## M3S3/M4S3 : SOLUTIONS 3

1. (a) Using the hint given; we know, by properties of vector random variables,

$$
\operatorname{Var}[Y]=\operatorname{Var}\left[\sum_{i=1}^{k} a_{i} X_{i}\right]=\operatorname{Var}\left[\boldsymbol{a}^{\top} \boldsymbol{X}\right]=\boldsymbol{a}^{\top} \Sigma \boldsymbol{a}
$$

where variances taken with respect to the distribution of $Y$ and $\boldsymbol{X}$ on the left and right hand sides respectively. But $Y$ is a scalar random variable that is non degenerate, provided $a_{i} \neq 0$ for $i=1, \ldots, k$. Thus $\operatorname{Var}[Y]>0$, and hence $\boldsymbol{a}^{\top} \Sigma \boldsymbol{a}>0$. Note that this solution assumes at least one $X_{i}$ is non degenerate (with variance $>0$ ).
(b) As $\Sigma \Pi=\mathbf{1}_{k}$, the $k \times k$ identity, we have by multiplying out the block matrices

$$
\begin{align*}
& \Sigma_{11} \Pi_{11}+\Sigma_{12} \Pi_{21}=\mathbf{1}_{d}  \tag{1}\\
& \Sigma_{11} \Pi_{12}+\Sigma_{12} \Pi_{22}=\mathbf{0}  \tag{2}\\
& \Sigma_{21} \Pi_{11}+\Sigma_{22} \Pi_{21}=\mathbf{0}  \tag{3}\\
& \Sigma_{21} \Pi_{12}+\Sigma_{22} \Pi_{22}=\mathbf{1}_{k-d} \tag{4}
\end{align*}
$$

From equation (2), premultiplying by $\Sigma_{11}^{-1}$ and rearranging, we have

$$
\begin{equation*}
\Pi_{12}=-\Sigma_{11}^{-1} \Sigma_{12} \Pi_{22} \tag{5}
\end{equation*}
$$

and thus from equation (4) we have

$$
\Sigma_{21}\left(-\Sigma_{11}^{-1} \Sigma_{12} \Pi_{22}\right)+\Sigma_{22} \Pi_{22}=\mathbf{1}_{k-d} \quad \therefore \quad\left(\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right) \Pi_{22}=\mathbf{1}_{k-d}
$$

and hence

$$
\begin{equation*}
\Pi_{22}=\left(\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1} . \tag{6}
\end{equation*}
$$

Substituting back into equation (5) yields

$$
\begin{equation*}
\Pi_{12}=-\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1} . \tag{7}
\end{equation*}
$$

Now, by symmetry of form, we can exchange the roles of the indices and deduce immediately that

$$
\begin{align*}
& \Pi_{11}=\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}  \tag{8}\\
& \Pi_{21}=-\Sigma_{22}^{-1} \Sigma_{21}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} . \tag{9}
\end{align*}
$$

Thus we have $\Sigma^{-1}$ in terms of the blocks of $\Sigma$.
2. As $I$ is presumed positive definite and hence non-singular, we have immediately that

$$
\operatorname{det} I \equiv|I|=I_{11} I_{22}-I_{12} I_{21}>0
$$

Using the above formulae (or the ones from lectures), we know that in this scalar case

$$
I^{11}=\left(I_{11}-\frac{I_{12} I_{21}}{I_{22}}\right)^{-1}=\frac{I_{22}}{I_{11} I_{22}-I_{12} I_{21}}
$$

so

$$
\left(I_{11}\right)^{-1}<I^{11} \quad \Longleftrightarrow \quad \frac{1}{I_{11}}<\frac{I_{22}}{I_{11} I_{22}-I_{12} I_{21}} \quad \Longleftrightarrow \quad I_{11} I_{22}-I_{12} I_{21}<I_{11} I_{22}
$$

as $I_{11}$ and $I_{11} I_{22}-I_{12} I_{21}$ are positive. This leaves the inequality $I_{12} I_{21}>0$; but in this scalar case, by symmetry of $I$, we know that $I_{21}=I_{12}$, so it is always true that $I_{12} I_{21}=I_{12}^{2}>0$ unless $I_{12}=0$, in which case the parameters are orthogonal.
3. We have, by the quadratic approximation,

$$
\boldsymbol{l}_{n}(\boldsymbol{\theta})=\boldsymbol{l}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)+\dot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)^{\top} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)
$$

But $\widehat{\boldsymbol{\theta}}_{n}$ is the MLE, so

$$
\dot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\mathbf{0}
$$

so, in fact,

$$
\begin{equation*}
\boldsymbol{l}_{n}(\boldsymbol{\theta})=\boldsymbol{l}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)^{\top} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right) \tag{10}
\end{equation*}
$$

and as $\boldsymbol{l}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$ is a constant, the right hand side has a functional dependence on $\boldsymbol{\theta}$ only through the quadratic form. This form explains the role of the curvature, or second partial derivative matrix

$$
-\Psi(\boldsymbol{\theta} ; X)=\ddot{l}(\boldsymbol{\theta} ; X)
$$

as

$$
\ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\sum_{i=1}^{n} \ddot{l}\left(\widehat{\boldsymbol{\theta}}_{n} ; X_{i}\right)=-\sum_{i=1}^{n} \Psi\left(\widehat{\boldsymbol{\theta}}_{n} ; X_{i}\right)
$$

At $\widehat{\boldsymbol{\theta}}_{n}$, the log-likelihood curves downwards at a rate determined by $\ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$.
(a) If $X_{i} \sim \operatorname{Poisson}(\lambda)$, let $s_{n}=\sum_{i=1}^{n} x_{i}$. Then

$$
\begin{aligned}
& l_{n}(\lambda)=\text { constant }+s_{n} \log \lambda-n \lambda \\
& i_{n}(\lambda)=s_{n} / \lambda-n \\
& \ddot{l}_{n}(\lambda)=-s_{n} / \lambda^{2}
\end{aligned}
$$

and as the MLE is $\widehat{\lambda}_{n}=\bar{x}$, we have from equation (10) the likelihood approximation

$$
\boldsymbol{l}_{n}(\lambda)=\boldsymbol{l}_{n}\left(\widehat{\lambda}_{n}\right)-\frac{1}{2} \frac{s_{n}}{\widehat{\lambda}_{n}^{2}}\left(\lambda-\widehat{\lambda}_{n}\right)^{2}=\boldsymbol{l}_{n}(\bar{x})-\frac{n(\lambda-\bar{x})^{2}}{2 \bar{x}}
$$

(b) If $X_{i} \sim N\left(0, \sigma^{2}\right) \equiv N(0, \theta)$, say, where $\theta=\sigma^{2}$. Then, if $q_{n}=\sum_{i=1}^{n} x_{i}^{2}$, we have

$$
\begin{aligned}
& l_{n}(\theta)=\text { constant }-\frac{n}{2} \log \theta-\frac{q_{n}}{2 \theta} \\
& i_{n}(\theta)=-\frac{n}{2 \theta}+\frac{q_{n}}{2 \theta^{2}} \\
& \ddot{l}_{n}(\theta)=\frac{n}{2 \theta^{2}}-\frac{q_{n}}{\theta^{3}}
\end{aligned}
$$

The MLE is $\widehat{\theta}_{n}=q_{n} / n$, and thus

$$
\ddot{l}_{n}\left(\widehat{\theta}_{n}\right)=\frac{n}{2 \widehat{\theta}_{n}^{2}}-\frac{q_{n}}{\widehat{\theta}_{n}^{3}}=-\frac{n^{3}}{2 q_{n}^{2}}
$$

we have from equation (10) the likelihood approximation

$$
\boldsymbol{l}_{n}(\theta)=\boldsymbol{l}_{n}\left(\widehat{\theta}_{n}\right)-\frac{1}{2} \frac{n^{3}}{2 q_{n}^{2}}\left(\theta-\widehat{\theta}_{n}\right)^{2}=\boldsymbol{l}_{n}\left(q_{n} / n\right)-\frac{n^{3}\left(\theta-q_{n} / n\right)^{2}}{4 q_{n}^{2}}
$$

4. (a) Using the estimator of $I(\theta)$ denoted $\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)$, where

$$
\begin{aligned}
\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right) & =-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(\widetilde{\theta}_{n}, X_{i}\right)=-\left.\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\tilde{\theta}_{n}}=-\left.\frac{1}{n} \frac{\partial^{2}}{\partial \theta^{2}} \sum_{i=1}^{n} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\tilde{\theta}_{n}} \\
& =-\left.\frac{1}{n} \frac{\partial^{2}}{\partial \theta^{2}} l_{n}(\theta)\right|_{\theta=\tilde{\theta}_{n}}=-\frac{1}{n} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right)
\end{aligned}
$$

we have

$$
W_{n}=n\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{\top} \widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)\left(\widetilde{\theta}_{n}-\theta_{0}\right)=-\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right)
$$

as $\left(\widetilde{\theta}_{n}-\theta_{0}\right)$ is a scalar quantity.
Similarly, for the Rao statistic, we may use

$$
\widehat{I}_{n}\left(\theta_{0}\right)=-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(\theta_{0}, X_{i}\right)=-\frac{1}{n} \ddot{l}_{n}\left(\theta_{0}\right)
$$

as an estimator/estimate of $I\left(\theta_{0}\right)$, the single datum or unit information matrix Then

$$
\begin{aligned}
Z_{n} & \equiv Z_{n}\left(\theta_{0}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} S\left(X_{i} ; \theta_{0}\right)=\left.\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\theta_{0}} \\
& =\left.\frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_{X}\left(X_{i}, \theta\right)\right|_{\theta=\theta_{0}} \\
& =\frac{1}{\sqrt{n}} \dot{l}_{n}\left(\theta_{0}\right)
\end{aligned}
$$

and thus, as all quantities are scalars

$$
R_{n}=Z_{n}\left(\theta_{0}\right)^{\top}\left[\widehat{I}_{n}\left(\theta_{0}\right)\right]^{-1} Z_{n}\left(\theta_{0}\right)=\frac{\left\{Z_{n}\left(\theta_{0}\right)\right\}^{2}}{\widehat{I}_{n}\left(\theta_{0}\right)}=\frac{\left\{\frac{1}{\sqrt{n}} \dot{l}_{n}\left(\theta_{0}\right)\right\}^{2}}{-\frac{1}{n} \ddot{l}_{n}\left(\theta_{0}\right)}=-\left\{\dot{l}_{n}\left(\theta_{0}\right)\right\}^{2}\left\{\ddot{l}_{n}\left(\theta_{0}\right)\right\}^{-1}
$$

For the Rao statistic it is more common and more straightforward to use $\widehat{I}_{n}\left(\theta_{0}\right)$ rather than $\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)$ as the estimate of the Fisher information, although under the null hypothesis the asymptotic distribution is the same in both cases - using $\theta_{0}$ is obviously more straightforward as we do not need to compute $\widetilde{\theta}_{n}$.
(b) For the Poisson case, for $\lambda>0$

$$
f_{X}(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2, \ldots
$$

and so if $s_{n}=\sum_{i=1}^{n} x_{i}$

$$
l_{n}(\lambda)=-n \lambda+s_{n} \log \lambda-\sum_{i=1}^{n} \log x_{i}!
$$

and so

$$
\dot{l}_{n}(\lambda)=-n+\frac{s_{n}}{\lambda} \quad \ddot{l}_{n}(\lambda)=-\frac{s_{n}}{\lambda^{2}}
$$

and hence the MLE, from $\dot{l}_{n}\left(\hat{\lambda}_{n}\right)=0$, is $\hat{\lambda}_{n}=s_{n} / n=\bar{x}$, with estimator $S_{n} / n=\bar{X}$. Thus

- Wald Statistic: using the formula above

$$
W_{n}=-\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \ddot{I}_{n}\left(\widetilde{\theta}_{n}\right)=-\left(\bar{X}-\lambda_{0}\right)^{2}\left(\frac{-S_{n}}{(\bar{X})^{2}}\right)=n \frac{\left(\bar{X}-\lambda_{0}\right)^{2}}{\bar{X}} .
$$

- Rao Statistic: using the formula above

$$
R_{n}=-\left\{i_{n}\left(\theta_{0}\right)\right\}^{2}\left\{\ddot{l}_{n}\left(\theta_{0}\right)\right\}^{-1}=\frac{-\left(\frac{S_{n}}{\lambda_{0}}-n\right)^{2}}{-\frac{S_{n}}{\lambda_{0}^{2}}}=\frac{\left(S_{n}-n \lambda_{0}\right)^{2}}{S_{n}}=\frac{n\left(\bar{X}-\lambda_{0}\right)^{2}}{\bar{X}}
$$

that is, identical to Wald.
Note: in this case, we can compute the Fisher Information $I\left(\lambda_{0}\right)$ exactly - we have

$$
I\left(\lambda_{0}\right)=E_{X \mid \lambda_{0}}\left[-\Psi\left(\lambda_{0}, X\right)\right]=E_{f_{X \mid \lambda_{0}}}\left[\frac{X}{\lambda_{0}^{2}}\right]=\frac{1}{\lambda_{0}^{2}} E_{f_{X \mid \lambda_{0}}}[X]=\frac{\lambda_{0}}{\lambda_{0}^{2}}=\frac{1}{\lambda_{0}}
$$

so a perhaps preferable version of the Rao statistic is

$$
R_{n}=\frac{\left\{Z_{n}\left(\theta_{0}\right)\right\}^{2}}{I\left(\theta_{0}\right)}=\frac{\left(\frac{1}{\sqrt{n}}\left(\frac{S_{n}}{\lambda_{0}}-n\right)^{2}\right)}{\frac{1}{\lambda_{0}}}=\frac{\lambda_{0}}{n}\left(\frac{S_{n}}{\lambda_{0}}-n\right)^{2}=\frac{n\left(\bar{X}-\lambda_{0}\right)^{2}}{\lambda_{0}}
$$

As a general rule, if the Fisher Information can be computed exactly, then the exact version should be used for the Rao/Score statistic rather than an estimated version.

- Likelihood Ratio Statistic: by definition, using the notation $\Lambda_{n}$ here

$$
\Lambda_{n}=\frac{L_{n}\left(\widehat{\lambda}_{n}\right)}{L_{n}\left(\lambda_{0}\right)}=\frac{e^{-n \widehat{\lambda}_{n}} \widehat{\lambda}_{n}^{S_{n}}}{e^{-n \lambda_{0}} \lambda_{0}^{S_{n}}}=\exp \left\{-n\left(\widehat{\lambda}_{n}-\lambda_{0}\right)+S_{n}\left(\log \widehat{\lambda}_{n}-\log \lambda_{0}\right)\right\}
$$

or equivalently

$$
2 \log \Lambda_{n}=-2 n\left(\widehat{\lambda}_{n}-\lambda_{0}\right)+2 S_{n}\left(\log \widehat{\lambda}_{n}-\log \lambda_{0}\right)
$$

(c) Under the normal model, the likelihood is

$$
L_{n}(\mu, \sigma)=f_{X \mid \mu, \sigma}\left(x ; \mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

and thus, in terms of the random variables, for general $X$,

$$
l(X ; \theta)=\log f_{X \mid \mu, \sigma}\left(X ; \mu, \sigma^{2}\right)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(X-\mu)^{2}
$$

and, for $\mu$

$$
\frac{\partial}{\partial \mu} l(X ; \theta)=\frac{1}{\sigma^{2}}(X-\mu) \quad \frac{\partial^{2}}{\partial \mu^{2}}\{l(X ; \theta)\}=-\frac{1}{\sigma^{2}}
$$

whereas for $\sigma^{2}$

$$
\frac{\partial}{\partial \sigma^{2}}\{l(X ; \theta)\}=-\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(X-\mu)^{2} \quad \frac{\partial^{2}}{\partial\left(\sigma^{2}\right)^{2}}\{l(X ; \theta)\}=\frac{1}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(X-\mu)^{2}
$$

and

$$
\frac{\partial^{2}}{\partial \mu \partial \sigma^{2}}\{l(X ; \theta)\}=-\frac{1}{\sigma^{4}}(X-\mu)
$$

(here taking $\sigma^{2}$ as the variable with which we differentiating with respect to). Now

$$
E_{f_{X \mid} \mu, \sigma}[(X-\mu)]=0 \quad E_{f_{X \mid} \mu, \sigma}\left[(X-\mu)^{2}\right]=\sigma^{2}
$$

we have for the Fisher Information for $\left(\mu, \sigma^{2}\right)$ from a single datum as

$$
I\left(\mu, \sigma^{2}\right)=-\left[\begin{array}{cc}
E\left[-\frac{1}{\sigma^{2}}\right] & E\left[-\frac{1}{\sigma^{4}}(X-\mu)\right] \\
E\left[-\frac{1}{\sigma^{4}}\left(X_{1}-\mu\right)\right] & E\left[\frac{1}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(X-\mu)^{2}\right]
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{1}{2 \sigma^{4}}
\end{array}\right]=\left[\begin{array}{cc}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right]
$$

say, and $I_{n}\left(\mu, \sigma^{2}\right)=n I\left(\mu, \sigma^{2}\right)$.
(i) The Wald Statistic in this multiparameter setting is, from notes

$$
W_{n}=n\left(\widetilde{\theta}_{n 1}-\theta_{10}\right)^{\mathrm{\top}}\left[\widehat{I}_{n}^{11}\left(\widetilde{\theta}_{n}\right)\right]^{-1}\left(\widetilde{\theta}_{n 1}-\theta_{10}\right) .
$$

Here, $\sigma^{2}$ is estimated under $\mathbf{H}_{1}$ as given in notes, so

$$
\begin{gathered}
\widetilde{\theta}_{n 1}=\bar{X} \quad \theta_{10}=0 \quad\left[\widehat{I}_{n}^{11}\left(\widetilde{\theta}_{n}\right)\right]^{-1}=\widehat{I}_{n 11}-\widehat{I}_{n 12} \widehat{I}_{n 22}^{-1} \widehat{I}_{n 21}=\widehat{I}_{n 11}=\frac{1}{\widehat{\sigma}^{2}}=\frac{1}{S^{2}} \\
\Longrightarrow W_{n}=n(\bar{X})^{\top}\left[\frac{1}{S^{2}}\right](\bar{X})=\frac{n(\bar{X})^{2}}{S^{2}}
\end{gathered}
$$

(ii) Under $H_{0}$, the $\mu$ and $\sigma^{2}$ are completely specified, whereas under $H_{1}$, the MLEs of $\mu$ and $\sigma^{2}$ are

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Hence the Wald Statistic is

$$
\begin{aligned}
W_{n} & =n\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{\top}\left[\widehat{I}_{n}\left(\widetilde{\theta}_{n}\right)\right]\left(\widetilde{\theta}_{n}-\theta_{0}\right)=\left[\begin{array}{c}
\sqrt{n}(\bar{X}-0) \\
\sqrt{n}\left(S^{2}-\sigma_{0}^{2}\right)
\end{array}\right]^{\top}\left[\begin{array}{cc}
\frac{1}{S^{2}} & 0 \\
0 & \frac{1}{2 S^{4}}
\end{array}\right]\left[\begin{array}{c}
\sqrt{n}(\bar{X}-0) \\
\sqrt{n}\left(S^{2}-\sigma_{0}^{2}\right)
\end{array}\right] \\
& =\frac{n(\bar{X})^{2}}{S^{2}}+\frac{n\left(S^{2}-\sigma_{0}^{2}\right)^{2}}{2 S^{4}}
\end{aligned}
$$

