M3S3/M4S3 : SOLUTIONS 2

1. To establish a.s. convergence, apart from considering the original definition directly, we might consider three possible methods of proof;

I the equivalent characterization

$$
X_{n} \xrightarrow{\text { a.s. }} X \quad \Longleftrightarrow \quad \lim _{n \xrightarrow{\infty}} P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right]=1 \quad \text { for each } \epsilon>0
$$

II the Borel-Cantelli Lemma

III the consequence of "fast enough" convergence in probability or r th mean.
It transpires that we have insufficient information to prove whether or not each of the sequences converges almost surely to any specific limit. For example, in each case

$$
\sum_{n=1}^{\infty} P\left[X_{n}=c\right]=\infty
$$

for all c, which begins to imply a.s. convergence, but the crucial condition of independence is not necessarily met. Also, it is not possible usefully to bound $P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right]$.
(a) Clearly if the sequence converges, it converges to 1 or 2 , and as $n \longrightarrow \infty$ it is clear that the probability $P\left[X_{n}=1\right] \longrightarrow 0$, so we check whether the limit is 2 .

We have

$$
E\left[\left|X_{n}-2\right|^{2}\right]=\left(|-1|^{2} \times \frac{1}{n}\right)+\left(|0|^{2} \times \frac{n-1}{n}\right)=\frac{1}{n} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so $X_{n} \xrightarrow{r=2} 2 ;$ we can also prove directly that, for $\epsilon>0$,

$$
P\left[\left|X_{n}-2\right|<\epsilon\right]=P\left[X_{n}=2\right]=1-\frac{1}{n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty
$$

so $X_{n} \xrightarrow{p} 2$ (although this does follow because of the convergence in $r=2$ mean).
(b) Here it seems that X_{n} may converge to 1 ; we have

$$
E\left[\left|X_{n}-1\right|^{2}\right]=\left(\left|n^{2}-1\right|^{2} \times \frac{1}{n}\right)+\left(|0|^{2} \times \frac{n-1}{n}\right)=\frac{\left(n^{2}-1\right)^{2}}{n} \nrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so X_{n} does not converge in $r=2$ mean to 1 ; by similar arguments, it can be shown that X_{n} does not converge in this mode to any fixed constant. However, we can prove that, for $\epsilon>0$,

$$
P\left[\left|X_{n}-1\right|<\epsilon\right]=P\left[X_{n}=1\right]=1-\frac{1}{n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty \quad \therefore X_{n} \xrightarrow{p} 1 .
$$

(c) Here it seems that X_{n} may converge to 0; we have

$$
E\left[\left|X_{n}-0\right|^{2}\right]=\left(|n|^{2} \times \frac{1}{\log n}\right)+\left(|0|^{2} \times 1-\frac{1}{\log n}\right)=\frac{n^{2}}{\log n} \nrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so X_{n} does not converge in $r=2$ mean to 0 ; by similar arguments, it can be shown that X_{n} does not converge in this mode to any fixed constant. However, for $\epsilon>0$,

$$
P\left[\left|X_{n}-0\right|<\epsilon\right]=P\left[X_{n}=0\right]=1-\frac{1}{\log n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty \quad X_{n} \xrightarrow{p} 0
$$

2. By assumption

$$
\lim _{n \longrightarrow \infty} E\left[\left|X_{n}-X\right|^{2}\right]=\lim _{n \longrightarrow \infty} E\left[\left|Y_{n}-Y\right|^{2}\right]=0
$$

Then, by the Cauchy-Schwarz (and hence the triangle) inequality,

$$
\left|Z_{n}-Z\right|^{2}=\left|X_{n}+Y_{n}-X-Y\right|^{2}=\left|\left(X_{n}-X\right)+\left(Y_{n}-Y\right)\right|^{2} \leq\left|X_{n}-X\right|^{2}+\left|Y_{n}-Y\right|^{2}
$$

and taking expectations, and limits as $n \longrightarrow \infty$ yields the result, that is

$$
E\left[\left|Z_{n}-Z\right|^{2}\right] \leq E\left[\left|X_{n}-X\right|^{2}\right]+E\left[\left|Y_{n}-Y\right|^{2}\right] \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

For convergence in probability, fix $\epsilon>0$; then, by assumption

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right|<\epsilon / 2\right]=1 \quad \lim _{n \longrightarrow \infty} P\left[\left|Y_{n}-Y\right|<\epsilon / 2\right]=1
$$

so that

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{n}-X\right|+\left|Y_{n}-Y\right|<\epsilon\right]=1
$$

Now

$$
\begin{equation*}
\left|X_{n}+Y_{n}-X-Y\right| \leq\left|X_{n}-X\right|+\left|Y_{n}-Y\right| \tag{1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|X_{n}-X\right|+\left|Y_{n}-Y\right|<\epsilon \quad \Longrightarrow \quad\left|X_{n}+Y_{n}-X-Y\right|<\epsilon \tag{2}
\end{equation*}
$$

therefore

$$
P\left[\left|X_{n}-X\right|+\left|Y_{n}-Y\right|<\epsilon\right] \leq P\left[\left|X_{n}+Y_{n}-X-Y\right|<\epsilon\right]
$$

As $n \longrightarrow \infty$,

$$
P\left[\left|X_{n}-X\right|+\left|Y_{n}-Y\right|<\epsilon\right] \longrightarrow 1 \quad \Longrightarrow \quad P\left[\left|X_{n}+Y_{n}-X-Y\right|<\epsilon\right]=P\left[\left|Z_{n}-Z\right|\right] \longrightarrow 1
$$

and $Z_{n} \xrightarrow{p} Z$.
For convergence almost surely, fix $\epsilon>0$; then, by assumption,

$$
\lim _{n \longrightarrow \infty} P\left[\left|X_{m}-X\right|<\epsilon / 2, \forall m \geq n\right]=\lim _{n \longrightarrow \infty} P\left[\left|Y_{m}-Y\right|<\epsilon / 2, \forall m \geq n\right]=1
$$

Now, recall the definition of the limit L of a real sequence $\left\{a_{n}\right\}$; for every $\epsilon>0$ there exists a natural number n_{0} such that for all $n>n_{0},\left|a_{n}-L\right|<\epsilon$. This implies here that we can find an n large enough such that

$$
P\left[\left|X_{m}-X\right|<\epsilon / 2, \forall m \geq n\right] \quad \text { and } \quad P\left[\left|Y_{m}-Y\right|<\epsilon / 2, \forall m \geq n\right]
$$

and hence

$$
P\left[\left|X_{m}-X\right|<\epsilon / 2 \text { and }\left|Y_{m}-Y\right|<\epsilon / 2, \forall m \geq n\right]
$$

are arbitrarily close to 1 . But

$$
\left|X_{m}-X\right|<\epsilon / 2 \text { and }\left|Y_{m}-Y\right|<\epsilon / 2 \quad \Longrightarrow \quad\left|X_{m}-X\right|+\left|Y_{m}-Y\right|<\epsilon
$$

for all $m \geq n$. Therefore

$$
P\left[\left|X_{m}-X\right|+\left|Y_{m}-Y\right|<\epsilon, \forall m \geq n\right]
$$

is also arbitrarily close to 1 , which in turn implies (by the triangle inequality, and equations (1) and (2)) that

$$
P\left[\left|X_{m}+Y_{m}-X-Y\right|<\epsilon, \forall m \geq n\right]=P\left[\left|Z_{m}-Z\right|<\epsilon, \forall m \geq n\right]
$$

is also arbitrarily close to 1 , and hence $Z_{n} \xrightarrow{\text { a.s. }} Z$.
3. By definition

$$
\lim _{n \longrightarrow \infty} E\left[\left|X_{n}-X\right|^{2}\right]=\lim _{n \longrightarrow \infty} E\left[\left(X_{n}-X\right)^{2}\right]=0
$$

But, for $n \leq m$,

$$
\left|X_{n}-X\right|^{2}=\left|\left(X_{n}-X_{m}+X_{m}-X\right)\right|^{2} \leq\left|X_{n}-X_{m}\right|^{2}+\left|X_{m}-X\right|^{2}
$$

and

$$
\lim _{n \longrightarrow \infty} E\left[\left|X_{n}-X\right|^{2}\right]=\lim _{m \longrightarrow} E\left[\left|X_{m}-X\right|^{2}\right]=0
$$

so consequently

$$
\begin{equation*}
\lim _{n, m \longrightarrow \infty} E\left[\left|X_{n}-X_{m}\right|^{2}\right]=\lim _{n, m \longrightarrow \infty} E\left[\left(X_{n}-X_{m}\right)^{2}\right]=0 \tag{3}
\end{equation*}
$$

Now, for any two variables, U and V, we have

$$
\begin{equation*}
\{E[(U V)]\}^{2} \leq E\left[U^{2}\right] E\left[V^{2}\right] \tag{4}
\end{equation*}
$$

To see this, consider the variable $W=s U+V$; we have immediately that

$$
0 \leq E\left[W^{2}\right]=E\left[(s U+V)^{2}\right]=E\left[s^{2} U^{2}+2 s U V+V^{2}\right]=a s^{2}+b s+c
$$

where $a=E\left[U^{2}\right], b=2 E[U V]$ and $c=E\left[V^{2}\right]$. Clearly $a \geq 0$, so consider $a>0$ (if $a=0$, then inequality (4) holds trivially). Then, as

$$
g(s)=a s^{2}+b s+c
$$

stays non-negative for all $s, g(s)$ has at most one real root. This implies that the "discriminant" is negative, that is

$$
b^{2}-\sqrt{4 a c} \leq 0
$$

Consequently, substituting in the forms for a, b and c yields

$$
(2 E[U V])^{2}-4 E\left[U^{2}\right] E\left[V^{2}\right] \leq 0
$$

and the result in equation (4) follows.
Using equation (4), therefore,

$$
\begin{aligned}
\operatorname{Cov}\left[X_{n}, X_{m}\right] & =E\left[\left(X_{n}-\mu\right)\left(X_{m}-\mu\right)\right]=E\left[\left(X_{n}-X_{m}+X_{m}-\mu\right)\left(X_{m}-\mu\right)\right] \\
& =E\left[\left(X_{n}-X_{m}\right)\left(X_{m}-\mu\right)\right]+E\left[\left(X_{m}-\mu\right)^{2}\right]
\end{aligned}
$$

But, by equation (4)

$$
\left\{E\left[\left(X_{n}-X_{m}\right)\left(X_{m}-\mu\right)\right]\right\}^{2} \leq E\left[\left(X_{n}-X_{m}\right)^{2}\right] E\left[\left(X_{m}-\mu\right)^{2}\right]=E\left[\left(X_{n}-X_{m}\right)^{2}\right] \sigma^{2} \longrightarrow 0
$$

as $n \longrightarrow \infty$, from equation (3). Hence

$$
\begin{aligned}
\lim _{n \longrightarrow \infty} \operatorname{Cov}\left[X_{n}, X_{m}\right] & =\lim _{n \longrightarrow \infty} E\left[\left(X_{n}-X_{m}\right)\left(X_{m}-\mu\right)\right]+\lim _{n \longrightarrow \infty} E\left[\left(X_{m}-\mu\right)^{2}\right] \\
& =0+\sigma^{2}
\end{aligned}
$$

and hence

$$
\operatorname{Corr}\left[X_{n}, X_{m}\right]=\frac{\operatorname{Cov}\left[X_{n}, X_{m}\right]}{\sqrt{\operatorname{Var}\left[X_{n}\right] \operatorname{Var}\left[X_{m}\right]}}=\frac{\operatorname{Cov}\left[X_{n}, X_{m}\right]}{\sqrt{\sigma^{2} \sigma^{2}}} \longrightarrow \frac{\sigma^{2}}{\sqrt{\sigma^{2} \sigma^{2}}}=1
$$

as $n \longrightarrow \infty$.
4. A result from lectures on almost sure convergence implies here that

$$
I_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(U_{i}\right) \xrightarrow{\text { a.s. }} I \quad \Longleftrightarrow \quad E[|g(U)|]<\infty, \text { with } I=E[g(U)]
$$

so it is sufficient to check whether the function g is absolutely integrable on $(0,1)$. But

$$
\int_{0}^{1}|g(u)| d u=\int_{0}^{1}\left|\frac{1}{u} \sin (2 \pi / u)\right| d u=\int_{0}^{1} \frac{1}{u}|\sin (2 \pi / u)| d u
$$

and this integral is unbounded. To see this,

$$
\begin{aligned}
E_{f_{U}}[|g(U)|] & =\int_{0}^{1}\left|\frac{1}{u} \sin \left(\frac{2 \pi}{u}\right)\right| d u=\int_{0}^{1} \frac{1}{u}\left|\sin \left(\frac{2 \pi}{u}\right)\right| d u \\
& =\int_{1}^{\infty} \frac{1}{y}|\sin (2 \pi y)| d y \quad \text { setting } y=1 / u \\
& =\int_{2 \pi}^{\infty} \frac{1}{t}|\sin t| d t \quad \operatorname{setting} t=2 \pi y . \\
& =\sum_{k=1}^{\infty}\left[\int_{2 k \pi}^{(2 k+1) \pi} \frac{1}{t} \sin t d t-\int_{(2 k+1) \pi}^{2(k+1) \pi} \frac{1}{t} \sin t d t\right]
\end{aligned}
$$

Now, in the first integral, on $(2 k \pi,(2 k+1) \pi)$, we have

$$
\frac{1}{t} \geq \frac{1}{(2 k+1) \pi}
$$

and, in the second integral, on $((2 k+1) \pi, 2(k+1) \pi)$, we have

$$
\frac{1}{t} \leq \frac{1}{(2 k+1) \pi}
$$

Hence

$$
\begin{aligned}
E_{f_{U}}[|g(U)|] & \geq \sum_{k=1}^{\infty}\left[\int_{2 k \pi}^{(2 k+1) \pi} \frac{1}{(2 k+1) \pi} \sin t d t-\int_{(2 k+1) \pi}^{2(k+1) \pi} \frac{1}{(2 k+1) \pi} \sin t d t\right] \\
& =\sum_{k=1}^{\infty} \frac{1}{(2 k+1) \pi}\left[\int_{2 k \pi}^{(2 k+1) \pi} \sin t d t-\int_{(2 k+1) \pi}^{2(k+1) \pi} \sin t d t\right] \\
& =\sum_{k=1}^{\infty} \frac{1}{(2 k+1) \pi}\left[[-\cos t]_{2 k \pi}^{(2 k+1) \pi}-[-\cos t]_{(2 k+1) \pi}^{2(k+1) \pi}\right] \\
& =\sum_{k=1}^{\infty} \frac{1}{(2 k+1) \pi}[2-(-2)] \\
& =\sum_{k=1}^{\infty} \frac{4}{(2 k+1) \pi}
\end{aligned}
$$

and the final sum is divergent.
5. By definition, if $i=\sqrt{-1}$, then

$$
C_{\boldsymbol{X}}(\boldsymbol{t})=E_{f_{\boldsymbol{X}}}\left[\exp \left\{i t^{\top} \boldsymbol{X}\right\}\right]=\int \exp \left\{i t^{\top} \boldsymbol{X}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}
$$

where the final integral is k-dimensional. Partially differentiating with respect to t_{j} of this form yields

$$
\begin{aligned}
\frac{\partial}{\partial t_{j}}\left\{\int \exp \left\{i t^{\top} \boldsymbol{x}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}\right\} & =\int \frac{\partial}{\partial t_{j}}\left\{\exp \left\{i t^{\top} \boldsymbol{x}\right\}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int i x_{j}\left\{\exp \left\{i t^{\top} \boldsymbol{x}\right\}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

which when evaluated at $\boldsymbol{t}=0$, yields

$$
\int i x_{j} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \equiv i \mu_{j}
$$

Repeating for each $j=1, \ldots, k$ yields the result.
Similarly,

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t_{j} \partial t_{l}}\left\{\int \exp \left\{i t^{\top} \boldsymbol{x}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}\right\} & =\int \frac{\partial^{2}}{\partial t_{j} \partial t_{l}}\left\{\exp \left\{i t^{\top} \boldsymbol{x}\right\}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int\left(i x_{j}\right)\left(i x_{l}\right)\left\{\exp \left\{i t^{\top} \boldsymbol{x}\right\}\right\} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

which when evaluated at $\boldsymbol{t}=0$, yields

$$
\int-1 x_{j} x_{l} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \equiv-E_{f_{X_{j}, X_{l}}}\left[X_{j} X_{l}\right]
$$

as $i \times i=-1$. Forming the $k \times k$ matrix of such expectations derived from partial derivatives yields the result, as

$$
\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{\top}}=\left[X_{j} X_{l}\right]_{j, l=1, \ldots, k}
$$

