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1. We use the result from the handout
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which implies, marginally, that, for arbitrary p, and k = dnpe,
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(i) For the sample median, k = dnpe with p = 0.5, we have
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Now, in the N(µ, σ2) case, xp = µ, and {fX(µ)}2 = 1/(2πσ2), so we have
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and hence
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)
.

Note that π/2 ≈ 1.57 > 1, so the asymptotic variance is greater for the sample median than for
the sample mean.

[5 MARKS]

(ii) For the sample interquartile range, RIQ; k1 = dnp1e and k2 = dnp2e with p1 = 0.25 and
p2 = 0.75. Then from above
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Now, by the results given for the standard normal

x0.25 = µ− 0.674σ x0.75 = µ + 0.674σ

and so, by elementary transformation theory

fX (x0.25) = fX (µ− 0.674σ) = φ(−0.674)/σ = 0.318/σ

fX (x0.75) = fX (µ + 0.674σ) = φ(0.674)/σ = 0.318/σ
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Thus, the asymptotic variance-covariance matrix is

Σ =
σ2

0.3182

[
0.25× 0.75 0.25× 0.25
0.25× 0.25 0.75× 0.25

]
= σ2

[
1.854 0.618
0.618 1.854

]

Now, setting the vector a = (−1, 1)T yields that

RIQ = X(k2) −X(k1) = aT(X(k1), X(k2))
T

and hence (by continuous mapping/Slutsky)

√
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)

where rIQ = x0.75 − x0.25. Here

rIQ = x0.75 − x0.25 = 2× 0.674σ = 1.348σ

and
aTΣa = 2.472σ2

and hence
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(
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n

)
.

[10 MARKS]

2. We have
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∫ ∞
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∫ ∞
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= 2− 2
∫ ∞
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as ∫ ∞

−∞

√
f1(x)f2(x) dx ≥ 0.
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