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M3S3/S4 STATISTICAL THEORY II

IMPROVING INEFFICIENT ESTIMATORS: THE ONE-STEP ESTIMATOR

Objective : to produce a consistent estimator with asymptotic variance equal to the inverse Fisher
information

I(θ0)−1

as this is the best possible variance we can achieve for consistent estimators.

Suppose that θ̂
(0)

is a (consistent) estimator of θ with asymptotic variance Σ(0) where

Σ(0) − I(θ0)−1 is positive definite ∴ Σ(0) ≥ I(θ0)−1

or
xT(Σ(0) − I(θ0)−1)x > 0 ∀ x ∈ Rd

so that θ̂
(0)

is inefficient. This estimator can be improved by two iterative procedures that each define a
sequence of estimators:

• Newton’s Method For k = 0, 1, . . ., let

θ̂
(k+1)

= θ̂
(k) −

(
l̈n(θ̂

(k)
)
)−1

l̇n(θ̂
(k)

)

• Method of Scoring For k = 0, 1, . . ., let

θ̂
(k+1)

= θ̂
(k)

+
(
I(θ̂

(k)
)
)−1 1

n
l̇n(θ̂

(k)
)

Recall that
− 1

n
l̈n(θ̂

(k)
)

p−→ I(θ)

which explains the connection between the two approaches. The sequence of estimators will have increas-
ingly better properties.

The following theorem proves that only one iterative step is required to match the asymptotic efficiency
of solutions to the likelihood equations, which, from a previous Theorem (2.1) have been shown to have
asymptotic variance equal to the Cramér-Rao information bound. The method of proof is as follows

1. Find a consistent but possibly inefficient estimator θ̃n

2. Form the one-step Newton or Scoring Estimator using the formulae

θ̂
(1)

= θ̃n −
(
l̈n(θ̃n)

)−1
l̇n(θ̃n)

θ̂
?

= θ̃n +
(
I(θ̃n)

)−1 1
n

l̇n(θ̃n)

3. Show that these estimators have the same asymptotic properties as solutions to the likelihood equa-
tions. That is, under regularity conditions, if θ̂n satisfies

l̇n(θ̂n) = 0 (LE)

then, by Theorem 2.1 √
n(θ̂n − θ0) L−→ N(0, I(θ0)−1)

and Theorem 2.2 shows that θ̂
(1)

and θ̂
?

also have these properties.
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Theorem 2.2 The Efficiency of One-Step Estimators

Let θ̃n, n = 1, 2, . . ., be a (strongly) consistent sequence of estimators of θ ∈ Θ with true value equal to
θ0. Suppose that √

n(θ̃n − θ0) L−→ N(0, Σ(θ0))

with Σ(θ0) finite. Then, under the conditions of Wald’s Theorem on the strong consistency of the MLE,
and conditions A0-A4 of theorem 2.1 that ensure the asymptotic behaviour of the MLE (or, at least,
consistent solutions to the likelihood equations), θ̂n, the two estimators

θ̂
(1)

= θ̃n −
(
l̈n(θ̃n)

)−1
l̇n(θ̃n) (N)

and
θ̂

?
= θ̃n +

(
I(θ̃n)

)−1 1
n

l̇n(θ̃n) (S)

are asymptotically equivalent to the MLE, so that

θ̂
(1) − θ̂n

p−→ 0

and √
n(θ̂

(1) − θ0) L−→ N(0, I(θ0)−1)

with identical results for θ̂
?
.

Proof. Suppose that θ̂n is a (strongly) consistent of estimators that satisfy

l̇n(θ̂n) = 0 (LE)

then, by Theorem 2.1 √
n(θ̂n − θ0) L−→ N(0, I(θ0)−1)

Note: At no stage in the estimation will we actually have to find the numerical value of θ̂n;
we merely rely on its existence and asymptotic properties, both of which are guaranteed by
the conditions of Theorem 2.1.

Now, using a Mean-Value Theorem first-order expansion of l̇n about θ̂n yields the following equation:

l̇n(θ̃n) = l̇n(θ̂n) +
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}
(θ̃n − θ̂n) =

{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}
(θ̃n − θ̂n). (1)

as, by assumption, l̇n(θ̂n) = 0. In this equation, the left hand side is a d× 1 vector, the term in the
integrand is a d× d matrix.

Then, from the definition of θ̂
(1)

, it follows that

(θ̂
(1) − θ̂n) = (θ̃n − θ̂n)−

(
l̈n(θ̃n)

)−1
l̇n(θ̃n)

so that, by equation (1),

√
n(θ̂

(1) − θ̂n) =
√

n

[
(θ̃n − θ̂n)−

(
l̈n(θ̃n)

)−1
l̇n(θ̃n)

]

=
√

n

[
(θ̃n − θ̂n)−

(
l̈n(θ̃n)

)−1
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}
(θ̃n − θ̂n)

]

=
[
1d −

(
l̈n(θ̃n)

)−1
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}]√
n(θ̃n − θ̂n) (2)
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Recall that both θ̂n and θ̃n are consistent by assumption

θ̂n
a.s.−→ θ0 θ̃n

a.s.−→ θ0

and, this implies that
θ̃n − θ̂n

a.s.−→ 0.

Therefore, (under the conditions of the theorem) by the Uniform Strong Law of Large Numbers (Chapter
1)

1
n

l̈n(θ̃n) a.s.−→ −I(θ0)

and, as θ̂n
a.s.−→ θ0 and θ̃n − θ̂n

a.s.−→ 0, it follows that for any finite scalar v,

θ̂n + v(θ̃n − θ̂n) a.s.−→ θ0

so that

1
n

{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}
a.s.−→

{∫ 1

0
EfX|θ0

[l̈n(θ0)] dv

}
=

{∫ 1

0
1 dv

}
EfX|θ0

[l̈n(θ0)] = −I(θ0).

Therefore, in equation (2)

(
l̈n(θ̃n)

)−1
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}
a.s.−→ I(θ0)−1I(θ0) = Id

and so [
1d −

(
l̈n(θ̃n)

)−1
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}]
a.s.−→ 1d − 1d = 0 (3)

Also in equation (2), √
n(θ̃n − θ̂n) =

√
n(θ̃n − θ0)−√n(θ̂n − θ0)

and, by assumption
√

n(θ̃n − θ0) L−→ N(0, Σ(θ0))

√
n(θ̂n − θ0) L−→ N(0, I(θ0)−1)





=⇒ √
n(θ̃n − θ̂n) L−→ Z0 ∼ N(0, Σ(θ0) + I(θ0)−1)

Hence, from equations (2) and (3)

√
n(θ̂

(1) − θ̂n) =
[
1d −

(
l̈n(θ̃n)

)−1
{∫ 1

0
l̈n(θ̂n + v(θ̃n − θ̂n)) dv

}]√
n(θ̃n − θ̂n)

p−→ 0×Z0 = 0.

This result uses the fact that convergence almost surely implies convergence in probability, and Slutsky’s
Theorem.

Hence, √
n(θ̂

(1) − θ̂n)
p−→ 0

and the two estimators are asymptotically equivalent. But the asymptotic distribution of θ̂n is known,
and is a non-degenerate Normal distribution, and thus it follows that

√
n(θ̂

(1) − θ0) L−→ N(0, I(θ0)−1)

an improvement on the original estimator, θ̃n, where
√

n(θ̃n − θ0) L−→ N(0, Σ(θ0)).

The proof for θ̂
?

follows in the same fashion.
¥


