M3/M4S3 STATISTICAL THEORY II TWO USEFUL RESULTS

Notation: First Derivatives

Suppose $f: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ is a real function, and denote the $(1 \times k)$ vector of first partial derivatives by $\dot{\boldsymbol{f}}$, that is, for $\boldsymbol{x} \in \mathbb{R}^{k}$,

$$
\dot{\boldsymbol{f}}(\boldsymbol{x})=\left[\frac{\partial f(\boldsymbol{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\boldsymbol{x})}{\partial x_{k}}\right]
$$

By extension, if $\boldsymbol{f}: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{d}$ is a real function, then we regard it as a $d \times 1$ vector

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{d}(\boldsymbol{x})
\end{array}\right]
$$

and define the $(d \times k)$ matrix of first partial derivatives with $(j, l)^{\text {th }}$ element

$$
\frac{\partial f_{j}(\boldsymbol{x})}{\partial x_{l}}
$$

that is,

$$
\dot{\boldsymbol{f}}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{d}(\boldsymbol{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{d}(\boldsymbol{x})}{\partial x_{k}}
\end{array}\right]
$$

Second Derivatives

Suppose $f: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ is a real function, we define the ($k \times k$) matrix of second partial derivatives, $\ddot{f}(\boldsymbol{x})$, with $(j, l)^{\text {th }}$ element

$$
\frac{\partial^{2}}{\partial x_{j} \partial x_{l}} f(\boldsymbol{x}),
$$

that is,

$$
\ddot{f}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{k} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{k}^{2}}
\end{array}\right]
$$

The Mean-Value Theorem

Suppose that $\boldsymbol{f}: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{d}$ is a real function, and that $\dot{\boldsymbol{f}}(\boldsymbol{x})$ is continuous in the ball of radius $r>0$ centered at $\boldsymbol{x}_{\mathbf{0}}$, that is, in

$$
\left\{\boldsymbol{x}:\left\|\boldsymbol{x}-\boldsymbol{x}_{\mathbf{0}}\right\|<r\right\} .
$$

Then for $\|\boldsymbol{t}\|<r, \boldsymbol{t} \in \mathbb{R}^{k}$,

$$
\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{t}\right)=\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)+\left\{\int_{0}^{1} \dot{\boldsymbol{f}}\left(\boldsymbol{x}_{\mathbf{0}}+u \boldsymbol{t}\right) d u\right\} \boldsymbol{t}
$$

Proof. Let $\boldsymbol{h}(u)=\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}+u \boldsymbol{t}\right)$, so that, by the chain rule, $\dot{\boldsymbol{h}}(u)=\dot{\boldsymbol{f}}\left(\boldsymbol{x}_{\mathbf{0}}+u \boldsymbol{t}\right) \boldsymbol{t}$. Then

$$
\left\{\int_{0}^{1} \dot{\boldsymbol{f}}\left(\boldsymbol{x}_{\mathbf{0}}+u \boldsymbol{t}\right) d u\right\} \boldsymbol{t}=\int_{0}^{1} \dot{\boldsymbol{h}}(u) d u=\boldsymbol{h}(1)-\boldsymbol{h}(0)=\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{t}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right) .
$$

and the result follows.

Taylor's Theorem

Suppose that $f: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ is a real function, and that $\ddot{f}(\boldsymbol{x})$ is continuous in the ball of radius $r>0$ centered at $\boldsymbol{x}_{\mathbf{0}}$, that is, in

$$
\left\{\boldsymbol{x}:\left\|\boldsymbol{x}-\boldsymbol{x}_{\mathbf{0}}\right\|<r\right\} .
$$

Then for $\|\boldsymbol{t}\|<r, \boldsymbol{t} \in \mathbb{R}^{k}$,

$$
f\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{t}\right)=f\left(\boldsymbol{x}_{\mathbf{0}}\right)+\dot{f}\left(\boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{t}+\boldsymbol{t}^{\top}\left\{\int_{0}^{1} \int_{0}^{1} v \ddot{f}\left(\boldsymbol{x}_{\mathbf{0}}+u v \boldsymbol{t}\right) d u d v\right\} \boldsymbol{t}
$$

Note that in these two results,

$$
\int_{0}^{1} \dot{\boldsymbol{f}}\left(\boldsymbol{x}_{\mathbf{0}}+u \boldsymbol{t}\right) d u
$$

is a $d \times k$ matrix, and

$$
\int_{0}^{1} \int_{0}^{1} v \ddot{f}\left(\boldsymbol{x}_{\mathbf{0}}+u v \boldsymbol{t}\right) d u d v
$$

is a $k \times k$ matrix.

