MEASURABLE FUNCTIONS

The real-valued function f defined with domain $E \subset \Omega$, for measurable space (Ω, \mathcal{F}), is **Borel measurable** with respect to \mathcal{F} if the inverse image of set B, defined as

$$f^{-1}(B) \equiv \{\omega \in E : f(\omega) \in B\}$$

is an element of σ-algebra \mathcal{F}, for all Borel sets B of \mathbb{R} (strictly, of the extended real number system \mathbb{R}^*, including $\pm \infty$ as elements). The following conditions are each necessary and sufficient for f to be measurable

(a) $f^{-1}(A) \in \mathcal{F}$ for all open sets $A \subset \mathbb{R}^*$,
(b) $f^{-1}([\infty, x)) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
(c) $f^{-1}([\infty, x]) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
(d) $f^{-1}([x, \infty)) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
(e) $f^{-1}((x, \infty]) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$.

NOTES:

(i) The **Borel σ-algebra** in \mathbb{R}, \mathcal{B}, is the smallest (or **minimal**) σ-algebra containing all open sets (that is, essentially, sets of the form (a, b) or $[a, b)$ for $a < b \in \mathbb{R}$) which are known as the **Borel sets** in \mathbb{R}.

(ii) It is possible to extend this definition to a general topological space Ω equipped with a topology, that is, a collection, \mathcal{T}, of sets in Ω that (I) \mathcal{T} contains \emptyset and Ω, (II) \mathcal{T} is closed under finite intersection, and (III) if \mathcal{A} is a sub-collection of \mathcal{T}, $\mathcal{A} \subset \mathcal{T}$, and $A_1, A_2, A_3, \ldots \in \mathcal{A}$, then

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{T}.$$

In this context, it is possible to define a general Borel σ-algebra on Ω; the open sets are the elements T_1, T_2, T_3, \ldots of the topology \mathcal{T}, and the Borel sets are the elements of the smallest σ-algebra generated by \mathcal{T}, $\sigma(\mathcal{T})$. However, we will not be studying general topological spaces; we shall restrict attention to \mathbb{R}, and thus refer to the Borel sets and the Borel σ-algebra, meaning the Borel sets/σ-algebra defined on \mathbb{R}.

(iii) Strictly, a function f is a **Borel function** if, for $B \in \mathcal{B}$, $f^{-1}(B) \in \sigma(\mathcal{T})$; however, we will generally consider measure spaces (Ω, \mathcal{F}) and say that f is a **Borel function** if it is Borel measurable, as defined in the first paragraph above.
Example Consider Lebesgue measure, m, defined for real numbers $a < b$ (on the Borel σ-algebra on \mathbb{R}, \mathcal{B}) by

$$m ([a, b]) = m ((a, b]) = m ([a, b)) = m ((a, b)) = b - a.$$

Suppose f is an increasing function on \mathbb{R}. Then the set $A \equiv f^{-1} (]-\infty, x])$ is an interval in \mathbb{R}, and thus f is measurable with respect to Lebesgue measure, as the measure of A, $m(A)$, is well-defined. Now consider the function g defined by $g(x) = x$ for $x \in \mathbb{R}$. This function is measurable with respect to Lebesgue measure (on \mathcal{B}), as it is increasing. However, consider the σ-algebra, \mathcal{Z}, generated by the sets $\{0, (-\infty, 0], (0, \infty), \mathbb{R}\}$. Then

$$g^{-1} (]-\infty, 1]) \notin \mathcal{Z}$$

so g is not measurable on \mathcal{Z}.

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1.1 MEASURABILITY UNDER COMPOSITION

Let g_1 and g_2 be measurable functions on $E \subset \Omega$ with ranges in \mathbb{R}^1. Let f be a Borel function from $\mathbb{R}^1 \times \mathbb{R}^1$ into \mathbb{R}. Then the composite function h, defined on E by

$$h(\omega) = f(g_1(\omega_1), g_2(\omega_2))$$

is measurable.

Proof. The function $g = (g_1, g_2)$ has domain E and range $\mathbb{R}^1 \times \mathbb{R}^1$, and is measurable as g_1 and g_2 are measurable, and denote $h = f \circ g$ (the operator \circ indicates composition, i.e.

$$h(\omega_1, \omega_2) = (f \circ g)(\omega_1, \omega_2) \quad \text{if} \quad h(\omega_1, \omega_2) = f(g(\omega_1, \omega_2)) = f(g_1(\omega_1), g_2(\omega_2)).$$

If $B \in \mathcal{B}$, then $f^{-1}(B)$ is a Borel set as f is a Borel function. Thus the inverse image under h,

$$h^{-1}(B) = g^{-1}(f^{-1}(B))$$

is measurable as g_1 and g_2, and hence g, are measurable.

Corollary If g is a measurable function from E into \mathbb{R}^1, and f is a continuous function from \mathbb{R}^1 into \mathbb{R}^1, then $h = f \circ g$ is measurable.

Theorem 1.2 MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g_1 and g_2 be measurable functions defined on $E \subset \Omega$ into \mathbb{R}^1, and let c be any real number. Then all of the following composite and other related functions are measurable

$$g_1 + g_2, g_1 + c, g_1 g_2, c g_1, g_1 / g_2, |g_1|, g_1 \vee g_2, g_1 \wedge g_2, g_1^+, g_1^-.$$

Proof. In each case, we examine the domain of the composite function to ensure measurability in the Borel σ-algebra. Consider $g_1 + g_2$; this is not defined on the set

$$\{\omega : g_1(\omega) = -g_2(\omega) = \pm \infty\}$$

(as $\infty \pm \infty$ is not defined), but this set is measurable, and so is the domain of $g_1 + g_2$. Let $f(x_1, x_2) = x_1 + x_2$ be a continuous function defined on $\mathbb{R}^1 \times \mathbb{R}^1$. Then, by Theorem 1.1 and its corollary, $g_1 + g_2$ is measurable. Taking $g_2 = c$ proves that $g_1 + c$ is measurable.

The function $g_1 g_2$ is defined everywhere on E; it’s measurability follows from Theorem 1.1,
setting \(f(x_1, x_2) = x_1 x_2 \). Setting \(g_2 = c \) proves that \(c g_1 \) is measurable.

The function \(g_1 / g_2 \) is defined everywhere except on the union of sets

\[
\{ \omega : g_1(\omega) = g_2(\omega) = 0 \} \cup \{ \omega : \pm g_1(\omega) = \pm g_2(\omega) = \infty \}
\]

Similarly, if \(c = 0 \), \(|g_1| \) is defined except on

\[
\{ \omega : g_1(\omega) = \pm \infty \}
\]

if \(c < 0 \), it is defined except on

\[
\{ \omega : g_1(\omega) = 0 \}
\]

If \(c > 0 \), it is defined everywhere. All of these sets are measurable. Thus, we consider in turn functions

\[
f(x_1, x_2) = x_1 / x_2 \quad f(x) = x^c
\]

and use Theorem 1.1.

The functions \(g_1 \lor g_2, g_1 \land g_2 \) are defined everywhere; so we consider functions

\[
f(x_1, x_2) = \max \{x_1, x_2\} \quad f(x_1, x_2) = \min \{x_1, x_2\}
\]

and again use Theorem 1.1. Finally, setting \(g_2 = 0 \) yields the measurability of \(g_1^+ \) and \(g_1^- \).

Theorem 1.3 If \(g_1 \) and \(g_2 \) are measurable functions on a common domain, then each of the sets

\[
\{ \omega : g_1(\omega) < g_2(\omega) \} \quad \{ \omega : g_1(\omega) = g_2(\omega) \} \quad \{ \omega : g_1(\omega) > g_2(\omega) \}
\]

is measurable.

Proof. Since \(g_1 \) and \(g_2 \) are measurable, then \(f = g_1 - g_2 \) is measurable, and thus the two sets

\[
\{ \omega : f(\omega) > 0 \} \quad \{ \omega : f(\omega) = 0 \}
\]

are measurable. Since

\[
\{ \omega : g_1(\omega) < g_2(\omega) \} \equiv \{ \omega : f(\omega) > 0 \}
\]

and

\[
\{ \omega : g_1(\omega) = g_2(\omega) \} \equiv \{ \omega : f(\omega) = 0 \} \cup \{ \omega : g_1(\omega) = g_2(\omega) = \pm \infty \}
\]

then \(\{ \omega : g_1(\omega) < g_2(\omega) \} \) and \(\{ \omega : g_1(\omega) = g_2(\omega) \} \) are measurable, and so is

\[
\{ \omega : g_1(\omega) \leq g_2(\omega) \} \equiv \{ \omega : g_1(\omega) < g_2(\omega) \} \cup \{ \omega : g_1(\omega) = g_2(\omega) \}.
\]
Theorem 1.4 MEASURABILITY UNDER LIMIT OPERATIONS
If \(\{g_n\} \) is a sequence of measurable functions, the functions \(\sup_n g_n \) and \(\inf_n g_n \) are measurable.

Proof. Let \(g = \sup_n g_n \). Then for real \(x \), consider
\[
 g_n^{-1}([-\infty, x]) \equiv \{ \omega : g_n(\omega) \leq x \}
\]
and
\[
 g^{-1}([-\infty, x]) \equiv \{ \omega : g(\omega) \leq x \}.
\]
If \(g = \sup_n g_n \), then \(g_n \leq g \) for all \(n \), and
\[
 g(\omega) \leq x \implies g_n(\omega) \leq x \quad \text{so that} \quad \omega \in g^{-1}([-\infty, x]) \implies \omega \in g_n^{-1}([-\infty, x])
\]
so that
\[
 g^{-1}([-\infty, x]) \subseteq g_n^{-1}([-\infty, x])
\]
for all \(n \). Thus, in fact
\[
 g^{-1}([-\infty, x]) = \bigcap_n g_n^{-1}([-\infty, x])
\]
and hence \(g \) is measurable, as the intersection of measurable sets is measurable. The result for \(\inf_n \) follows by noting that
\[
 \inf_n g_n = -\sup_n (-g_n).
\]

Theorem 1.5 MEASURABILITY UNDER LIMINF/LIMSUP
If \(\{g_n\} \) is a sequence of measurable functions, the functions \(\limsup_n g_n \) and \(\liminf_n g_n \) are measurable.

Proof. This follows from Theorem 1.4, as
\[
 \limsup_n g_n = \inf_k \left\{ \sup_{n \geq k} g_n \right\} \quad \text{and} \quad \liminf_n g_n = \sup_k \left\{ \inf_{n \geq k} g_n \right\}
\]

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Definition: Simple Functions
A *simple function*, \(\psi \), is a set function defined on elements \(\omega \) of sample space \(\Omega \) by
\[
 \psi(\omega) = \sum_{i=1}^{k} a_i I_{A_i}(\omega)
\]
for real constants \(a_1, ..., a_k \) and measurable sets \(A_1, ..., A_k \), for some \(k = 1, 2, 3, ..., \), where \(I_A(\omega) \) is the *indicator function*, where
\[
 I_A(\omega) = \begin{cases}
 1 & \omega \in A \\
 0 & \omega \notin A
\end{cases}.
\]
Note that any such simple function, can be re-expressed as a simple function defined for a *partition* of \(\Omega \), \(E_1, ..., E_l \),
\[
 \psi(\omega) = \sum_{i=1}^{l} e_i I_{E_i}(\omega)
\]
by suitable choice of the constants \(e_1, ..., e_k \).
Theorem 1.6 A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the simple function ψ_n on Ω by

$$
\psi_n(\omega) = \frac{m}{2^n} \quad \text{if} \quad \frac{m}{2^n} \leq g(\omega) < \frac{m+1}{2^n}
$$

for $m = 0, 1, 2, \ldots, 2^n - 1$, and

$$
\psi_n(\omega) = n \quad \text{if} \quad n \leq g(\omega).
$$

Then $\{\psi_n\}$ is an increasing sequence of non-negative simple functions. Since

$$
|\psi_n(\omega) - g(\omega)| < \frac{1}{2^n} \quad \text{if} \quad n > g(\omega)
$$

and $\psi_n(\omega) = n$ if $g(\omega) = \infty$, then, for all ω,

$$
\psi_n(\omega) \to g(\omega)
$$

and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is measurable by Theorem 1.5.

Theorem 1.7 A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g^+ and g^- are measurable and non-negative, and thus can be represented as limits of simple functions $\{\psi_n^+\}$ and $\{\psi_n^-\}$, by the Theorem 1.6. Consider the sequence of simple functions defined by $\{\psi_n^+ - \psi_n^-\}$; this sequence converges to $g^+ - g^- = g$, and we have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 1.5.