M3/M4S3 STATISTICAL THEORY II MEASURABLE FUNCTIONS

The real-valued function f defined with domain $E \subset \Omega$, for measurable space (Ω, \mathcal{F}) , is **Borel** measurable with respect to \mathcal{F} if the inverse image of set B, defined as

$$f^{-1}(B) \equiv \{\omega \in E : f(\omega) \in B\}$$

is an element of σ -algebra \mathcal{F} , for all Borel sets B of \mathbb{R} (strictly, of the *extended* real number system \mathbb{R}^* , including $\pm \infty$ as elements). The following conditions are each necessary and sufficient for f to be measurable

- (a) $f^{-1}(A) \in \mathcal{F}$ for all open sets $A \subset \mathbb{R}^*$,
- (b) $f^{-1}([-\infty, x)) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
- (c) $f^{-1}([-\infty, x]) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
- (d) $f^{-1}([x,\infty]) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$,
- (e) $f^{-1}((x,\infty]) \in \mathcal{F}$ for all $x \in \mathbb{R}^*$.

NOTES:

(i) The Borel σ -algebra in \mathbb{R} , \mathcal{B} , is the smallest (or minimal) σ -algebra containing all open sets (that is, essentially, sets of the form

$$(a,b)$$
 or $[a,b]'$

for $a < b \in \mathbb{R}$) which are known as the **Borel sets** in \mathbb{R} .

(ii) It is possible to extend this definition to a general **topological space** Ω equipped with a **topology**, that is, a collection, \mathcal{T} , of sets in Ω that (I) \mathcal{T} contains \emptyset and Ω , (II) \mathcal{T} is closed under finite intersection, and (III) if \mathcal{A} is a sub-collection of \mathcal{T} , $\mathcal{A} \subset \mathcal{T}$, and $A_1, A_2, A_3, ... \in \mathcal{A}$, then

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{T}.$$

In this context, it is possible to define a general Borel σ -algebra on Ω ; the **open sets** are the elements $T_1, T_2, T_3, ...$ of the topology \mathcal{T} , and the Borel sets are the elements of the smallest σ -algebra generated by \mathcal{T} , $\sigma(\mathcal{T})$. However, we will not be studying general toplogical spaces; we shall restrict attention to \mathbb{R} , and thus refer to **the** Borel sets and **the** Borel σ -algebra, meaning the Borel sets/ σ -algebra defined on \mathbb{R} .

(iii) Strictly, a function f is a **Borel function** if, for $B \in \mathcal{B}$, $f^{-1}(B) \in \sigma(\mathcal{T})$; however, we will generally consider measure spaces (Ω, \mathcal{F}) and say that f is a **Borel function** if it is Borel measurable, as defined in the first paragraph above.

Example Consider Lebesgue measure, m, defined for real numbers a < b (on the Borel σ -algebra on \mathbb{R} , \mathcal{B}) by

$$m([a,b]) = m((a,b)) = m((a,b]) = m([a,b)) = b - a.$$

Suppose f is an increasing function on \mathbb{R} . Then the set $A \equiv f^{-1}([-\infty, x])$ is an interval in \mathbb{R} , and thus f is measurable with respect to Lebesgue measure, as the measure of A, m(A), is well-defined. Now consider the function g defined by g(x) = x for $x \in \mathbb{R}$. This function is measurable with respect to Lebesgue measure (on \mathcal{B}), as it is increasing. However, consider the σ -algebra, \mathcal{Z} , generated by the sets $\{\emptyset, (-\infty, 0], (0, \infty), \mathbb{R}\}$. Then

$$g^{-1}\left((-\infty,1]\right) \notin \mathcal{Z}$$

so g is not measurable on \mathcal{Z} .

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1.1 MEASURABILITY UNDER COMPOSITION

Let g_1 and g_2 be measurable functions on $E \subset \Omega$ with ranges in \mathbb{R}^* . Let f be a Borel function from $\mathbb{R}^* \times \mathbb{R}^*$ into \mathbb{R}^* . Then the composite function h, defined on E by

$$h(\omega) = f(g_1(\omega_1), g_2(\omega_2))$$

is measurable.

Proof. The function $g = (g_1, g_2)$ has domain E and range $\mathbb{R}^* \times \mathbb{R}^*$, and is measurable as g_1 and g_2 are measurable, and denote $h = f \circ g$ (the operator \circ indicates composition, i.e.

$$h(\omega_1, \omega_2) = (f \circ g)(\omega_1, \omega_2)$$
 if $h(\omega_1, \omega_2) = f(g(\omega_1, \omega_2)) = f(g_1(\omega_1), g_2(\omega_2))$.

If $B \in \mathcal{B}$, then $f^{-1}(B)$ is a Borel set as f is a Borel function. Thus the inverse image under h,

$$h^{-1}(B) = g^{-1}(f^{-1}(B))$$

is measurable as g_1 and g_2 , and hence g, are measurable.

Corollary If g is a measurable function from E into \mathbb{R}^* , and f is a continuous function from \mathbb{R}^* into \mathbb{R}^* , then $h = f \circ g$ is measurable.

Theorem 1.2 MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g_1 and g_2 be measurable functions defined on $E \subset \Omega$ into \mathbb{R}^* , and let c be any real number. Then all of the following composite and other related functions are measurable

$$g_1+g_2, g_1+c, g_1g_2, cg_1, g_1/g_2, |g_1|^c, g_1\vee g_2, g_1\wedge g_2, g_1^+, g_1^-.$$

Proof. In each case, we examine the domain of the composite function to ensure measurability in the Borel σ -algebra. Consider $g_1 + g_2$; this is not defined on the set

$$\{\omega: g_1(\omega) = -g_2(\omega) = \pm \infty\}$$

(as $\infty \pm \infty$ is not defined), but this set is measurable, and so is the domain of $g_1 + g_2$. Let $f(x_1, x_2) = x_1 + x_2$ be a continuous function defined on $\mathbb{R}^* \times \mathbb{R}^*$. Then, by Theorem 1.1 and its corollary, $g_1 + g_2$ is measurable. Taking $g_2 = c$ proves that $g_1 + c$ is measurable.

The function g_1g_2 is defined everywhere on E; it's measurability follows from Theorem 1.1,

setting $f(x_1, x_2) = x_1x_2$. Setting $g_2 = c$ proves that cg_1 is measurable.

The function g_1/g_2 is defined everywhere except on the union of sets

$$\{\omega: g_1(\omega) = g_2(\omega) = 0\} \cup \{\omega: \pm g_1(\omega) = \pm g_2(\omega) = \infty\}$$

Similarly, if c = 0, $|g_1|^c$ is defined except on

$$\{\omega: g_1(\omega) = \pm \infty\};$$

if c < 0, it is defined except on

$$\{\omega: g_1(\omega)=0\}.$$

If c > 0, it is defined everywhere. All of these sets are measurable Thus, we consider in turn functions

$$f(x_1, x_2) = x_1/x_2$$
 $f(x) = x^c$

and use Theorem 1.1.

The functions $g_1 \vee g_2, g_1 \wedge g_2$ are defined everywhere; so we consider functions

$$f(x_1, x_2) = \max\{x_1, x_2\}$$
 $f(x_1, x_2) = \min\{x_1, x_2\}$

and again use Theorem 1.1. Finally, setting $g_2 = 0$ yields the measurability of g_1^+ and g_2^- .

Theorem 1.3 If g_1 and g_2 are measurable functions on a common domain, then each of the sets

$$\{\omega: g_1(\omega) < g_2(\omega)\}$$
 $\{\omega: g_1(\omega) = g_2(\omega)\}$ $\{\omega: g_1(\omega) > g_2(\omega)\}$

is measurable.

Proof. Since g_1 and g_2 are measurable, then $f = g_1 - g_2$ is measurable, and thus the two sets

$$\{\omega : f(\omega) > 0\}$$
 $\{\omega : f(\omega) = 0\}$

are measurable. Since

$$\{\omega : g_1(\omega) < g_2(\omega)\} \equiv \{\omega : f(\omega) > 0\}$$

and

$$\{\omega: g_1(\omega) = g_2(\omega)\} \equiv \{\omega: f(\omega) = 0\} \cup \{\omega: g_1(\omega) = g_2(\omega) = \pm \infty\}$$

then $\{\omega : g_1(\omega) < g_2(\omega)\}$ and $\{\omega : g_1(\omega) = g_2(\omega)\}$ are measurable, and so is

$$\left\{\omega:g_{1}\left(\omega\right)\leq g_{2}\left(\omega\right)\right\} \equiv \left\{\omega:g_{1}\left(\omega\right)< g_{2}\left(\omega\right)\right\} \cup \left\{\omega:g_{1}\left(\omega\right)=g_{2}\left(\omega\right)\right\}.$$

Theorem 1.4 MEASURABILITY UNDER LIMIT OPERATIONS

If $\{g_n\}$ is a sequence of measurable functions, the functions $\sup_n g_n$ and $\inf_n g_n$ are measurable.

Proof. Let $g = \sup_{n} g_n$. Then for real x, consider

$$g_n^{-1}([-\infty, x]) \equiv \{\omega : g_n(\omega) \le x\}$$

and

$$g^{-1}([-\infty, x]) \equiv \{\omega : g(\omega) \le x\}.$$

If $g = \sup_{n} g_n$, then $g_n \leq g$ for all n, and

$$g(\omega) \le x \Longrightarrow g_n(\omega) \le x$$
 so that $\omega \in g^{-1}([-\infty, x]) \Longrightarrow \omega \in g_n^{-1}([-\infty, x])$

so that

$$g^{-1}([-\infty, x]) \subseteq g_n^{-1}([-\infty, x])$$

for all n. Thus, in fact

$$g^{-1}([-\infty, x]) = \bigcap_{n} g_n^{-1}([-\infty, x])$$

and hence g is measurable, as the intersection of measurable sets is measurable. The result for inf follows by noting that

$$\inf_{n} g_n = -\sup_{n} \left(-g_n \right).$$

Theorem 1.5 MEASURABILITY UNDER LIMINF/LIMSUP

If $\{g_n\}$ is a sequence of measurable functions, the functions $\limsup_n g_n$ and $\liminf_n g_n$ are measurable.

Proof. This follows from Theorem 1.4, as

$$\limsup_{n} g_n = \inf_{k} \left\{ \sup_{n \ge k} g_n \right\} \quad \text{and} \quad \liminf_{n} g_n = \sup_{k} \left\{ \inf_{n \ge k} g_n \right\}$$

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Definition: Simple Functions

A simple function, ψ , is a set function defined on elements ω of sample space Ω by

$$\psi\left(\omega\right) = \sum_{i=1}^{k} a_{i} I_{A_{i}}\left(\omega\right)$$

for real constants $a_1, ..., a_k$ and measurable sets $A_1, ..., A_k$, for some k = 1, 2, 3, ..., where $I_A(\omega)$ is the *indicator function*, where

$$I_A(\omega) = \left\{ \begin{array}{ll} 1 & \omega \in A \\ 0 & \omega \notin A \end{array} \right.$$

Note that any such simple function, can be re-expressed as a simple function defined for a **partition** of Ω , $E_1, ..., E_l$,

$$\psi\left(\omega\right) = \sum_{i=1}^{l} e_{i} I_{E_{i}}\left(\omega\right)$$

by suitable choice of the constants $e_1, ..., e_k$.

Theorem 1.6 A non-negative function on Ω is measurable if and only if it is the limit of an increasing sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the simple function ψ_n on Ω by

$$\psi_n(\omega) = \frac{m}{2^n}$$
 if $\frac{m}{2^n} \le g(\omega) < \frac{m+1}{2^n}$

for $m = 0, 1, 2, ..., 2^n - 1$, and

$$\psi_n(\omega) = n$$
 if $n \le g(\omega)$.

Then $\{\psi_n\}$ is an increasing sequence of non-negative simple functions. Since

$$|\psi_n(\omega) - g(\omega)| < \frac{1}{2^n}$$
 if $n > g(\omega)$

and $\psi_n(\omega) = n$ if $g(\omega) = \infty$, then, for all ω ,

$$\psi_n(\omega) \to g(\omega)$$

and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it is measurable by Theorem 1.5.

Theorem 1.7 A function g defined on Ω is measurable if and only if it is the limit of a sequence of simple functions.

Proof. Suppose that g is measurable. Then g^+ and g^- are measurable and non-negative, and thus can be represented as limits of simple functions $\{\psi_n^+\}$ and $\{\psi_n^-\}$, by the Theorem 1.6. Consider the sequence of simple functions defined by $\{\psi_n^+ - \psi_n^-\}$; this sequence converges to $g^+ - g^- = g$, and we have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 1.5.