M3S3/M4S3

ASSESSED COURSEWORK 1 : SOLUTIONS

1. We use the result from the handout

$$
\sqrt{n}\left(\binom{X_{\left(k_{1}\right)}}{X_{\left(k_{2}\right)}}-\binom{x_{p_{1}}}{x_{p_{2}}}\right) \stackrel{\mathfrak{L}}{\rightarrow} N\left(0,\left[\begin{array}{cc}
\frac{p_{1}\left(1-p_{1}\right)}{\left\{f_{X}\left(x_{p_{1}}\right)\right\}^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} \\
\frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} & \frac{p_{2}\left(1-p_{2}\right)}{\left\{f_{X}\left(x_{p_{2}}\right)\right\}^{2}}
\end{array}\right]\right)
$$

which implies, marginally, that, for arbitrary p, and $k=\lceil n p\rceil$,

$$
\sqrt{n}\left(X_{(k)}-x_{p}\right) \stackrel{\mathfrak{L}}{ } N\left(0, \frac{p(1-p)}{\left\{f_{X}\left(x_{p}\right)\right\}^{2}}\right)
$$

(i) For the sample median, $k=\lceil n p\rceil$ with $p=0.5$, we have

$$
\sqrt{n}\left(X_{(k)}-x_{0.5}\right) \stackrel{\mathfrak{L}}{\longrightarrow} N\left(0, \frac{0.5(1-0.5)}{\left\{f_{X}\left(x_{0.5}\right)\right\}^{2}}\right)
$$

Now, in the $N\left(\mu, \sigma^{2}\right)$ case, $x_{p}=\mu$, and $\left\{f_{X}(\mu)\right\}^{2}=1 /\left(2 \pi \sigma^{2}\right)$, so we have

$$
\sqrt{n}\left(X_{(k)}-\mu\right) \stackrel{\mathfrak{L}}{\longrightarrow} N\left(0, \frac{0.5(1-0.5)}{1 /\left(2 \pi \sigma^{2}\right)}\right) \equiv N\left(0, \frac{\pi \sigma^{2}}{2}\right)
$$

and hence

$$
X_{(k)} \sim A N\left(\mu, \frac{\pi \sigma^{2}}{2 n}\right)
$$

Note that $\pi / 2 \approx 1.57>1$, so the asymptotic variance is greater for the sample median than for the sample mean.
[5 MARKS]
(ii) For the sample interquartile range, $R_{I Q} ; k_{1}=\left\lceil n p_{1}\right\rceil$ and $k_{2}=\left\lceil n p_{2}\right\rceil$ with $p_{1}=0.25$ and $p_{2}=0.75$. Then from above

$$
\sqrt{n}\left(\binom{X_{\left(k_{1}\right)}}{X_{\left(k_{2}\right)}}-\binom{x_{0.25}}{x_{0.75}}\right) \stackrel{\mathfrak{L}}{\rightarrow} N\left(0,\left[\begin{array}{cc}
\frac{0.25(1-0.25)}{\left\{f_{X}\left(x_{0.25}\right)\right\}^{2}} & \frac{0.25(1-0.75)}{f_{X}\left(x_{0.25}\right) f_{X}\left(x_{0.75}\right)} \\
\frac{0.25(1-0.75)}{f_{X}\left(x_{0.25}\right) f_{X}\left(x_{0.75}\right)} & \frac{0.75(1-0.75)}{\left\{f_{X}\left(x_{0.25}\right)\right\}^{2}}
\end{array}\right]\right)
$$

Now, by the results given for the standard normal

$$
x_{0.25}=\mu-0.674 \sigma \quad x_{0.75}=\mu+0.674 \sigma
$$

and so, by elementary transformation theory

$$
\begin{aligned}
& f_{X}\left(x_{0.25}\right)=f_{X}(\mu-0.674 \sigma)=\phi(-0.674) / \sigma=0.318 / \sigma \\
& f_{X}\left(x_{0.75}\right)=f_{X}(\mu+0.674 \sigma)=\phi(0.674) / \sigma=0.318 / \sigma
\end{aligned}
$$

Thus, the asymptotic variance-covariance matrix is

$$
\Sigma=\frac{\sigma^{2}}{0.318^{2}}\left[\begin{array}{ll}
0.25 \times 0.75 & 0.25 \times 0.25 \\
0.25 \times 0.25 & 0.75 \times 0.25
\end{array}\right]=\sigma^{2}\left[\begin{array}{ll}
1.854 & 0.618 \\
0.618 & 1.854
\end{array}\right]
$$

Now, setting the vector $\boldsymbol{a}=(-1,1)^{\top}$ yields that

$$
R_{I Q}=X_{\left(k_{2}\right)}-X_{\left(k_{1}\right)}=\boldsymbol{a}^{\top}\left(X_{\left(k_{1}\right)}, X_{\left(k_{2}\right)}\right)^{\top}
$$

and hence (by continuous mapping/Slutsky)

$$
\sqrt{n}\left(R_{I Q}-r_{I Q}\right) \xrightarrow{\mathfrak{L}} N\left(0, \boldsymbol{a}^{\top} \Sigma \boldsymbol{a}\right)
$$

where $r_{I Q}=x_{0.75}-x_{0.25}$. Here

$$
r_{I Q}=x_{0.75}-x_{0.25}=2 \times 0.674 \sigma=1.348 \sigma
$$

and

$$
\boldsymbol{a}^{\top} \Sigma \boldsymbol{a}=2.472 \sigma^{2}
$$

and hence

$$
R_{I Q} \sim A N\left(1.348 \sigma, \frac{2.472 \sigma^{2}}{n}\right) .
$$

[10 MARKS]
2. We have

$$
\begin{aligned}
d_{H}\left(f_{1}, f_{2}\right) & =\int_{-\infty}^{\infty}\left(\sqrt{f_{1}(x)}-\sqrt{f_{2}(x)}\right)^{2} d x=\int_{-\infty}^{\infty}\left(f_{1}(x)+f_{2}(x)-2 \sqrt{f_{1}(x) f_{2}(x)}\right) d x \\
& =2-2 \int_{-\infty}^{\infty} \sqrt{f_{1}(x) f_{2}(x)} d x \\
& \leq 2
\end{aligned}
$$

as

$$
\int_{-\infty}^{\infty} \sqrt{f_{1}(x) f_{2}(x)} d x \geq 0 .
$$

[5 MARKS]

