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1. The likelihood for θ is

Ln(θ) =
n∏

i=1

fX|θ(xi|θ) =
n∏

i=1

α

λα xα−1
i exp

{
−

(xi

λ

)α}
=

αn

λnα tα−1
n exp

{
−

(
1
λ

)α n∑

i=1

xα
i

}

where tn =
n∏

i=1

xi, and hence the log-likelihood is

ln(θ) = n log α− nα log λ + (α− 1) log tn − 1
λα

n∑

i=1

xα
i .

For the profile likelihood for α, we find the ML estimate of λ as a function of fixed α. Partially
differentiating with respect to λ, we obtain

∂ln(θ)
∂λ

= −nα

λ
+

α

λα+1

n∑

i=1

xα
i .

and equating to zero yields

λ̂(α) =

(
1
n

n∑

i=1

xα
i

)1/α

.

Thus the profile likelihood for α is

LP (α) = Ln(α, λ̂(α)) =
(nα)ntα−1

n(
n∑

i=1

xα
i

)n exp{−n} α > 0

[5 MARKS]

2. Let nA and nB denote the numbers of years, and let sA and sB be the totals of counts over those
years, for roads A and B respectively. Let xA = sA/nA and xB = sB/nB denote the mean count per
year for the two roads, and recall that xA and xB are the ML estimates for the two parameters.

In the original parameterization the likelihood takes the form

Ln(λA, λB) = cλsA
A λsB

B exp{−[nAλA + nBλB]}

where c is a constant that does not depend on the parameters, in fact

c =

(
nA∏

i=1

xAi!
nB∏

i=1

xBi!

)−1

(i) One way to compute the profile likelihood for θ is to reparameterize, say, to

θ =
λA

λB
, φ = λB =⇒ λA = θφ, λB = φ.

Then
Ln(θ, φ) = c(θφ)sAφsB exp{−[nAθφ + nBφ]} = cθsAφsA+sB exp{−[nAθ + nB]φ}
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and
ln(θ, φ) = log c + sA log θ + (sA + sB) log φ− (nAθ + nB)φ.

Taking first derivatives with respect to φ yields

∂ln(θ, φ)
∂φ

=
sA + sB

φ
− (nAθ + nB)

and equating this to zero gives

φ̂(θ) =
sA + sB

nAθ + nB

and a profile likelihood

LP (θ) = Ln(θ, φ̂(θ)) = cθsA

(
sA + sB

nAθ + nB

)sA+sB

exp {−(sA + sB)}

and writing s = sA + sB, we have

LP (θ) = css exp{−s} θsA

(nAθ + nB)s
.

[3 MARKS]

(ii) There are many possible ways to carry out this test. For example, could test

H0 : θ = 1

with φ unspecified, against the general alternative; the likelihood ratio test is most straightforward -
let

Λn =
Ln(θ̂, φ̂)

Ln(θ0, φ̂0)

where (θ̂, φ̂) are the ML estimates under the alternative hypothesis, θ0 = 1, and φ̂0 is the ML estimate
of φ under the null. Now, the ML estimates under the alternative are available by the principle of
invariance, that is

θ̂ =
λ̂A

λ̂B

=
xA

xB
φ̂ = xB

Under the null, where θ = θ0 = 1, the log-likelihood is

ln(1, φ) = log c + (sA + sB) log φ− (nA + nB)φ.

and thus
φ̂0 = s/n = x

where n = nA +nB, that is, φ̂0 is the pooled sample estimate of the Poisson parameter common to both
samples (as, if θ = 1, λA = λB = φ). Hence

Λn =
Ln(θ̂, φ̂)

Ln(1, φ̂0)
=

(xA/xB)sA(xB)s exp{−[nA(xA/xB) + nB]xB}
xs exp{−[nA + nB]x} =

(xA)sA(xB)sB

xs .

The LR test is completed by noting that using the standard theory, asymptotically,

2 log Λn = 2(SA log XA + SB log XB − S log X) L−→ χ2
1.

Here the test statistic is

2(sA log xA + sB log xB − s log x) = 2(12 log 2 + 4 log 1− 16 log 1.6) = 1.595.
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From tables, the 95 % quantile from the Chi-squared distribution with 1 degree of freedom is 3.841, so
there is no evidence to reject the hypothesis that θ = 1.

Alternatively, could test the null hypothesis

H0 : λA = λB

directly using asymptotic normal approximations and the Delta Method directly, using a test statistic
based on XA − XB. This results in an approximate Z-test. However, it is questionable whether any
asymptotic methods would be valid here, where the sample sizes are very small.

[4 MARKS]

3.(i) Again here, the key is invariance; we know by elementary results that the ML estimates for π1

and π2 are
π̂1 =

x1

n1
π̂2 =

x2

n2

and by invariance (or indeed from first principles by writing out the likelihood in full) the ML estimate
of θ is

θ̂ =
π̂1(1− π̂2)
π̂2(1− π̂1)

=
(x1/n1)(1− x2/n2)
(x2/n2)(1− x1/n1)

=
x1(n2 − x2)
x2(n1 − x1)

.

[4 MARKS]

(ii) The log-odds ratio is

log θ = log
(

π1

1− π1

)
− log

(
π2

1− π2

)

and thus

log θ̂n = log
(

x1/n1

1− x1/n1

)
− log

(
x2/n2

1− x2/n2

)

with corresponding estimator

log
(

X1/n1

1−X1/n1

)
− log

(
X2/n2

1−X2/n2

)
.

As X1 and X2 are independent, these two terms are independent random variables, and we can compute
the required distribution using the Central Limit Theorem and the Delta Method. We have, by standard
methods that

X1

n1
∼ AN

(
π1,

π1(1− π1)
n1

)
X2

n2
∼ AN

(
π2,

π2(1− π2)
n2

)

and taking g(t) = log(t/(1− t)) in the Delta method so that

ġ(t) =
1

t(1− t)
∴ {ġ(t)}2 =

1
t2(1− t)2

∴ {ġ(π)}2π(1− π)
n

=
1

nπ(1− π)

and we have that

log
(

X1/n1

1−X1/n1

)
∼ AN

(
log

(
π1

1− π1

)
,

1
n1π1(1− π1)

)

log
(

X2/n2

1−X2/n2

)
∼ AN

(
log

(
π2

1− π2

)
,

1
n2π2(1− π2)

)
.

Thus for the estimator

log θ̂n ∼ AN

(
log θ,

1
n1π1(1− π1)

+
1

n2π2(1− π2)

)

[4 MARKS]
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