M3S3/M4S3 STATISTICAL THEORY II

 WORKED EXAMPLE: TESTING FOR THE PARETO DISTRIBUTIONSuppose that X_{1}, \ldots, X_{n} are i.i.d random variables having a Pareto distribution with pdf

$$
f_{X \mid \theta}(x \mid \theta)=\frac{\theta c^{\theta}}{x^{\theta+1}} \quad x>c
$$

and zero otherwise, for known constant $c>0$, and parameter $\theta>0$.
(i) Find the ML estimator, $\widehat{\theta}_{n}$, of θ, and find the asymptotic distribution of

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{T}\right)
$$

where θ_{T} is the true value of θ.
(ii) Consider testing the hypotheses of

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

for some $\theta_{0}>0$. Determine the likelihood ratio, Wald and Rao tests of this hypothesis.

SOLUTION (i) The ML estimate $\widehat{\theta}_{n}$ is computed in the usual way:

$$
L_{n}(\theta)=\prod_{i=1}^{n} f_{X \mid \theta}\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{\theta c^{\theta}}{x_{i}^{\theta+1}}=\frac{\theta^{n} c^{n \theta}}{s_{n}^{\theta+1}}
$$

where $s_{n}=\prod_{i=1}^{n} x_{i}$. Then

$$
\begin{aligned}
l_{n}(\theta) & =n \log \theta+n \theta \log c-(\theta+1) \log s_{n} \\
i_{n}(\theta) & =\frac{n}{\theta}+n \log c-\log s_{n}
\end{aligned}
$$

and solving $\dot{i}_{n}(\theta)=0$ yields the ML estimate

$$
\widehat{\theta}_{n}=\left[\frac{\log s_{n}}{n}-\log c\right]^{-1}=\left[\frac{1}{n} \sum_{i=1}^{n} \log x_{i}-\log c\right]^{-1}
$$

The corresponding estimator is therefore

$$
\widehat{\theta}_{n}=\left[\frac{1}{n} \sum_{i=1}^{n} \log X_{i}-\log c\right]^{-1} .
$$

Computing the asymptotic distribution directly is difficult because of the reciprocal. However, consider $\phi=1 / \theta$; by invariance, the ML estimator of ϕ is

$$
\widehat{\phi}_{n}=\frac{1}{n} \sum_{i=1}^{n} \log X_{i}-\log c=\frac{1}{n} \sum_{i=1}^{n}\left(\log X_{i}-\log c\right)
$$

which implies how we should compute the asymptotic distribution of $\widehat{\theta}_{n}$ - we use the CLT on the random variables $Y_{i}=\log X_{i}-\log c=\log \left(X_{i} / c\right)$, and then use the Delta Method.

To implement the CLT, we need the expectation and variance of $Y=\log (X / c)$. Now

$$
F_{X}(x)=1-\left(\frac{c}{x}\right)^{\theta} \quad x>c
$$

so that

$$
F_{Y}(y)=P[Y \leq y]=P[\log (X / c) \leq y]=P[X \leq c \exp \{y\}]=1-\exp \{-\theta y\} \quad y>0
$$

and hence $Y \sim$ Exponential (θ). By standard results

$$
E_{f_{Y}}[Y]=\frac{1}{\theta}=\phi \quad \operatorname{Var}_{f_{Y}}[Y]=\frac{1}{\theta^{2}}=\phi^{2},
$$

and therefore, by the CLT,

$$
\sqrt{n}\left(\widehat{\phi}_{n}-\phi_{T}\right) \xrightarrow{\mathfrak{I}} N\left(0, \phi_{T}^{2}\right)
$$

where $\phi_{T}=1 / \theta_{T}$.
Finally, let $g(t)=1 / t$ so that $\dot{g}(t)=-1 / t^{2}$. Then, by the Delta Method

$$
\sqrt{n}\left(g\left(\widehat{\phi}_{n}\right)-g\left(\phi_{T}\right)\right) \xrightarrow{\mathfrak{L}} N\left(0,\left\{\dot{g}\left(\phi_{T}\right)\right\}^{2} \phi_{T}^{2}\right)
$$

so that, as $g\left(\phi_{T}\right)=1 / \phi_{T}=\theta_{T}$

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{T}\right) \xrightarrow{\mathfrak{L}} N\left(0,\left\{1 / \phi_{T}^{4}\right\} \phi_{T}^{2}\right) \equiv N\left(0, \theta_{T}^{2}\right) .
$$

(ii) For the likelihood ratio test:

$$
\lambda_{n}=2 \log \frac{L_{n}\left(\widehat{\theta}_{n}\right)}{L_{n}\left(\theta_{0}\right)}=2 \log \frac{\widehat{\theta}_{n}^{n} c^{n \hat{\theta}_{n}} / s_{n}^{\widehat{\theta}_{n}+1}}{\theta_{0}^{n} c^{n \theta_{0}} / s_{n}^{\theta_{0}+1}}=2 n\left[\log \left(\widehat{\theta}_{n} / \theta_{0}\right)+\left(\widehat{\theta}_{n}-\theta_{0}\right) \log c-\left(\widehat{\theta}_{n}-\theta_{0}\right) m_{n}\right]
$$

where $m_{n}=\left(\log s_{n}\right) / n$.
For the Wald test:

$$
W_{n}=n\left(\widehat{\theta}_{n}-\theta_{0}\right) I\left(\widehat{\theta}_{n}\right)\left(\widehat{\theta}_{n}-\theta_{0}\right)=n I\left(\widehat{\theta}_{n}\right)\left(\widehat{\theta}_{n}-\theta_{0}\right)^{2}
$$

where $I(\theta)$ is the Fisher information for this model. From first principles

$$
\begin{aligned}
& l(\theta)=\log \theta+\theta \log c-(\theta+1) \log x \\
& i(\theta)=\frac{1}{\theta}+\log c-\log x \\
& \ddot{l}(\theta)=-\frac{1}{\theta^{2}}
\end{aligned}
$$

so $I(\theta)=1 / \theta^{2}$; in fact, we could have deduced this from the results derived in (i). Thus

$$
W_{n}=n\left(\frac{\widehat{\theta}_{n}-\theta_{0}}{\widehat{\theta}_{n}}\right)^{2} .
$$

Note that, although the Fisher Information is available in this case, it may be statistically advantageous in a finite sample case to replace $I\left(\widehat{\theta}_{n}\right)$ by $\widehat{I}_{n}\left(\widehat{\theta}_{n}\right)$, derived in the usual way from the first or second derivatives of l_{n}. That is, we might use

$$
\widehat{I}_{n}\left(\widehat{\theta}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} S\left(x_{i}, \theta\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{\widehat{\theta}_{n}}+\log c-\log x_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

where $y_{i}=\log x_{i}-\log c$. Alternately, using the second derivative,

$$
\widehat{I}_{n}\left(\widehat{\theta}_{n}\right)=-\frac{1}{n} \sum_{i=1}^{n} \ddot{l}_{i}(\theta)=\frac{1}{n} \sum_{i=1}^{n} 1 / \widehat{\theta}_{n}^{2}=1 / \widehat{\theta}_{n}^{2}=I\left(\widehat{\theta}_{n}\right)
$$

For the Rao test: in the single parameter case

$$
R_{n}=Z_{n}^{\top}\left[I\left(\theta_{0}\right)\right]^{-1} Z_{n}=Z_{n}^{2} / I\left(\theta_{0}\right)
$$

where

$$
Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} S\left(x_{i}, \theta_{0}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\frac{1}{\theta_{0}}+\log c-\log x_{i}\right)
$$

so that if $y_{i}=\log x_{i}-\log c$ as before

$$
R_{n}=\frac{\left\{\sum_{i=1}^{n}\left(y_{i}-1 / \theta_{0}\right)\right\}^{2}}{n I\left(\theta_{0}\right)}=\frac{\left\{\sum_{i=1}^{n}\left(y_{i}-1 / \theta_{0}\right)\right\}^{2}}{n / \theta_{0}^{2}}
$$

SUPPLEMENTARY EXERCISES: Suppose that c is also an unknown parameter. Find

- the ML estimator for c, \widehat{c}
- the weak-law (ie probability) limit of \widehat{c}
- an asymptotic (large n) approximation to the distribution of \widehat{c}.
- the profile likelihood for θ.

Hint: Recall, when considering the likelihood for c, that $x_{i}>c$ for all i. Then, think back to M2S1 Chapter 5, and extreme order statistics.

