## M3/M4S3 STATISTICAL THEORY II

## THE JOINT DISTRIBUTION OF THE SAMPLE QUANTILES

RESULT 1: If $Y_{1}, Y_{2}, \ldots, Y_{n+1} \sim$ Exponential (1) are independent random variables, and $S_{1}, S_{2}, \ldots, S_{n+1}$ are defined by

$$
S_{k}=\sum_{j=1}^{k} Y_{j} \quad k=1,2, \ldots, n+1
$$

then the random variables

$$
\left[\frac{S_{1}}{S_{n+1}}, \frac{S_{2}}{S_{n+1}}, \ldots, \frac{S_{n}}{S_{n+1}}\right]
$$

given that $S_{n+1}=s$, say, have the same distribution as the order statistics from a random sample of size $n$ from the Uniform distribution on $(0,1)$.

Proof: Let the $Y_{j} \mathrm{~s}$ be defined as above. Then the joint density for the $Y_{j} \mathrm{~s}$ is given by

$$
\exp \left\{-\sum_{j=1}^{n+1} y_{j}\right\} \quad y_{1}, y_{2}, \ldots, y_{n+1}>0
$$

Now

$$
\left.\begin{array}{rl}
S_{1} & =Y_{1} \\
S_{2} & =Y_{1}+Y_{2} \\
S_{3} & =Y_{1}+Y_{2}+Y_{3} \\
S_{n} & =\sum_{j=1}^{n} Y_{j} \\
S_{n+1} & =\sum_{j=1}^{n+1} Y_{j}
\end{array}\right\} \Leftrightarrow\left\{\begin{aligned}
Y_{1} & =S_{1} \\
Y_{2} & =S_{2}-S_{1} \\
Y_{3} & =S_{3}-S_{2} \\
& \\
Y_{n} & =S_{n}-S_{n-1} \\
Y_{n+1} & =S_{n+1}-S_{n}
\end{aligned}\right.
$$

and so the Jacobian of the transformation from $\left(Y_{1}, \ldots, Y_{n+1}\right) \rightarrow\left(S_{1}, \ldots, S_{n+1}\right)$ is

$$
\left|\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & 1 & 0 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right|=1
$$

and hence the joint density for ( $S_{1}, \ldots, S_{n+1}$ ) is given by

$$
\exp \left\{-s_{n+1}\right\} \quad 0<s_{1}<s_{2}<\ldots<s_{n+1} .
$$

The marginal distribution for $S_{n+1}$ is $\operatorname{Gamma}(n+1,1)$ and thus the conditional distribution of ( $S_{1}, \ldots, S_{n}$ ) given $S_{n+1}=s$ is

$$
\frac{\exp \{-s\}}{\frac{1}{\Gamma(n+1)} s^{n} \exp \{-s\}}=\frac{n!}{s^{n}} \quad 0<s_{1}<s_{2}<\ldots<s
$$

Finally, conditional on $S_{n+1}=s$, define the joint transformation

$$
V_{j}=\frac{S_{j}}{s} \Leftrightarrow S_{j}=s V_{j} \quad j=1,2, \ldots, n
$$

which has Jacobian $s^{n}$. Then, conditional on $S_{n+1}=s,\left(V_{1}, \ldots, V_{n}\right)$ have joint pdf equal to $n$ ! for $0<$ $v_{1}<v_{2}<\ldots<v_{n}<1$. Finally, if $U_{1}, \ldots, U_{n}$ are independent random variables each having a Uniform distribution on $(0,1)$, then $\left(U_{1}, \ldots, U_{n}\right)$ have joint pdf equal to 1 on the unit hypercube in $n$ dimensions, and thus the corresponding order statistics $U_{(1)}, \ldots, U_{(n)}$ also have joint pdf equal to

$$
n!\quad 0<u_{1}<u_{2}<\ldots<u_{n}<1
$$

RESULT 2: Let the $S_{k}$ be defined as in Result 1. Then

$$
\sqrt{k}\left(\frac{1}{k} S_{k}-1\right) \stackrel{\mathfrak{L}}{\rightarrow} N(0,1) \text { as } k \rightarrow \infty
$$

Proof: We have that $S_{k}$ is the sum of $k$ independent and identically distributed Exponential(1) random variables, $Y_{1}, \ldots, Y_{k}$, so that $E\left[Y_{j}\right]=\operatorname{Var}\left[Y_{j}\right]=1$. Thus the Central Limit Theorem applies, and the result follows.

RESULT 3: Let the $S_{k}$ be defined as in Result 1. Then, if

$$
\frac{k_{1}}{n} \rightarrow p_{1}
$$

for some $p_{1}$ with $0<p_{1}<1$,

$$
\sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-\frac{k_{1}}{n+1}\right) \stackrel{\mathfrak{L}}{\rightarrow} N\left(0, p_{1}\right) \text { as } n \rightarrow \infty
$$

Proof: We have

$$
\sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-\frac{k_{1}}{n+1}\right)=\sqrt{\frac{k_{1}}{n+1}} \sqrt{k_{1}}\left(\frac{1}{k_{1}} S_{k_{1}}-1\right) \xrightarrow{\mathfrak{L}} \sqrt{p_{1}} N(0,1) \equiv N\left(0, p_{1}\right)
$$

as $n \rightarrow \infty$ (so that by assumption $k_{1} \rightarrow \infty$ also).
Corollary: Using the same approach, if

$$
\frac{k_{1}}{n} \rightarrow p_{1} \quad \text { and } \quad \frac{k_{2}}{n} \rightarrow p_{2}
$$

for $0<p_{1}<p_{2}<1$, then

$$
\sqrt{n+1}\left(\frac{1}{n+1}\left(S_{k_{2}}-S_{k_{1}}\right)-\frac{k_{2}-k_{1}}{n+1}\right)=\sqrt{\frac{k_{2}-k_{1}}{n+1}} \sqrt{k_{2}-k_{1}}\left(\frac{1}{k_{2}-k_{1}} \sum_{j=k_{1}+1}^{k_{2}} Y_{j}-1\right)
$$

and the right-hand side converges in law to $\sqrt{p_{2}-p_{1}} N(0,1) \equiv N\left(0, p_{2}-p_{1}\right)$. Similarly

$$
\sqrt{n+1}\left(\frac{1}{n+1}\left(S_{n+1}-S_{k_{2}}\right)-\frac{n+1-k_{2}}{n+1}\right) \stackrel{\mathfrak{L}}{\rightarrow} N\left(0,1-p_{2}\right)
$$

where the limiting variables in the three cases are independent, as $S_{k_{1}},\left(S_{k_{2}}-S_{k_{1}}\right)$, and $\left(S_{n+1}-S_{k_{2}}\right)$ are independent.

RESULT 4: Let

$$
\begin{aligned}
Z_{1} & =\frac{1}{n+1} S_{k_{1}} \\
Z_{2} & =\frac{1}{n+1}\left(S_{k_{2}}-S_{k_{1}}\right) \\
Z_{3} & =\frac{1}{n+1}\left(S_{n+1}-S_{k_{2}}\right)
\end{aligned}
$$

and suppose that

$$
\sqrt{n}\left(\frac{k_{1}}{n}-p_{1}\right) \rightarrow 0 \text { and } \sqrt{n}\left(\frac{k_{2}}{n}-p_{2}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Then

$$
\sqrt{n+1}\left(\left(\begin{array}{c}
Z_{1} \\
Z_{2} \\
Z_{3}
\end{array}\right)-\left(\begin{array}{c}
p_{1} \\
p_{2}-p_{1} \\
1-p_{2}
\end{array}\right)\right) \stackrel{\mathfrak{L}}{\rightarrow} N(0, \Sigma)
$$

as $n \rightarrow \infty$, where $\Sigma=\operatorname{diag}\left(p_{1}, p_{2}-p_{1}, 1-p_{2}\right)$.
Proof: We have

$$
\sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-p_{1}\right)-\sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-\frac{k_{1}}{n+1}\right)=\sqrt{n+1}\left(\frac{k_{1}}{n+1}-p_{1}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ by assumption, so

$$
\sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-p_{1}\right) \text { and } \sqrt{n+1}\left(\frac{1}{n+1} S_{k_{1}}-\frac{k_{1}}{n+1}\right)
$$

have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar for the other two terms. Independence (that is, ths diagonal nature of $\Sigma$ ) follows from the independence of $S_{k_{1}},\left(S_{k_{2}}-S_{k_{1}}\right)$, and $\left(S_{n+1}-S_{k_{2}}\right)$.

RESULT 5: If $U_{(1)}, \ldots, U_{(n)}$ are the order statistics from a random sample of size $n$ from a $\operatorname{Uniform}(0,1)$ distribution, and if $n \rightarrow \infty, k_{1} \rightarrow \infty$ and $k_{2} \rightarrow \infty$ in such a way that

$$
\sqrt{n}\left(\frac{k_{1}}{n}-p_{1}\right) \rightarrow 0 \text { and } \sqrt{n}\left(\frac{k_{2}}{n}-p_{2}\right) \rightarrow 0
$$

for $0<p_{1}<p_{2}<1$, then

$$
\sqrt{n}\left(\binom{U_{\left(k_{1}\right)}}{U_{\left(k_{2}\right)}}-\binom{p_{1}}{p_{2}}\right) \stackrel{\mathscr{\rightarrow}}{\rightarrow} N\left(0,\left[\begin{array}{cc}
p_{1}\left(1-p_{1}\right) & p_{1}\left(1-p_{2}\right) \\
p_{1}\left(1-p_{2}\right) & p_{2}\left(1-p_{2}\right)
\end{array}\right]\right) .
$$

Proof: Define

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{x_{1}+x_{2}+x_{3}}\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]
$$

which yields first derivative

$$
\dot{g}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\left(x_{1}+x_{2}+x_{3}\right)^{2}}\left[\begin{array}{ccc}
x_{2}+x_{3} & -x_{1} & -x_{1} \\
x_{3} & x_{3} & -\left(x_{1}+x_{2}\right)
\end{array}\right] .
$$

Now

$$
g\left(\frac{S_{k_{1}}}{n+1}, \frac{S_{k_{2}}-S_{k_{1}}}{n+1}, \frac{S_{n+1}-S_{k_{2}}}{n+1}\right)=\frac{1}{S_{n+1}}\left[\begin{array}{c}
S_{k_{1}} \\
S_{k_{2}}
\end{array}\right]
$$

which has the same distribution as $\left(U_{\left(k_{1}\right)}, U_{\left(k_{2}\right)}\right)^{T}$, by Result 1. By Cramer's Theorem

$$
\sqrt{n}\left(\binom{U_{\left(k_{1}\right)}}{U_{\left(k_{2}\right)}}-\binom{p_{1}}{p_{2}}\right) \stackrel{\mathscr{L}}{\rightarrow} N\left(0, \dot{g}(\mu) \Sigma \dot{g}(\mu)^{T}\right)
$$

where $\Sigma$ is as defined in the Result 4, where here $\mu=\left(p_{1}, p_{2}-p_{1}, 1-p_{2}\right)^{T}$. It can be easily verified that

$$
\dot{g}(\mu) \Sigma \dot{g}(\mu)^{T}=\left[\begin{array}{ll}
p_{1}\left(1-p_{1}\right) & p_{1}\left(1-p_{2}\right) \\
p_{1}\left(1-p_{2}\right) & p_{2}\left(1-p_{2}\right)
\end{array}\right]
$$

and thus the result follows.

RESULT 6: If $X_{(1)}, \ldots, X_{(n)}$ are the order statistics from a random sample of size $n$ from a distribution with continuous distribution function $F_{X}$ and density $f_{X}$ which is continuous and non-zero in a neighbourhood of quantiles $x_{p_{1}}$ and $x_{p_{2}}$ corresponding to probabilities $p_{1}<p_{2}$, then if $k_{1}=\left\lceil n p_{1}\right\rceil$ and $k_{2}=\left\lceil n p_{2}\right\rceil$

$$
\sqrt{n}\left(\binom{X_{\left(k_{1}\right)}}{X_{\left(k_{2}\right)}}-\binom{x_{p_{1}}}{x_{p_{2}}}\right) \stackrel{\mathfrak{L}}{\rightarrow} N\left(0,\left[\begin{array}{cc}
\frac{p_{1}\left(1-p_{1}\right)}{\left\{f_{X}\left(x_{p_{1}}\right)\right\}^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} \\
\frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{\left.p_{2}\right)}\right.} & \frac{p_{2}\left(1-p_{2}\right)}{\left\{f_{X}\left(x_{p_{2}}\right)\right\}^{2}}
\end{array}\right]\right)
$$

Proof: We use the Delta Method (Cramer's Theorem) on the result from Result 5, with the transformation

$$
g\left(y_{1}, y_{2}\right)=\left[\begin{array}{l}
F_{X}^{-1}\left(y_{1}\right) \\
F_{X}^{-1}\left(y_{2}\right)
\end{array}\right]
$$

so that

$$
\dot{g}\left(y_{1}, y_{2}\right)=\left[\begin{array}{cc}
\frac{1}{f_{X}\left(F_{X}^{-1}\left(y_{1}\right)\right)} & 0 \\
0 & \frac{1}{f_{X}\left(F_{X}^{-1}\left(y_{2}\right)\right)}
\end{array}\right]
$$

with $y_{1}=p_{1}$ and $y_{2}=p_{2}$.

