), i =

1, . . . , N and (ηi,wi) refers to all of the component specific parameters and weights for

chain i. We will temper the likelihoods only, to avoid any possible integrability problems.

We now proceed to combine several MCMC methods to improve the mixing ability

of the chain.
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5·1 Exchange Moves

An exchange step is often used to swap information between parallel tempered chains.

At iteration t we select two adjacent chains (in terms of the temperature parameter)

uniformly at random and propose to swap their values. To merit reasonable interaction,

the temperature ladder is set so that this move is accepted about half of the time (Liu,

2001). One way to improve this step is to use the delayed rejection method, as suggested

by Green & Mira (2001).

At iteration t select any two chains i1 and i2 to swap, accepting or rejecting with the

normal Hastings ratio, that is, with probability

ρ1(θ,θ′) = min

{

1,
πi1(θi2)πi2(θi1)

πi1(θi1)πi2(θi2)

}

where the labelling of the chains is with respect to the current state of the chain and

θ′ denotes the new configuration of chains. If rejected, select two adjacent chains i3

and i4 to swap, denoting this configuration θ′′. To ensure reversibility with respect to

the target (i.e. as part of the delayed rejection method) we perform a pseudo move that

means that at the proposed state of the chain we rejected a move which tried to swap

chains labelled as i1 and i2. The second stage move is accepted with probability

ρ2(θ,θ′′) = min

{

1,
πi3(θi4)πi4(θi3){1− ρ1(θ′′,θ∗)}
πi3(θi3)πi4(θi4){1− ρ1(θ,θ′)}

}

where θ∗ denotes the configuration under the pseudo move.

This move allows for increased interaction between the population. At the first

stage, we allow any pair of chains to be swapped, thus if a chain at a high temperature is

consistent with one of the distributions at a lower temperature, it is allowed to quickly

jump down the ladder. It is likely that this move will only rarely be accepted (in fact

not too often), thus our second stage move attempts a proposal that is far more likely

to be accepted - thus still allowing reasonable rate of exchanging information.

5·2 Crossover Moves

Liang & Wong (2001) employ various crossover moves to increase the interaction of the

population. We use two move types:
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Variable dimension crossover

When in state θ, we select a variable dimension crossover with probability v(θ);

v(θ) =






1 if ki 6= kj for some i 6= j

0 otherwise.

Note the case v(θ) = 0 corresponds to a ‘do nothing’ move. We select a pair of chains

with differing dimension with probability inversely proportional to the squared absolute

value of the difference between the dimensions. We then permute the chains to obey

the identifiability constraint which orders on the weights, then propose the new state of

the chains, by swapping k’s and the weights. We take the lowest weighted component

specific parameters of the higher dimensional chain to the lower dimensional chain, i.e.

if ki1 > ki2 for the selected chains i1, i2 we propose:

η′i1 = (ηi1ki1−ki2
, . . . ,ηi1ki1

)

η′i2 = (ηi11 , . . . ,η
i1
ki1−ki2−1

,ηi21 , . . . ,η
i2
ki2

)

where ηi1j denotes an element of ηi1 . The acceptance probability is easily calculated

and thus omitted. After the move has been accepted or rejected we propose a random

permutation (all permutations have uniform probability of being proposed) of the labels

of the parameters for all chains, thus ensuring invariance with respect to the target.

Fixed Dimension Crossover

When in state θ, we select a fixed dimension crossover with probability 1, if it can be

selected (i.e. there are at least two chains with the same dimensionality) otherwise we

select a ‘do nothing’ move. Select a pair of chains (i1, i2) with the same dimensionality,

with probability

p(i1, i2|θ) ∝ |ζi1 − ζi2 |
−1Iki1=ki2

. (5.1)

We then permute the chains by ordering on the first dimension of the means. We select a

position j = 1, . . . , kl1−1 to crossover, this selection made with probability proportional

to 1/j and switch all component specific parameters to the left of j inclusive (note that
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if the identifiability constraint is not satisfied in the proposed state of the chain we

immediately reject) and accept or reject on the basis of the Hastings ratio. After the

accept reject decision has been made, we again propose a random permutation of the

labels of the parameters.

5·3 Snooker Jumps

One of the most important ways we can use the information in the population is by

targeting variable dimension jumps by using another chain. This idea is linked to the

snooker algorithm of Gilks et al. (1994) and is performed in the following way.

When in state θ select a birth with probability b(θ), where

b(θ) =






1 if ki = 1 ∀i

0 if ki = kmax ∀i

1/2 otherwise

then select a chain (the current point θc) for which a birth is possible (let mb(θ) be the

number of chains such that a birth can occur when in state θ) with uniform probability

and select an anchor point (θa) with probability inversely proportional to the absolute

value of the difference between the inverse temperatures. Generate w ∼ Be(1, kc), with

Be(·, ·) the beta density, and draw a new µ,Λ from:

q(µ,Λ) =

ka∑

j=1

h̄(ηj)Nr(µ
a
j , σ)IW(2r + 3,Λa

j )

where

h̄(ηj) ∝
1

kc

kc∑

l=1

h((µaj ,Λ
a
j ), (µ

c
l ,Λ

c
l ))

and h(·, ·) is the Mahalanobis distance. We then perform the rest of the move as for

the birth in Appendix 1. In the death we perform much the same as for Appendix 1,

except we select a current point with probability 1/md(θ) (where md(θ) is the number of

chains for which a death can occur when in state θ) and (redundantly) select an anchor

point (which is used in the reverse birth). The birth move is accepted with probability
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min{1, A} with:

A =
p(y|η

′c,w
′c, kc + 1)ζcp(µ)p(Φ)p(kc + 1)

p(y|ηc,wc, kc)ζcp(kc)
B(kcδ, δ)

−1wδ−1(1− w)kc(δ−1) (kc + 1)!

kc!

×
d(θ′)mb(θ)

(kc + 1)b(θ)md(θ′)

(1− w)kc−1

Be(w; 1, kc)q(µ,Φ)

where Φ is the Cholesky decomposition of Λ (see Appendix 1 for details), p(y|ηc,wc, kc)
ζc

is the tempered likelihood (for the current point), B(·, ·) is the beta function and Be(x; ·, ·)

is the beta density evaluated at x. The objective of this move is to propose new compo-

nent specific parameters which are likely to be consistent with the data, but are markedly

different from the current components. It also provides an adaptive element to the birth

proposal, as it relies on current information that is being continuously updated.

5·4 Partitioning

One aspect of population-based simulation that is apparent, is the need for diversity of

the population (also the case in sequential Monte Carlo - see Del Moral et. al. (2004)). In

many cases for which it is difficult to traverse the state space, it is often the case that the

members at higher inverse temperatures can become trapped as in single chain MCMC

methods (i.e. as in Section 2·3). As a result, we will tend to derive incorrect quantities

of interest. To avoid this problem, we propose to partition some of the members of the

population. That is, for some subset I = {l, . . . , N} (l ≥ 2), πi with i ∈ I is a density

constrained to Xi ⊂ X.

Choosing the partition is a difficult problem which needs to be determined in a

problem specific manner. See Atachade & Liu (2004) for some discussion.

5·5 The Algorithm

To sample from the augmented distribution we use the algorithm below; we use the

genetic algorithm terminology of Liang & Wong (2001).

0. Initialise the chain θ.

For t = 1, . . . ,M sweep over the following:
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1. Mutation. Select a chain i with probability τi and then perform one sweep of the

reversible jump algorithm in Appendix A for this chain.

2. Make a random choice between performing steps 3 or 4.

3. Crossover. Propose a variable dimension crossover move with probability 1/2, else

propose a fixed dimension crossover.

4. Snooker Jump. Propose a birth with probability b(θ), else propose a death.

5. Exchange. Perform the delayed rejection exchange move.

Note that, for partitioned chains, we only allow them to be involved in fixed dimen-

sional crossovers and a special exchange move that we now describe (which is added to

5).

Propose to exchange a partitioned and non-partitioned chain, selecting the move only

if such a move may be performed. All selections are made with uniform probability and

no delayed rejection is used.

6. Gene expression example revisited

6·1 Specification of Simulation Parameters

Population Size

To run the population algorithm in Section 5·5 we used N = 25 with 5 chains partitioned.

We recommend a large population size in general, so that results are reasonably similar

for separate runs of the algorithm. We note that this may lead to slower convergence

to the target density π∗, in terms of CPU time, but that there is more information to

improve exploration of the original target density π.

A point of interest, is that with a large population, significant CPU time may be spent

on updating variables that may never add any information for the original target density;

thus the method of target orientated evolutionary Monte Carlo has been developed: see

Goswami & Liu (2005).
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Temperature Parameters

For the main population (i.e. non-partitioned chains) the following inverse temperatures

were selected:

ζ1 = 1

ζi = ζi−1 − ςϕ
i−1 i = 2, . . . , 20

for constants ς > 0, ϕ > 1. We selected ς = 10−6, ϕ = 1.85.

Our choice of heating schedule, and population size was based upon pilot tuning. We

selected a slowly decreasing sequence of ζ’s since we observed a poor acceptance rate for

the exchange move for distributions that were further away. We found that the inverse

temperature at which the reversible jump algorithm performed best (that is reasonable

acceptance rates along with regions of high support that were similar to the target) was

ζ = 0.75. Thus we attempt to include a distribution with this temperature. We note

that we need to be careful when specifying temperatures, since for low temperatures (low

depending on the problem at hand) the distribution starts to favour dimensionalities that

are small, although this may be alleviated by specifying priors for k which penalise small

values. For more discussion on temperature selection see Goswami & Liu (2005).

Partitioned Chains

To select the partitions we used a prior simulation. We ran the algorithm with the

N = 25 and the inverse temperature parameters discussed above, only 9 chains in the

main population and 16 partitioned chains (given inverse temperature parameter 0.999).

We selected partitions with respect to the dimensionality, that is we had 10 chains

constrained to lie k ∈ {1, 2}, . . . , {19, 20} then six other chains constrained to lie in

k ∈ {3, . . . , 6}, {6, . . . , 9}, {9, . . . , 12}, {12, . . . , 15} and {15, . . . , 18}. This was adopted

in order to determine whether there was any support outside {3, . . . , 11} found in Section

2·3. Based upon a short run we took the five partitioned chains to lie in (subsets

of {1, . . . , kmax}) {2, 3, 4}, {4, 5, 6}, {5, 6, 7} and {7, 8, 9}, {9, 10, 11}. The idea of the

prior tuning is to avoid wasting CPU time on population members constrained to lie
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in areas of support that have low density with respect to the original target density.

Additionally, the partitioned chains need to be able interact with the main population

and the prior tuning allows us to make this choice. The inverse temperature parameters

for the partitioned chains were 0.999, since we seek to maintain diversity with respect

to the population at colder temperatures.

For further discussion in the setting of partitions, especially in the context of re-

versible jump, see Atchade & Liu (2004).

We ran the algorithm in Section 5·5 (with the addition that if a crossover move was

selected, we also propose an exchange for the chain of interest) for 1 million sweeps which

took approximately 9 1
2 hours.

6·2 Comparison with Vanilla Sampler

In Figure 3 (a) we can see the sampled values of k for the original target density. The

improvement over the vanilla sampler is substantial, on average, the chain of interest

took 6.75 sweeps to jump between a mixture model with less than 4 components to a

mixture with more than 6.

The inability of the original reversible jump algorithm to move around the state

space (i.e. from k = 3 − 5 to k = 9 − 11) is not the case for the population sampler,

since it may represent both states. We note that a move which proposes to add and

remove four mixture components (e.g. from 3 to 7 components) may be constructed, but

the difference in dimensionalities is 112, which will mean that it will be very difficult to

design an efficient move. Note that due to the large state space that we are sampling

from, we do not claim that the sampler has converged and visited all possible regions of

interest in the state space.

In Figure 3 (b) we can observe the sample path for a population-based algorithm

that did not use partitioning. We can observe that, despite the substantially improved

performance when compared to the vanilla sampler, we have missed the region k ∈

{8, 9, 10}. This is due to the reasons discussed earlier, and demonstrates that partitioning

can help guard against such problems.

The effective sample size (ESS) (see Liu (2001) for example) for k was 59578 (60000
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samples, using a lag of 10 in the autocorrelation calculation, which more than enough

based upon inspection of the plots), compared with 176 for the vanilla algorithm (aver-

aged over two chains for a 50000 sample size). Taking

E =
ESSpop

MpopTpop
/

ESSvan

MvanTvan

where the subscripts refer to the population and vanilla algorithms respectively, M is the

sample size and T is the CPU time, we obtain E = 70.21. Therefore there is little contest

between using population-based reversible jump and the vanilla counterpart, for this

example (note all coincidental simulation parameters are the same between algorithms).

6·3 The Efficiency of Sampler

The exchange move was accepted 44% of the time at the first stage and 75% at the

second. This indicates that delayed rejection helps to ensure that we are constantly

swapping information between the chains (i.e. for 86% of the sweeps there is at least one

exchange).

The snooker and variable dimension crossover moves have acceptance rate less than

1%. That this occurs is to be expected. Liang & Wong (2001) report fairly small

acceptance rates for their crossover moves and that our rates are smaller is because we

are working in a more complex space than for their examples. Our experience with

the snooker and variable dimension crossover (as we have implemented them) in more

simple examples, is that they are generally not worth the extra coding effort given their

performance. However, we were satisfied with the fixed dimensional crossover which was

accepted 2.9% of the time. The snooker birth is accepted more often than the standard

birth, but the reverse snooker death move is rarely accepted (c.f. a birth move with

a proposal that has low variance). Hence the move is less successful overall than the

standard birth.

The variable dimension move acceptance rates (averaged over all chains) were still

below 1% with the split/combine move being less effective.
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6·4 Comparison with Simulated Tempering

A more appropriate sampler to compare with the population method is a simulated

tempering algorithm (see Hodgson (1999) for an example of another variable dimension

simulated tempering algorithm). Here the target distribution is:

π(θ, ζ, k|y) ∝ p(y|θ, k)ζip(θ, k)p(ζi)

where p(ζi) is known as the pseudo prior and the temperatures lie in some finite set. To

sample from this distribution we use the reversible jump algorithm in Appendix 1, and

to update the temperature parameter we used a delayed rejection move as follows.

• Propose a temperature uniformly at random and accept or reject with the Hastings

ratio. If rejected, select an adjacent temperature, performing a pseudo move that

selects to go from the proposed temperature at the second stage, to the proposed

temperature at the first stage.

We could not find a pseudo prior so that for a reasonable number of temperatures

(e.g. 25), we could jump between the target and the inverse temperature 0.75 (recall

the reversible jump algorithm performs well at this temperature), thus for any sensible

number of distributions the performance of this approach is as the vanilla algorithm

(slightly improved). An example of a run of the simulated tempering algorithm was

setting p(ζi) ∝ 1/i, with ζ1 = 1 and having a difference of 1 × 10−4 between each

temperature. We found, with 25 distributions, the algorithm only visited the distribution

of interest 10% of the time in a run of 250000 sweeps.

This justifies why we used many chains that are similar to the target for the popu-

lation approach; they contain information relevant to the target, with slightly improved

mixing. That the distribution with inverse temperature 0.75 is difficult to reach under

the simulated tempering approach does not matter in the population algorithm. This is

because we use this distribution to (once in a while) discover states with high posterior

support, whilst the distributions close to the target retain the places we have been.
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6·5 Comments

In early simulations of the algorithm, states with low probability under target π may

be accepted into the chain of interest, especially for a sequence of distributions with

significant overlap.

Recall that, since we may not update any samples directly related to the distribution

of interest (on a particular sweep of the algorithm), it is not advisable to record samples

for every sweep.

sweep (x500)

k

0 500 1000 1500 2000

2
4

6
8

10
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(a) Sampled k.

sweep (x500)

k

0 500 1000 1500 2000

2
4

6
8

10
12

14

(b) Sampled k without Partitioining.

Figure 3: Sampled k (a) and Sampled k without partitioning (b) from the population-

based reversible jump algorithm in Section 5·5 We ran the algorithm for 1 million sweeps

and every 500th sample was taken.
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7. Discussion

To summarize, we have demonstrated the following. We found that a vanilla reversible

jump algorithm failed completely to jump around a multimodal model space, meaning

we were unsure even of the support of the target. We introduced population-based

reversible jump MCMC and gave some theoretical justification for why these methods

can be preferable to standard MCMC methods. We then saw that population reversible

jump is a means to improving variable dimension simulation.

An aspect of interest is the fact that the basic algorithm (without population moves)

can easily be coded given a vanilla sampler. Therefore our method provides a simple

way to check the performance of MCMC algorithms.

One of the problems of our approach is the limited amount of success we had with

our crossover moves. Whilst this was observed for simpler problems in Liang & Wong

(2001), we would still hope that the population can still provide more information when

proposing moves. We note, however, that we do not want too many snooker type moves

(see Gilks et al. (1994)) to be accepted. This is because it will reduce the diversity of the

population. Another area that needs to be investigated, is developing general guidelines

for constructing partitions and finding efficient ways to make them interact with the

population.

Theoretical extensions that may be considered in the future are as follows. First, to

develop coupling and perfect simulation methods in the spirit of Brooks et al. (2002).

Secondly, to use adaptive MCMC methods (see Andrieu & Robert (2001) for example

and Chauveau & Vandekerkhove (2002) in the population context). This is likely to

be superior to standard adaptive algorithms, since we have more information to update

proposals. Furthermore, we have more information in terms of where the chain has not

been, i.e. we may search (fewer) regions of the support of π for states with high density.

One area that we did investigate was Peskun ordering (Peskun, 1973; Tierney, 1998),

but found that results we derived were difficult to apply in practice.

Overall, the success of our method helps open up the possibility of fully Bayesian

analyses in other problems for which simulation is prohibitively slow.
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Appendix 1: Reversible Jump Sampler

One of the drawbacks of the model we have selected is the need for Λ to be positive definite. As a result,

moves in MCMC simulation will be difficult to construct such that this constraint is satisfied. To deal

with this problem we consider the Cholesky decomposition Φ (see Dellaportas & Papageorgiou (2004)

for an analysis using the spectral decomposition). That is, Λ = ΦΦ′ where Φ is lower triangular with

positive diagonal elements (recall the Jacobian is 2r
∏r
l=1 φ

r−l+1
ll ). Thus in our MCMC moves we need

only ensure that the diagonal elements of Φ are positive to guarantee positive definiteness of Λ.

To draw approximate samples from our posterior distribution we use RJMCMC. Following Cappé

et. al. (2003) (among others) we do not complete the missing data (i.e. the class labels for each data

point) and rely upon Metropolis-Hastings updates (unless otherwise stated), as follows.

Firstly the fixed dimensional moves. The component specific means (µj) and component specific

lower triangular part of Φj are both updated via an additive cauchy random walk, independent in

each dimension. The component specific diagonals of Φj are updated via a multiplicative log-normal

random walk, independent in each dimension. The weights are proposed using an additive normal

random walk on the logit scale. Finally, β, is generated using a Gibbs kernel; the full conditional is

W(2(g + kα), (2h + 2
∑k
j=1 Λ−1

j )−1).

Secondly a birth/death of a component, largely following Richardson & Green (1997). Briefly, we

draw a new µ and Φ from the prior and w ∼ Be(1, k), setting the new weights as (w1(1−w), . . . , wk(1−

w), w), selecting the move with probability bk (when in state k). The death, selected with probability dk,

is performed by selecting a component to die with uniform probability and inverting the jump function.

Finally, a split/combine of a component. We select a split with probability sk and choose a component

j∗ uniformly at random to split into components labelled as (j1, j2). The split requires the following

actions:

(i) Split the weight by drawing u1 ∼ Be(γ, γ) and set

wj1 = u1wj∗

wj2 = (1− u1)wj∗ .
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(ii) Split the mean vector by drawing u1(2), . . . , ur(2) ∼ N (0, σµ) and take

µl(j1) = µl(j∗) + ul(2)

µl(j2) = µl(j∗) − ul(2).

(iii) Split the off diagonals of Φ by drawing u21(3), . . . , ur(r−1)(3) ∼ N (0, σφ) and take

φlm(j1) = φlm(j∗) + ulm(3)

φlm(j2) = φlm(j∗) − ulm(3)

where l = 2, . . . , r, m = 1, . . . , l − 1.

(iv) Split the diagonals of Φ by drawing u11(3), . . . , urr(3) ∼ LN (0, σ) and take

φll(j1) =
φll(j∗)

ull(3)

φll(j2) = φll(j∗)ull(3).

In order to combine we select the move with probability ck and invert the jump function above. We

note that due to the symmetry constraint imposed on the jump function it does not matter which way

we combine the components. We choose two components to combine, when in state k, with probability

inversely proportional to the Mahalanobis distance between them, that is:

pk(j1, j2) ∝
[
(µj1 − µj2)′Λ−1

j1
(µj1 − µj2) + (µj2 − µj1)′Λ−1

j2
(µj2 − µj1)

]−1
.

The split in state k is accepted with probability min{1, A} where

A = (likelihood ratio)
p(Φj1)p(Φj2)

p(Φj∗)

p(µj1)p(µj2)

p(µj∗)
B(kδ, δ)−1(wj∗u1(1− u1)

)δ−1
×

p(k + 1)

p(k)

(k + 1)!

k!

kck+1pk+1(j1, j2)

sk

|J |
2q1(u1)q2(u2)q3(u3)

where |J | is the Jacobian:

|J | = 2
r(r+3)

2 wj∗
r∏

l=1

φll(j∗)

ull(3)

and obvious notation for the prior and proposal densities.

More complex split/combine moves may be employed, (see for example Dellaportas & Papageorgiou

(2004)) however, it is unlikely for problems such as those considered in this paper, that such jump

functions will lead to substantially faster mixing. We thus prefer the simple move described above.

The algorithm is performed in a deterministic sweep over all fixed dimension moves followed by a

random choice of birth, death, split or merge selected with uniform probability (assuming we allow a

move, i.e. no birth or split when k = kmax or death or combine when k = 1).

Appendix 2: Proof of Theorem

We prove the Theorem for N = 2, both for clarity and that its proof will be the basis for general N .

We concentrate on the case (i) since (ii) follows in a similar manner. The strategy of the proof is to use
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the uniform ergodicity of Kxj∗ (which we take to be Kx2) and the acceptance of an exchange move. We

denote x
(l)
i as the value of xi after l steps.

Let A1, A2 ∈ B(X), A = A1 ×A2 ∈ B(X)×B(X). Since we have that X is (n0, ε, ν) small under Kx2 ,

consider:

K̃2n0+1(x, A) =

∫

x(n0)∈X2

K̃n0(x, dx(n0+1))K̃n0+1(x(n0+1), A)

=

∫

x(n0)∈X2

∫

x(n0+1)∈X2

K̃n0(x, dx(n0))K̃(x(n0), dx(n0+1))K̃n0(x(n0+1), A)

≥
∫

x(n0)∈X2

∫

x(n0+1)∈X2

K̃n0(x, dx(n0))K̃(x(n0), dx(n0+1))τn0Kn0
M (x(n0+1), A)

where we have applied Chapman-Kolmogorov twice and used K̃n(x, ·) ≥ τnKn
M (x, ·) ∀x ∈ X2 and all

n ∈ N (note that the integral (resp. x(n0+1)) is a measurable function of x(n0)).

Note we have that Kn
M (x, ·) is equal to the product measure Kn

x1
(x1, ·)Kn

x2
(x2, ·), using this and the

above we can obtain:

K̃2n0+1(x, A) ≥ τ2n0(1− τ)

∫

X2

Kn0
x1

(x1, dx
(n0)
1 )Kn0

x2
(x2, dx

(n0)
2 )×

∫

X2

KE(x(n0), dx(n0+1))×

Kn0
x1

(x
(n0+1)
1 , A1)Kn0

x2
(x

(n0+1)
2 , A2) (7.1)

which corresponds to selecting n0 consecutive mutations followed by an exchange and then followed again

by another n0 consecutive mutations.

Applying the minorization condition for Kn0
x2

(x
(n0+1)
2 , A2), equation (7.1) becomes

K̃2n0+1(x, A) ≥ τ2n0(1− τ)

∫

X2

Kn0
x1

(x1, dx
(n0)
1 )Kn0

x2
(x2, dx

(n0)
2 )×

∫

X2

δ
x

(n0)
1

(dx
(n0+1)
2 )δ

x
(n0)
2

(dx
(n0+1)
1 ) min

{

1,
π1(x

(n0)
2 )π2(x

(n0)
1 )

π1(x
(n0)
1 )π2(x

(n0)
2 )

}

×

Kn0
x1

(x
(n0+1)
1 , A1)εν(A2) (7.2)

where we have ignored the rejection of an exchange move.

Since

min

{

1,
π1(x2)π2(x1)

π1(x1)π2(x2)

}

≥ min

{

1,
π1(x2)

π2(x2)%1

}

∀(x1, x2) ∈ X2 (7.3)

and using the measurability of the function (note the inequality may hold almost everywhere wrt some

dominating measure), we can split the integrals in equation (7.2) into I1 × I2, where:

I1 =

∫

X

Kn0
x1

(x1, dx
(n0)
1 )

∫

X

δ
x

(n0)
1

(dx
(n0+1)
2 )

I2 =

∫

X2

Kn0
x2

(x2, dx
(n0)
2 )δ

x
(n0)
2

(dx
(n0+1)
1 ) min

{

1,
π1(x

(n0)
2 )

π2(x
(n0)
2 )%1

}

Kn0
x1

(x
(n0+1)
1 , A1).

Clearly I1 = 1. For I2, integrating with respect to Dirac measure and then applying the minorization

condition we obtain:

I2 ≥ ε

∫

X

ν(dx
(n0)
2 ) min

{

1,
π1(x

(n0)
2 )

π2(x
(n0)
2 )%1

}

Kn0
x1

(x
(n0)
2 , A1).
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Therefore equation (7.2) becomes:

K̃2n0+1(x, A) ≥ θν∗(A) (7.4)

where

θ = ε2τ2n0(1− τ)φ

ν∗(A) = K∗(A1)ν(A2)

K∗(A1) =
1

φ

∫

X

ν(dx
(n0)
2 ) min

{

1,
π1(x

(n0)
2 )

π2(x
(n0)
2 )%1

}

Kn0
x1

(x
(n0)
2 , A1)

φ =

∫

X

ν(dx2) min

{

1,
π1(x2)

π2(x2)%1

}

Since (7.4) holds ∀x ∈ X2, ∀A ∈ B(X) × B(X) and the product (probability) measure is non-trivial, we

have that X2 is (2n0 + 1, θ,K∗ × ν) small.

Now consider the case of general N > 2, we will use the Nn0 +N − 1 step transition kernel and the

set A = A1 × · · · × AN ∈ B(X) × · · · × B(X) (product N times). We will assume that j∗ = N and for

clarity in the exchange steps we will swap in decreasing order of the indices. However, this need not be

the case and thus the minorization condition has (N − 1)! representations of the below; we consider this

at the end of the proof.

Following a similar argument for N = 2 we obtain (i.e. the equivalent of equation (7.2)):

K̃nN−1(x, A) ≥ τ∗
∫
· · ·
∫ [ N∏

j=1

Kn0
xj (xj , dx

(n0)
j )

]

δ
x

(n0)
N−1

(dx
(n1)
N )δ

x
(n0)
N

(dx
(n1)
N−1)

ρ(x
(n0)
N−1, x

(n0)
N )

[N−2∏

j=1

δ
x

(n0)
j

(dx
(n1)
j )

]

× · · · ×

[ N∏

j=1

Kn0
xj (x

(nN−2)

j , dx
(nN−1−1)

j )

]

×

δ
x

(nN−1−1)

1

(dx
(nN−1)

N )δ
x

(nN−1−1)

N

(dx
(nN−1)

1 )ρ(x
(nN−1−1)

1 , x
(nN−1−1)

N )×

[N−1∏

j=2

δ
x

(nN−1−1)

j

(dx
(nN−1)

j )

][N−1∏

j=1

Kn0
xj (x

(nN−1)

j , Aj)

]

εν(AN ) (7.5)

where

ρ(xi, xj) = min

{

1,
πi(xj)πj(xi)

πi(xi)πj(xj)

}

with i 6= j, i, j ∈ {1, . . . , N}, nl = l(n0 + 1) (for some integer l) and τ∗ = τNn0(1− τ)N−1{
∏N−1
i=1 εiN}.

Now, let us consider the integrals over (x
(n1−1)
1 , x

(n1)
1 , . . . , x

(nN−1−1)

1 , x
(nN−1)

1 ) and

(x
(nN−1−1)

N , x
(nN−1)

N ). Applying the inequality (7.3) (with suitable changes of subscripts) and splitting

the integrals into I1 × I2 as before, we obtain:

I1 =

∫

X

Kn0
x1

(x1, dx
(n0)
1 )

∫

X

δ
x

(n0)
1

(dx
(n1)
1 )× · · · ×

∫

X

Kn0
x1

(x
(nN−2)

1 , dx
(nN−1−1)

1 )

∫

X

δ
x

(nN−1−1)

1

(dx
(nN−1)

N )

I2 =

∫

X2

K(n0)
xN

(x
(nN−2)

N , dx
(nN−1−1)

N )δ
x

(nN−1−1)

N

(dx
(nN−1)

1 )×

min

{

1,
π1(x

(nN−1−1)

N )

πN (x
(nN−1−1)

N )%1

}

Kn0
x1

(x
(nN−1)

1 , A1).
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Again, I1 = 1 and

I2 ≥ ε

∫

X

ν(dx
(nN−1−1)

N ) min

{

1,
π1(x

(nN−1−1)

N )

πN (x
(nN−1−1)

N )%1

}

Kn0
x1

(x
(nN−1−1)

N , A1).

This leaves (7.5) as

K̃nN−1(x, A) ≥ τ∗
∫
· · ·
∫ [ N∏

j=2

Kn0
xj (xj , dx

(n0)
j )

]

δ
x

(n0)
N−1

(dx
(n1)
N )δ

x
(n0)
N

(dx
(n1)
N−1)

ρ(x
(n0)
N−1, x

(n0)
N )

[N−2∏

j=2

δ
x

(n0)
j

(dx
(n1)
j )

]

× · · · ×

[ N∏

j=2

Kn0
xj (x

(nN−3)

j , dx
(nN−2−1)

j )

]

×

δ
x

(nN−2−1)

2

(dx
(nN−2)

N )δ
x

(nN−2−1)

N

(dx
(nN−2)

2 )ρ(x
(nN−2−1)

2 , x
(nN−2−1)

N )×

[N−1∏

j=3

δ
x

(nN−2−1)

j

(dx
(nN−2)

j )

][N−1∏

j=2

K2n0
xj (x

(nN−2)

j , Aj)

]

ε2K∗(n0,x1)(A1)ν(AN )

with K∗(n0,x1)(A1) =
∫

X
ν(dx) min

{
1, π1(x)

πN (x)%1

}
Kn0
x1

(x,A1).

Applying the above argument recursively yields:

K̃nN−1(x, A) ≥ τ∗εNK∗(n0,x1)(A1)K∗(2n0,x2)(A2)× · · · ×K∗((N−1)n0,xN−1)(AN−1)ν(AN )

which holds ∀x ∈ XN , A ∈ B(X)× · · · × B(X). However, since we can exchange any pair in the exchange

kernel we have:

K̃nN−1(x, A) ≥ θν∗(A)

with θ = τ∗εNφ, φ =
∫

XN−1

∑(N−1)!
j=1

∏N−1
l=1 K∗(σj(l)n0,xl)

(dxl) (note φ ≤ (N − 1)! and σ is used to denote

permutations here) and ν∗(A) = φ−1ν(AN )
∑(N−1)!
j=1

∏N−1
l=1 K∗(σj(l)n0,xl)

(Al). We thus have that XN is

(nN − 1, θ, ν∗) small.�
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