M3S3/M4S3 : SOLUTIONS 1

1. First let $E_{1} \subset E_{2} \subset E_{3} \subset \ldots$ is an increasing sequence of sets. Using the decomposition given,

$$
E_{n+1} \equiv E_{n} \cup\left(E_{n+1} \cap E_{n}^{\prime}\right)
$$

it follows that

$$
\lim _{n \rightarrow \infty} E_{n} \equiv \bigcup_{n=1}^{\infty} E_{n} \equiv E_{1} \cup \bigcup_{n=2}^{\infty} F_{n}
$$

where

$$
F_{n} \equiv\left(E_{n} \cap E_{n-1}^{\prime}\right) .
$$

But, the $\left\{F_{n}\right\}$ are a sequence of mutually exclusive events, so by the probability axioms

$$
P\left(\lim _{n \rightarrow \infty} E_{n}\right)=P\left(E_{1} \cup \bigcup_{n=2}^{\infty} F_{n}\right)=P\left(E_{1}\right)+\sum_{n=2}^{\infty} P\left(F_{n}\right)=P\left(E_{1}\right)+\lim _{n \rightarrow \infty} \sum_{k=2}^{n} P\left(F_{k}\right) .
$$

Now, for this increasing sequence,

$$
P\left(F_{k}\right)=P\left(E_{k} \cap E_{k-1}^{\prime}\right)=P\left(E_{k}\right)-P\left(E_{k-1}\right)
$$

and hence

$$
P\left(\lim _{n \rightarrow \infty} E_{n}\right)=P\left(E_{1}\right)+\lim _{n \rightarrow \infty} \sum_{k=2}^{n}\left(P\left(E_{k}\right)-P\left(E_{k-1}\right)\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right),
$$

as the sum telescopes, successive terms cancelling. Thus

$$
P\left(\lim _{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right) .
$$

Now, if $\left\{E_{n}\right\}$ is decreasing, then the sequence $\left\{G_{n}\right\}$ defined by $G_{n} \equiv E_{n}^{\prime}$ is increasing, so by above

$$
P\left(\lim _{n \rightarrow \infty} G_{n}\right)=\lim _{n \rightarrow \infty} P\left(G_{n}\right) .
$$

But, by De Morgan's Law

$$
\lim _{n \rightarrow \infty} G_{n} \equiv \bigcup_{n=1}^{\infty} G_{n} \equiv \bigcup_{n=1}^{\infty} E_{n}^{\prime} \equiv\left(\bigcap_{n=1}^{\infty} E_{n}\right)^{\prime}
$$

so

$$
P\left(\lim _{n \rightarrow \infty} G_{n}\right)=P\left(\left(\bigcap_{n=1}^{\infty} E_{n}\right)^{\prime}\right)=1-P\left(\bigcap_{n=1}^{\infty} E_{n}\right)=1-P\left(\lim _{n \rightarrow \infty} E_{n}\right),
$$

and also

$$
\lim _{n \rightarrow \infty} P\left(G_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}^{\prime}\right)=\lim _{n \rightarrow \infty}\left(1-P\left(E_{n}\right)\right)=1-\lim _{n \rightarrow \infty} P\left(E_{n}\right) .
$$

Thus, substituting back into the previous relationship

$$
1-P\left(\lim _{n \rightarrow \infty} E_{n}\right)=1-\lim _{n \rightarrow \infty} P\left(E_{n}\right)
$$

and hence

$$
P\left(\lim _{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right) .
$$

2. (a) Denote by E^{∞} the set of $\omega \in \Omega$ such that $f(\omega)=\infty$. As f is measurable, $E^{\infty} \in \mathcal{F}$, and by definition $A \equiv E \cap E^{\infty} \in \mathcal{F}$ and thus is also measurable. Now, define simple function ψ_{n} by

$$
\psi_{n}(\omega)=n I_{A}(\omega)
$$

Then, for $n=1,2,3, \ldots$,

$$
0 \leq \psi_{n} \leq f
$$

as if $\omega \in A$, then $f(\omega)=\infty$, and if $\omega \notin A$, then $\psi_{n}(\omega)=0$. Now, for $n \geq 1$,

$$
\begin{equation*}
\int_{E} \psi_{n} d \nu=\int_{\Omega} I_{E} \psi_{n} d \nu=n \int_{\Omega} I_{E} I_{A} d \nu=n \nu(E \cap A)=n \nu(A) \tag{1}
\end{equation*}
$$

by apply the definition of the integral for simple functions, and as $A \equiv E \cap E^{\infty}$. But, by the supremum definition,

$$
\int_{E} f d \nu=\sup _{\psi: 0 \leq \psi \leq f}\left\{\int_{E} \psi d \nu\right\} \geq \int_{E} \psi_{n} d \nu
$$

for our specifically defined ψ_{n}, as $0 \leq \psi_{n} \leq f$. Thus by assumption, and the previous result in equation (1), we have

$$
n \nu(A)=\int_{E} \psi_{n} d \nu \leq \int_{E} f d \nu<\infty
$$

But this must hold for all $n \geq 1$, so it must follow that $\nu(A)=0$, as if $\nu(A)>0$ then $n \nu(A)$ is unbounded.
(b) Consider simple function $\psi \leq f$ (at least on E). Then, by construction $\psi \leq M I_{E}$ also, so

$$
\int_{E} \psi d \nu \leq \int_{E} M I_{E} d \nu=M \nu(E)
$$

that is, $M \nu(E)$ is an upper bound on the integral of ψ. But, by the supremum definition, it follows that

$$
\begin{equation*}
\int_{E} f d \nu \leq M \nu(E) \tag{2}
\end{equation*}
$$

as the integral on the left-hand side is the supremum, or least upper bound.
Now define simple function $\psi_{m}=m I_{E}$, so that $\psi_{m} \leq f$, so, by construction,

$$
\int_{E} \psi_{m} d \nu=m \nu(E)
$$

But, by the supremum definition, as $\psi_{m} \leq f$,

$$
\begin{equation*}
m \nu(E)=\int_{E} \psi_{m} d \nu \leq \int_{E} f d \nu \tag{3}
\end{equation*}
$$

as the final integral is an upper bound on integrals of simple functions ψ such that $\psi \leq f$. Hence

$$
m \nu(E) \leq \int_{E} f d \nu \leq M \nu(E)
$$

by equations (2) and (3).
(c) Suppose first that f is non-negative. Consider arbitrary simple function ψ of the general form

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega) .
$$

such that $0 \leq \psi \leq f$. Then by definition

$$
\int_{E} \psi d \nu=\sum_{i=1}^{k} a_{i} \nu\left(E \cap A_{i}\right)=0
$$

as $\nu\left(E \cap A_{i}\right) \leq \nu(E)=0$ by assumption. Therefore it also follows by the supremum definition that

$$
\int_{E} f d \nu=0
$$

as zero is an upper bound, and the integral of f is the least upper bound.
For f negative, apply the argument to $-f$ and the result follows in the same fashion.
(d) For $n \geq 1$, define set B_{n} by

$$
B_{n} \equiv\left\{\omega: \omega \in E, f(\omega)>\frac{1}{n}\right\} .
$$

Then $\left\{B_{n}\right\}$ is an increasing sequence of sets and so

$$
\lim _{n \rightarrow \infty} B_{n} \equiv \bigcup_{n=1}^{\infty} \equiv B
$$

But for each n,

$$
\begin{equation*}
\frac{1}{n} \nu\left(B_{n}\right)=\frac{1}{n} \int_{E} I_{B_{n}} d \nu=\int_{E} \frac{1}{n} I_{B_{n}} d \nu \leq \int_{E} f d \nu \tag{4}
\end{equation*}
$$

as $f \geq 1 / n$ on B_{n}, and also $B_{n} \subseteq E$. But, by assumption, the final integral in equation (4) is zero, so $\nu\left(B_{n}\right)=0$. Hence, by the continuity of measure (proved in Q1)

$$
\nu(B)=\nu\left(\lim _{n \rightarrow \infty} B_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)=0
$$

and B has measure zero under ν.
(e) Let ψ be a simple function satisfying $0 \leq \psi \leq f$, say

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega) .
$$

Then

$$
\begin{equation*}
\int_{E_{1}} \psi d \nu \leq \int_{E_{2}} \psi d \nu \tag{5}
\end{equation*}
$$

as

$$
E_{1} \subseteq E_{2} \Rightarrow\left(E_{1} \cap A_{i}\right) \subseteq\left(E_{2} \cap A_{i}\right) \Rightarrow \nu\left(E_{1} \cap A_{i}\right) \leq \nu\left(E_{2} \cap A_{i}\right)
$$

for each i in the definition of ψ. Taking supremum on the left and right-hand sides of equation (5) preserves the inequality, and yields the result, by the supremum definition of the integral of f.
(f) Let D be the set of $\omega \in E$ where $f(\omega)>g(\omega)$, so that $\nu(D)=0$. Consider simple function ψ with $0 \leq \psi \leq f$, and function ψ^{\star} defined by

$$
\psi^{\star}=\psi I_{D^{\prime}}
$$

By construction, ψ^{\star} is a simple function, and $0 \leq \psi^{\star} \leq g$, and thus by the supremum definition,

$$
\int_{E} \psi d \nu=\int_{E} \psi^{\star} d \nu \leq \int_{E} g d \nu
$$

and the integral of g is an upper bound on the integral of ψ, where $0 \leq \psi \leq f$. But, by the supremum definition, the integral of f is the least upper bound of integrals of such ψ functions, so it must follow that

$$
\int_{E} f d \nu \leq \int_{E} g d \nu
$$

