M3S3/S4 STATISTICAL THEORY II
 ASYMPTOTIC BEHAVIOUR OF THE MLE

ASSUMPTIONS: Consider a probability model defined on probability space ($\mathcal{X}, \mathcal{B}, P$). Suppose that P is indexed by parameter $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^{d}$, and that the corresponding distribution function is $F_{X \mid \boldsymbol{\theta}}$, with density (with respect to measure ν) denoted $f_{X \mid \boldsymbol{\theta}}$. Suppose that the true value of $\boldsymbol{\theta}$ is $\boldsymbol{\theta}_{\mathbf{0}}$.

A0. Identifiability

$$
f_{X \mid \boldsymbol{\theta}_{\mathbf{1}}}\left(x \mid \boldsymbol{\theta}_{\mathbf{1}}\right)=f_{X \mid \boldsymbol{\theta}_{\mathbf{2}}}\left(x \mid \boldsymbol{\theta}_{\mathbf{2}}\right) \forall x \in \mathbb{X} \equiv\left\{x: f_{X \mid \boldsymbol{\theta}}(x \mid \boldsymbol{\theta})>0\right\} \quad \Longleftrightarrow \quad \boldsymbol{\theta}_{\mathbf{1}}=\boldsymbol{\theta}_{\mathbf{2}}
$$

A1. The support of $f_{X \mid \boldsymbol{\theta}}, \mathbb{X}$, does not depend on $\boldsymbol{\theta}$.
A2. Random variables X_{1}, \ldots, X_{n} are i.i.d. from $P_{\boldsymbol{\theta}_{\mathbf{0}}}$ with distribution function $F_{X \mid \boldsymbol{\theta}_{0}}$.
A3. Θ contains an open neighbourhood, $\Theta_{0} \subset \mathbb{R}^{d}$, of $\boldsymbol{\theta}_{0}$ on which
(i) $l(\boldsymbol{\theta} ; x)=\log f_{X \mid \boldsymbol{\theta}}(x \mid \boldsymbol{\theta})$ is twice continuously differentiable with respect to $\boldsymbol{\theta}$, a.e. with respect to ν on \mathbb{X}.
(ii) Third derivatives of $l(\boldsymbol{\theta} ; x)$ exist and are absolutely bounded, that is

$$
\left|\dddot{l}_{j k l}(\boldsymbol{\theta} ; x)\right| \leq M_{j k l}(x) \quad \boldsymbol{\theta} \in \Theta_{0}
$$

for all j, k, l, for some function $M_{j k l}(x)$ where

$$
\dddot{l}_{j k l}(\boldsymbol{\theta} ; x)=\frac{\partial^{3} l(\boldsymbol{\theta} ; x)}{\partial \theta_{j} \partial \theta_{k} \partial \theta_{l}}
$$

and

$$
E_{f_{X \mid \theta_{0}}}\left[M_{j k l}(x)\right]<\infty
$$

A4. Let

$$
i_{j}(\boldsymbol{\theta})=\frac{\partial l(\boldsymbol{\theta} ; x)}{\partial \theta_{j}} \quad \ddot{l}_{j k}(\boldsymbol{\theta} ; x)=\frac{\partial^{2} l(\boldsymbol{\theta} ; x)}{\partial \theta_{j} \partial \theta_{k}}
$$

be components of the first partial derivative vector and second partial derivative matrix respectively. Then
(i) $E_{f_{X \mid \boldsymbol{\theta}_{0}}}\left[i_{j}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X\right)\right]=0$ for $j=1, \ldots, d$.
(ii) $E_{f_{X \mid \theta_{0}}}\left[\left(i_{j}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X\right)\right)^{2}\right]<\infty$ for $j=1, \ldots, d$.
(iii) The $d \times d$ matrix $I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)$ with $(j, k)^{\text {th }}$ entry

$$
E_{f_{X \mid \boldsymbol{\theta}_{0}}}\left[-\ddot{l}_{j k}\left(\boldsymbol{\theta}_{0} ; X\right)\right]
$$

is positive definitive.
One approach to finding the MLE based on data $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is to solve the system of likelihood equations

$$
\begin{equation*}
\dot{l}_{n}(\boldsymbol{\theta})=0 \tag{LE}
\end{equation*}
$$

that is, a system of d equations based on the first partial derivative vector \boldsymbol{i}_{n}.

Theorem 2.1 Asymptotic Behaviour of Solutions to the Likelihood Equations

Suppose that conditions A0 to $A 4$ hold. Define $(d \times 1)$ vector \boldsymbol{Z}_{n} by

$$
\boldsymbol{Z}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{i}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X_{i}\right)
$$

and the $(d \times 1)$ vector $\tilde{\boldsymbol{l}}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X\right)$ by

$$
\tilde{\boldsymbol{l}}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X\right)=I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \dot{\boldsymbol{l}}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X\right)
$$

so that

$$
I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \boldsymbol{Z}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \tilde{\boldsymbol{l}}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X_{i}\right) .
$$

Then
(i) EXISTENCE AND CONSISTENCY: As $n \longrightarrow \infty$, with probability converging to 1 , there exist solutions $\tilde{\boldsymbol{\theta}}_{n}$ of the likelihood equations (LE) such that

$$
\tilde{\boldsymbol{\theta}}_{n} \xrightarrow{p} \boldsymbol{\theta}_{\mathbf{0}} .
$$

(ii) ASYMPTOTIC NORMALITY: As $n \longrightarrow \infty$,

$$
\sqrt{n}\left(\tilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right)=I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \boldsymbol{Z}_{n}+o_{p}(1) \mathbf{1} \xrightarrow{\mathfrak{L}} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \boldsymbol{Z} \stackrel{\text { def }}{=} \boldsymbol{D} \sim N\left(\mathbf{0}, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

Proof.

(i) Existence And Consistency: Let $\delta>0$, and Q_{δ} be such that

$$
Q_{\delta}=\left\{\boldsymbol{\theta} \in \Theta:\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right\| \leq \delta\right\}
$$

Then, by a third order Taylor expansion around $\boldsymbol{\theta}_{\mathbf{0}}$,

$$
\begin{align*}
\frac{1}{n}\left(l_{n}(\boldsymbol{\theta})-l_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)= & \frac{1}{n}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top} \boldsymbol{l}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right) \tag{1}\\
& -\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top}\left(-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right) \tag{2}\\
& +\frac{1}{6} \frac{1}{n} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d}\left(\theta_{j}-\theta_{j 0}\right)\left(\theta_{k}-\theta_{k 0}\right)\left(\theta_{l}-\theta_{l 0}\right)\left\{\sum_{i=1}^{n} \gamma_{j k l}\left(X_{i}\right) M_{j k l}\left(X_{i}\right)\right\} \tag{3}\\
= & S_{1}+S_{2}+S_{3}
\end{align*}
$$

say, where by assumption A3(ii), $0 \leq\left|\gamma_{j k l}(x)\right|<1$. Now, by assumption A3(ii), it follows that the first derivatives are also bounded at $\boldsymbol{\theta}_{\mathbf{0}}$, so

$$
\begin{equation*}
S_{1} \xrightarrow{p} 0 \tag{4}
\end{equation*}
$$

as the term in equation (1) is a constant over n. Secondly, by assumption A4 and the Weak Law of Large Numbers (WLLN)

$$
-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)
$$

and hence

$$
S_{2}=-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top}\left(\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right) \xrightarrow{p}-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)
$$

Now, by properties of quadratic forms based on positive definite symmetric matrices, it can be shown that

$$
\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\mathrm{T}} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right) \geq \lambda_{d}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right\|^{2}
$$

where λ_{d} is the smallest eigenvalue of $I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)$. Then for $\boldsymbol{\theta} \in Q_{\delta}$

$$
\begin{equation*}
\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{\mathbf{0}}\right) \geq \lambda_{d} \delta^{2} \tag{5}
\end{equation*}
$$

Finally, using the WLLN on the term in equation (3),

$$
\begin{equation*}
S_{3} \xrightarrow{p} \frac{1}{6} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d}\left(\theta_{j}-\theta_{j 0}\right)\left(\theta_{k}-\theta_{k 0}\right)\left(\theta_{l}-\theta_{l 0}\right)\left\{\sum_{i=1}^{n} E\left[\gamma_{j k l}\left(X_{i}\right) M_{j k l}\left(X_{i}\right)\right]\right\} \tag{6}
\end{equation*}
$$

By equation (4), for any given $\epsilon, \delta>0$, the convergence in probability result ensures that for n large enough, with probability greater than $1-\epsilon$, for all $\boldsymbol{\theta} \in \Theta$,

$$
\begin{align*}
\left\|S_{1}\right\| & <d \delta^{3} \tag{7}\\
S_{2} & <-\lambda_{d} \delta^{2} / 4 \tag{8}\\
\left\|S_{3}\right\| & \leq \frac{1}{6}(d \delta)^{3} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d} m_{j k l} \tag{9}
\end{align*}
$$

where $m_{j k l}=E\left[M_{j k l}(X)\right]$. Hence, combining results (7), (8) and (9),

$$
\begin{align*}
\sup _{\boldsymbol{\theta} \in Q_{\delta}}\left(S_{1}+S_{2}+S_{3}\right) & \leq \sup _{\boldsymbol{\theta} \in Q_{\delta}}\left\|S_{1}+S_{3}\right\|+\sup _{\boldsymbol{\theta} \in Q_{\delta}} S_{2} \\
& <d \delta^{3}+M \delta^{3}-\frac{\lambda_{d}}{4} \delta^{2} \\
& =(d+M) \delta^{3}-\frac{\lambda_{d}}{4} \delta^{2} \tag{10}
\end{align*}
$$

where

$$
M=\frac{1}{6} d^{3} \sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{l=1}^{d} m_{j k l}
$$

Thus, if $\delta<\lambda_{d} / 4(M+d)$, the right hand side of equation (10) is negative, so

$$
\sup _{\boldsymbol{\theta} \in Q_{\delta}}\left(S_{1}+S_{2}+S_{3}\right)<0
$$

Thus, for n large enough, with probability at least $1-\epsilon$

$$
\frac{1}{n}\left(l_{n}(\boldsymbol{\theta})-l_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)<0
$$

or, equivalently,

$$
P\left[l_{n}(\boldsymbol{\theta})<l_{n}\left(\boldsymbol{\theta}_{0}\right) \text { for all } \boldsymbol{\theta} \in Q_{\delta}\right] \longrightarrow 1 \quad \text { as } \quad n \longrightarrow \infty
$$

that is, l has a local maximum inside Q_{δ}. Therefore, as the likelihood equations (LE) are satisfied at local maxima, it follows that (with probability converging to 1 as $n \longrightarrow \infty$) there exists a solution, $\tilde{\boldsymbol{\theta}}_{n}(\delta)$, within Q_{δ}, for any $0<\delta<\lambda_{d} / 4(M+d)$. As this holds for arbitrarily small δ, it follows that

$$
\lim _{n \longrightarrow \infty} P\left[\left\|\tilde{\boldsymbol{\theta}}_{n}(\delta)-\boldsymbol{\theta}_{\mathbf{0}}\right\|<\delta\right]=1 \quad \therefore \quad \tilde{\boldsymbol{\theta}}_{n}(\delta) \xrightarrow{p} \boldsymbol{\theta}_{\mathbf{0}} .
$$

(ii) Consider the set G_{n}

$$
G_{n}=\left\{\tilde{\boldsymbol{\theta}}_{n}: i_{n}\left(\tilde{\boldsymbol{\theta}}_{n}\right)=0 \text { and }\left\|\tilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right\|<\epsilon\right\}
$$

then $P_{\boldsymbol{\theta}_{\mathbf{0}}}\left(G_{n}\right) \longrightarrow 1$ as $n \longrightarrow \infty$. On this set, using a first order Taylor expansion of $\dot{\boldsymbol{l}}_{n}$ about $\boldsymbol{\theta}_{\mathbf{0}}$,

$$
\begin{equation*}
0=\frac{1}{\sqrt{n}} \dot{\boldsymbol{l}}_{n}\left(\tilde{\boldsymbol{\theta}}_{n}\right)=\frac{1}{\sqrt{n}} \dot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)-\sqrt{n}\left(\tilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top}\left(-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{n}^{\star}\right)\right) \tag{11}
\end{equation*}
$$

for some $\boldsymbol{\theta}_{n}^{\star}$ such that

$$
\begin{equation*}
\left\|\boldsymbol{\theta}_{n}^{\star}-\boldsymbol{\theta}_{\mathbf{0}}\right\| \leq\left\|\tilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\| \tag{12}
\end{equation*}
$$

From assumption A4(i) and (iii),

$$
\boldsymbol{Z}_{n}=\frac{1}{\sqrt{n}} \dot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{i}\left(\boldsymbol{\theta}_{\mathbf{0}} ; X_{i}\right) \xrightarrow{\mathfrak{L}} N\left(\mathbf{0}, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right) .
$$

Now, by equation (12),

$$
-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{n}^{\star}\right)=-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)+o_{p}(1) \mathbf{1}
$$

as $\tilde{\boldsymbol{\theta}}_{n}(\delta) \xrightarrow{p} \boldsymbol{\theta}_{\mathbf{0}}$, after considering another Taylor expansion of $\ddot{\boldsymbol{l}}$ about $\boldsymbol{\theta}_{\mathbf{0}}$, and the boundedness of the third derivatives in assumption A3(ii). Thus, with high probability, the inverse matrix

$$
\left(-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{n}^{\star}\right)\right)^{-1}
$$

exists and, by the continuous mapping result

$$
\left(-\frac{1}{n} \ddot{\boldsymbol{l}}_{n}\left(\boldsymbol{\theta}_{n}^{\star}\right)\right)^{-1} \xrightarrow{p} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}
$$

Hence, rearranging equation (11), we have that

$$
\sqrt{n}\left(\tilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{\mathbf{0}}\right)=I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \boldsymbol{Z}_{n}+o_{p}(1) \mathbf{1} \xrightarrow{\mathfrak{L}} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \boldsymbol{Z} \sim N\left(0, I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1}\right)
$$

Corollary : Delta Method

Suppose that $\boldsymbol{\phi}=\boldsymbol{g}(\boldsymbol{\theta})$ where \boldsymbol{g} is differentiable at $\boldsymbol{\theta}_{\mathbf{0}}$. Then $\tilde{\boldsymbol{\phi}}_{n}=\boldsymbol{g}\left(\tilde{\boldsymbol{\theta}}_{n}\right)$ satisfies

$$
\sqrt{n}\left(\tilde{\boldsymbol{\phi}}_{n}-\boldsymbol{\phi}_{\mathbf{0}}\right) \xrightarrow{\mathfrak{L}} N\left(\mathbf{0}, \dot{\boldsymbol{g}}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{\top} I\left(\boldsymbol{\theta}_{\mathbf{0}}\right)^{-1} \dot{\boldsymbol{g}}\left(\boldsymbol{\theta}_{\mathbf{0}}\right)\right)
$$

