
M3S3/M4S3 : SOLUTIONS 3

1. (a) Using the hint given; we know, by properties of vector random variables,

V ar[Y ] = V ar

[
k∑

i=1

aiXi

]
= V ar

[
aTX

]
= aTΣa

where variances taken with respect to the distribution of Y and X on the left and right hand sides
respectively. But Y is a scalar random variable that is non degenerate, provided ai 6= 0 for i = 1, . . . , k.
Thus V ar[Y ] > 0, and hence aTΣa > 0. Note that this solution assumes at least one Xi is non
degenerate (with variance > 0).

(b) As Σ Π = 1k, the k × k identity, we have by multiplying out the block matrices

Σ11Π11 + Σ12Π21 = 1d (1)
Σ11Π12 + Σ12Π22 = 0 (2)
Σ21Π11 + Σ22Π21 = 0 (3)
Σ21Π12 + Σ22Π22 = 1k−d (4)

From equation (2), premultiplying by Σ−1
11 and rearranging, we have

Π12 = −Σ−1
11 Σ12Π22 (5)

and thus from equation (4) we have

Σ21(−Σ−1
11 Σ12Π22) + Σ22Π22 = 1k−d ∴ (Σ22 − Σ21Σ−1

11 Σ12) Π22 = 1k−d

and hence
Π22 = (Σ22 − Σ21Σ−1

11 Σ12)−1. (6)

Substituting back into equation (5) yields

Π12 = −Σ−1
11 Σ12(Σ22 − Σ21Σ−1

11 Σ12)−1. (7)

Now, by symmetry of form, we can exchange the roles of the indices and deduce immediately that

Π11 = (Σ11 − Σ12Σ−1
22 Σ21)−1 (8)

Π21 = −Σ−1
22 Σ21(Σ11 − Σ12Σ−1

22 Σ21)−1. (9)

Thus we have Σ−1 in terms of the blocks of Σ.

2. As I is presumed positive definite and hence non-singular, we have immediately that

det I ≡ |I| = I11I22 − I12I21 > 0.

Using the above formulae (or the ones from lectures), we know that in this scalar case

I11 =
(

I11 − I12I21

I22

)−1

=
I22

I11I22 − I12I21

so
(I11)−1 < I11 ⇐⇒ 1

I11
<

I22

I11I22 − I12I21
⇐⇒ I11I22 − I12I21 < I11I22.

as I11 and I11I22 − I12I21 are positive. This leaves the inequality I12I21 > 0; but in this scalar case, by
symmetry of I, we know that I21 = I12, so it is always true that I12I21 = I2

12 > 0 unless I12 = 0, in
which case the parameters are orthogonal.
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3. We have, by the quadratic approximation,

ln(θ) = ln(θ̂n) + l̇n(θ̂n)(θ − θ̂n) +
1
2
(θ − θ̂n)Tl̈n(θ̂n)(θ − θ̂n)

But θ̂n is the MLE, so
l̇n(θ̂n) = 0

so, in fact,

ln(θ) = ln(θ̂n) +
1
2
(θ − θ̂n)Tl̈n(θ̂n)(θ − θ̂n) (10)

and as ln(θ̂n) is a constant, the right hand side has a functional dependence on θ only through the
quadratic form. This form explains the role of the curvature, or second partial derivative matrix

−Ψ(θ;X) = l̈(θ; X)

as

l̈n(θ̂n) =
n∑

i=1

l̈(θ̂n; Xi) = −
n∑

i=1

Ψ(θ̂n; Xi)

At θ̂n, the log-likelihood curves downwards at a rate determined by l̈n(θ̂n).

(a) If Xi ∼ Poisson(λ), let sn =
n∑

i=1

xi. Then

ln(λ) = constant + sn log λ− nλ

l̇n(λ) = sn/λ− n

l̈n(λ) = −sn/λ2

and as the MLE is λ̂n = x̄, we have from equation (10) the likelihood approximation

ln(λ) = ln(λ̂n)− 1
2

sn

λ̂
2

n

(λ− λ̂n)2 = ln(x̄)− n(λ− x̄)2

2x̄

(b) If Xi ∼ N(0, σ2) ≡ N(0, θ), say, where θ = σ2. Then, if qn =
n∑

i=1

x2
i , we have

ln(θ) = constant− n

2
log θ − qn

2θ

l̇n(θ) = − n

2θ
+

qn

2θ2

l̈n(θ) =
n

2θ2 −
qn

θ3

The MLE is θ̂n = qn/n, and thus

l̈n(θ̂n) =
n

2θ̂
2

n

− qn

θ̂
3

n

= − n3

2q2
n

we have from equation (10) the likelihood approximation

ln(θ) = ln(θ̂n)− 1
2

n3

2q2
n

(θ − θ̂n)2 = ln(qn/n)− n3(θ − qn/n)2

4q2
n

.
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4. (a) Using the estimator of I(θ) denoted În(θ̃n), where

În(θ̃n) = − 1
n

n∑

i=1

Ψ(θ̃n, Xi) = − 1
n

n∑

i=1

∂2

∂θ2 log fX(Xi, θ)|θ=eθn
= − 1

n

∂2

∂θ2

n∑

i=1

log fX(Xi, θ)

∣∣∣∣∣
θ=eθn

= − 1
n

∂2

∂θ2 ln(θ)|
θ=eθn

= − 1
n

l̈n(θ̃n)

we have
Wn = n(θ̃n − θ0)TÎn(θ̃n)(θ̃n − θ0) = −(θ̃n − θ0)2 l̈n(θ̃n)

as (θ̃n − θ0) is a scalar quantity.

Similarly, for the Rao statistic, we may use

În(θ0) = − 1
n

n∑

i=1

Ψ(θ0, Xi) = − 1
n

l̈n(θ0)

as an estimator/estimate of I(θ0), the single datum or unit information matrix Then

Zn ≡ Zn(θ0) =
1√
n

n∑

i=1

S(Xi; θ0) =
1√
n

n∑

i=1

∂

∂θ
log fX(Xi, θ)|θ=θ0

=
1√
n

∂

∂θ

n∑

i=1

log fX(Xi, θ)

∣∣∣∣∣
θ=θ0

=
1√
n

l̇n(θ0)

and thus, as all quantities are scalars

Rn = Zn(θ0)T
[
În(θ0)

]−1
Zn(θ0) =

{Zn(θ0)}2

În(θ0)
=

{
1√
n

l̇n(θ0)
}2

− 1
n

l̈n(θ0)
= −

{
l̇n(θ0)

}2 {
l̈n(θ0)

}−1

For the Rao statistic it is more common and more straightforward to use În(θ0) rather than În(θ̃n) as
the estimate of the Fisher information, although under the null hypothesis the asymptotic distribution
is the same in both cases - using θ0 is obviously more straightforward as we do not need to compute θ̃n.

(b) For the Poisson case, for λ > 0

fX(x; λ) =
e−λλx

x!
x = 0, 1, 2, ...

and so if sn =
n∑

i=1
xi

ln(λ) = −nλ + sn log λ−
n∑

i=1

log xi!

and so
l̇n(λ) = −n +

sn

λ
l̈n(λ) = −sn

λ2

and hence the MLE, from l̇n(λ̂n) = 0, is λ̂n = sn/n = x, with estimator Sn/n = X. Thus
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• Wald Statistic: using the formula above

Wn = −(θ̃n − θ0)2 l̈n(θ̃n) = −(X − λ0)2
(−Sn

(X)2

)
= n

(X − λ0)2

X
.

• Rao Statistic: using the formula above

Rn = −
{

l̇n(θ0)
}2 {

l̈n(θ0)
}−1

=
−

(
Sn

λ0
− n

)2

−Sn

λ2
0

=
(Sn − nλ0)2

Sn
=

n(X − λ0)2

X

that is, identical to Wald.

Note: in this case, we can compute the Fisher Information I(λ0) exactly - we have

I(λ0) = EX|λ0
[−Ψ(λ0, X)] = EfX|λ0

[
X

λ2
0

]
=

1
λ2

0

EfX|λ0
[X] =

λ0

λ2
0

=
1
λ0

so a perhaps preferable version of the Rao statistic is

Rn =
{Zn(θ0)}2

I(θ0)
=

(
1√
n

(
Sn

λ0
− n

)2
)

1
λ0

=
λ0

n

(
Sn

λ0
− n

)2

=
n(X − λ0)2

λ0

As a general rule, if the Fisher Information can be computed exactly, then the exact version should be
used for the Rao/Score statistic rather than an estimated version.

• Likelihood Ratio Statistic: by definition, using the notation Λn here

Λn =
Ln(λ̂n)
Ln(λ0)

=
e−nbλn λ̂

Sn

n

e−nλ0λSn
0

= exp
{
−n(λ̂n − λ0) + Sn(log λ̂n − log λ0)

}

or equivalently
2 log Λn = −2n(λ̂n − λ0) + 2Sn(log λ̂n − log λ0)

(c) Under the normal model, the likelihood is

Ln(µ, σ) = fX|µ,σ(x; µ, σ2) =
(

1
2πσ2

)n/2

exp

{
− 1

2σ2

n∑

i=1

(xi − µ)2
}

and thus, in terms of the random variables, for general X,

l(X; θ) = log fX|µ,σ(X; µ, σ2) = −1
2

log(2πσ2)− 1
2σ2

(X − µ)2

and, for µ
∂

∂µ
l(X; θ) =

1
σ2

(X − µ)
∂2

∂µ2
{l(X; θ)} = − 1

σ2

whereas for σ2

∂

∂σ2
{l(X; θ)} = − 1

2σ2
+

1
2σ4

(X − µ)2
∂2

∂(σ2)2
{l(X; θ)} =

1
2σ4

− 1
σ6

(X − µ)2
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and
∂2

∂µ∂σ2
{l(X; θ)} = − 1

σ4
(X − µ)

(here taking σ2 as the variable with which we differentiating with respect to). Now

EfX|µ,σ [(X − µ)] = 0 EfX|µ,σ

[
(X − µ)2

]
= σ2

we have for the Fisher Information for (µ, σ2) from a single datum as

I(µ, σ2) = −




E

[
− 1

σ2

]
E

[
− 1

σ4
(X − µ)

]

E

[
− 1

σ4
(X1 − µ)

]
E

[
1

2σ4
− 1

σ6
(X − µ)2

]


 =




1
σ2

0

0
1

2σ4


 =

[
I11 I12

I21 I22

]

say, and In(µ, σ2) = nI(µ, σ2).

(i) The Wald Statistic in this multiparameter setting is, from notes

Wn = n(θ̃n1 − θ10)T
[
Î11
n (θ̃n)

]−1
(θ̃n1 − θ10).

Here, σ2 is estimated under H1 as given in notes, so

θ̃n1 = X θ10 = 0
[
Î11
n (θ̃n)

]−1
= În11 − În12Î

−1
n22În21 = În11 =

1
σ̂2

=
1
S2

=⇒ Wn = n(X)T
[

1
S2

]
(X) =

n(X)2

S2

(ii) Under H0, the µ and σ2 are completely specified, whereas under H1, the MLEs of µ and σ2 are

X =
1
n

n∑

i=1

Xi S2 =
1
n

n∑

i=1

(Xi −X )2.

Hence the Wald Statistic is

Wn = n(θ̃n − θ0)T
[
În(θ̃n)

]
(θ̃n − θ0) =

[ √
n(X − 0)

√
n(S2 − σ2

0)

]T



1
S2

0

0
1

2S4




[ √
n(X − 0)

√
n(S2 − σ2

0)

]

=
n(X)2

S2
+

n(S2 − σ2
0)

2

2S4
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