M3S3/S4 STATISTICAL THEORY II

IMPROVING INEFFICIENT ESTIMATORS: THE ONE-STEP ESTIMATOR

Objective : to produce a consistent estimator with asymptotic variance equal to the inverse Fisher information

$$
I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}
$$

as this is the best possible variance we can achieve for consistent estimators.
Suppose that $\widehat{\boldsymbol{\theta}}^{(0)}$ is a (consistent) estimator of $\boldsymbol{\theta}$ with asymptotic variance $\Sigma^{(0)}$ where

$$
\Sigma^{(0)}-I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \text { is positive definite } \quad \therefore \quad \Sigma^{(0)} \geq I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}
$$

or

$$
x^{\top}\left(\Sigma^{(0)}-I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right) x>0 \quad \forall x \in R^{d}
$$

so that $\widehat{\boldsymbol{\theta}}^{(0)}$ is inefficient. This estimator can be improved by two iterative procedures that each define a sequence of estimators:

- Newton's Method For $k=0,1, \ldots$, let

$$
\widehat{\boldsymbol{\theta}}^{(k+1)}=\widehat{\boldsymbol{\theta}}^{(k)}-\left(\ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}^{(k)}\right)\right)^{-1} \boldsymbol{i}_{n}\left(\widehat{\boldsymbol{\theta}}^{(k)}\right)
$$

- Method of Scoring For $k=0,1, \ldots$, let

$$
\widehat{\boldsymbol{\theta}}^{(k+1)}=\widehat{\boldsymbol{\theta}}^{(k)}+\left(I\left(\widehat{\boldsymbol{\theta}}^{(k)}\right)\right)^{-1} \frac{1}{n} \boldsymbol{l}_{n}\left(\widehat{\boldsymbol{\theta}}^{(k)}\right)
$$

Recall that

$$
-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}^{(k)}\right) \xrightarrow{p} I(\boldsymbol{\theta})
$$

which explains the connection between the two approaches. The sequence of estimators will have increasingly better properties.

The following theorem proves that only one iterative step is required to match the asymptotic efficiency of solutions to the likelihood equations, which, from a previous Theorem (2.1) have been shown to have asymptotic variance equal to the Cramér-Rao information bound. The method of proof is as follows

1. Find a consistent but possibly inefficient estimator $\widetilde{\boldsymbol{\theta}}_{n}$
2. Form the one-step Newton or Scoring Estimator using the formulae

$$
\begin{aligned}
\widehat{\boldsymbol{\theta}}^{(1)} & =\widetilde{\boldsymbol{\theta}}_{n}-\left(\ddot{\boldsymbol{i}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \boldsymbol{i}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right) \\
\widehat{\boldsymbol{\theta}}^{\star} & =\widetilde{\boldsymbol{\theta}}_{n}+\left(I\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \frac{1}{n} \boldsymbol{i}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)
\end{aligned}
$$

3. Show that these estimators have the same asymptotic properties as solutions to the likelihood equations. That is, under regularity conditions, if $\widehat{\boldsymbol{\theta}}_{n}$ satisfies

$$
\begin{equation*}
i_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\mathbf{0} \tag{LE}
\end{equation*}
$$

then, by Theorem 2.1

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

and Theorem 2.2 shows that $\widehat{\boldsymbol{\theta}}^{(1)}$ and $\widehat{\boldsymbol{\theta}}^{\star}$ also have these properties.

Theorem 2.2 The Efficiency of One-Step Estimators

Let $\widetilde{\boldsymbol{\theta}}_{n}, n=1,2, \ldots$, be a (strongly) consistent sequence of estimators of $\boldsymbol{\theta} \in \Theta$ with true value equal to $\boldsymbol{\theta}_{\mathbf{0}}$. Suppose that

$$
\sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, \Sigma\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)
$$

with $\Sigma\left(\boldsymbol{\theta}_{\mathbf{0}}\right)$ finite. Then, under the conditions of Wald's Theorem on the strong consistency of the MLE, and conditions A0-A4 of theorem 2.1 that ensure the asymptotic behaviour of the MLE (or, at least, consistent solutions to the likelihood equations), $\widehat{\boldsymbol{\theta}}_{n}$, the two estimators

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}^{(1)}=\widetilde{\boldsymbol{\theta}}_{n}-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \boldsymbol{\boldsymbol { l }}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right) \tag{N}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}^{\star}=\widetilde{\boldsymbol{\theta}}_{n}+\left(I\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \frac{1}{n} \boldsymbol{l}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right) \tag{S}
\end{equation*}
$$

are asymptotically equivalent to the MLE, so that

$$
\widehat{\boldsymbol{\theta}}^{(1)}-\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{p} \mathbf{0}
$$

and

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}^{(1)}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

with identical results for $\widehat{\boldsymbol{\theta}}^{\star}$.
Proof. Suppose that $\widehat{\boldsymbol{\theta}}_{n}$ is a (strongly) consistent of estimators that satisfy

$$
\begin{equation*}
i_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\mathbf{0} \tag{LE}
\end{equation*}
$$

then, by Theorem 2.1

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

Note: At no stage in the estimation will we actually have to find the numerical value of $\widehat{\boldsymbol{\theta}}_{n}$; we merely rely on its existence and asymptotic properties, both of which are guaranteed by the conditions of Theorem 2.1.

Now, using a Mean-Value Theorem first-order expansion of \boldsymbol{l}_{n} about $\widehat{\boldsymbol{\theta}}_{n}$ yields the following equation:
$i_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)=i_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)+\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)=\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)$.
as, by assumption, $\boldsymbol{i}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\mathbf{0}$. In this equation, the left hand side is a $d \times 1$ vector, the term in the integrand is a $d \times d$ matrix.
Then, from the definition of $\widehat{\boldsymbol{\theta}}^{(1)}$, it follows that

$$
\left(\widehat{\boldsymbol{\theta}}^{(1)}-\widehat{\boldsymbol{\theta}}_{n}\right)=\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \boldsymbol{l}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)
$$

so that, by equation (1),

$$
\begin{align*}
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}^{(1)}-\widehat{\boldsymbol{\theta}}_{n}\right) & =\sqrt{n}\left[\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1} \boldsymbol{l}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right] \\
& =\sqrt{n}\left[\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right] \\
& =\left[\mathbf{1}_{d}-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\right] \sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right) \tag{2}
\end{align*}
$$

Recall that both $\widehat{\boldsymbol{\theta}}_{n}$ and $\widetilde{\boldsymbol{\theta}}_{n}$ are consistent by assumption

$$
\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\theta}_{\mathbf{0}} \quad \widetilde{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\theta}_{\mathbf{0}}
$$

and, this implies that

$$
\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \mathbf{0} .
$$

Therefore, (under the conditions of the theorem) by the Uniform Strong Law of Large Numbers (Chapter 1)

$$
\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right) \xrightarrow{\text { a.s. }}-I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)
$$

and, as $\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\theta}_{\mathbf{0}}$ and $\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}$, it follows that for any finite scalar v,

$$
\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right) \xrightarrow{\text { a.s. }} \boldsymbol{\theta}_{\mathbf{0}}
$$

so that

$$
\frac{1}{n}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\} \xrightarrow{\text { a.s. }}\left\{\int_{0}^{1} E_{f_{X \mid \boldsymbol{\theta}_{\mathbf{0}}}}\left[\ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right] d v\right\}=\left\{\int_{0}^{1} 1 d v\right\} E_{f_{X \mid \boldsymbol{\theta}_{\mathbf{0}}}}\left[\ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right]=-I\left(\boldsymbol{\theta}_{\mathbf{0}}\right) .
$$

Therefore, in equation (2)

$$
\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}} n\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\} \xrightarrow{\text { a.s. }} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)=\boldsymbol{I}_{d}
$$

and so

$$
\begin{equation*}
\left[\mathbf{1}_{d}-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\right] \xrightarrow{\text { a.s. }} \mathbf{1}_{d}-\mathbf{1}_{d}=\mathbf{0} \tag{3}
\end{equation*}
$$

Also in equation (2),

$$
\sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)=\sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right)-\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right)
$$

and, by assumption

$$
\left.\begin{array}{lll}
\sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) & \stackrel{\mathfrak{L}}{\longrightarrow} & N\left(0, \Sigma\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right) \\
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) & \xrightarrow{\mathfrak{L}} & N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
\end{array}\right\} \quad \Longrightarrow \quad \sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right) \xrightarrow{\mathfrak{L}} \boldsymbol{Z}_{0} \sim N\left(0, \Sigma\left(\boldsymbol{\theta}_{\mathbf{0}}\right)+I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

Hence, from equations (2) and (3)

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}^{(1)}-\widehat{\boldsymbol{\theta}}_{n}\right)=\left[\mathbf{1}_{d}-\left(\ddot{\boldsymbol{l}}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\right)^{-1}\left\{\int_{0}^{1} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}+v\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right)\right) d v\right\}\right] \sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\widehat{\boldsymbol{\theta}}_{n}\right) \xrightarrow{p} \mathbf{0} \times \boldsymbol{Z}_{0}=\mathbf{0} .
$$

This result uses the fact that convergence almost surely implies convergence in probability, and Slutsky's Theorem.

Hence,

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}^{(1)}-\widehat{\boldsymbol{\theta}}_{n}\right) \xrightarrow{p} \mathbf{0}
$$

and the two estimators are asymptotically equivalent. But the asymptotic distribution of $\widehat{\boldsymbol{\theta}}_{n}$ is known, and is a non-degenerate Normal distribution, and thus it follows that

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}^{(1)}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

an improvement on the original estimator, $\widetilde{\boldsymbol{\theta}}_{n}$, where

$$
\sqrt{n}\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(0, \Sigma\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right) .
$$

The proof for $\widehat{\boldsymbol{\theta}}^{\star}$ follows in the same fashion.

