M3S3/S4 STATISTICAL THEORY 11
ASYMPTOTIC BEHAVIOUR OF THE MLE

ASSUMPTIONS: Consider a probability model defined on probability space (X, B, P). Suppose that
P is indexed by parameter 8 € © C R%, and that the corresponding distribution function is F X|; With
density (with respect to measure v) denoted fx|g. Suppose that the true value of 8 is 6.

A0Q. Identifiability

fx|gl(x‘01) = fx|92(£6|62) VeeX= {l‘ : fX‘g(SC|0) > 0} = 91 = 92

Al. The support of fx|g, X, does not depend on 6.
A2. Random variables X, ..., X, are i.i.d. from Py, with distribution function Fxg,.

A3. © contains an open neighbourhood, ©g C R%, of 8y on which

(i) 1(0;x) = log fx|g(|0) is twice continuously differentiable with respect to 6, a.e. with
respect to v on X.

(ii) Third derivatives of [(0; ) exist and are absolutely bounded, that is
‘jjkl (9;90)’ < Mjp(x) 0 € O
for all j, k, 1, for some function M;,;(x) where

9%1(6; )
. 0 = B el R
ikt (8;) 00,001,00,

and
Ef oo [Mjri(2)] < 00
A Let olL(6; x) 921(0; )
L(0) = T (05 7) = 0,00,

be components of the first partial derivative vector and second partial derivative matrix respectively.
Then

() By, [z‘j(oo;X)} —0forj=1,...,d.
(ii) EfXWo [(l](ao,X))ﬂ <ooforj=1,...,d.

iii) The d x d matrix I(0g) with (j, k)™ entr
J y

EfX\BO [—ljk(ao; X)}
is positive definitive.

One approach to finding the MLE based on data * = (z1,...,x,) is to solve the system of likelihood
equations _
i,(6) =0 (LE)

that is, a system of d equations based on the first partial derivative vector l,.



Theorem 2.1 Asymptotic Behaviour of Solutions to the Likelihood Equations

Suppose that conditions A0 to A4 hold. Define (d x 1) vector Z,, by

1
Z, = — i X
ﬁ;lwo
and the (d x 1) vector 1(8g; X) by

so that

Then

(i) EXISTENCE AND CONSISTENCY: As n — oo, with probability converging to 1, there
exist solutions 0., of the likelihood equations (LE) such that

0, 2 6.
(ii) ASYMPTOTIC NORMALITY: As n — o,

(0, — 00) = I(80) "' Z,, + 0,(1)1 —=> 1(80)"'Z 2 D ~ N(0,1(80)7")

Proof.
(i) Existence And Consistency: Let § > 0, and @5 be such that
={0cO:|6-06| <d}.

Then, by a third order Taylor expansion around 6y,

(1a(6) < 1n(60)) = (0~ 80)Tin(60) (1)
~5(0-00)" (- 2i.(00)) (6~ 60) )
11 d d d
+6nj:1;;(9 i — 00) (01 — Or0) (61 — O10) {wa M X)} (3)
= 514+ 55+ 53

say, where by assumption A3(ii), 0 < |v;5(7)| < 1. Now, by assumption A3(ii), it follows that the
first derivatives are also bounded at 8¢, so

s, 250 (4)

as the term in equation (1) is a constant over n. Secondly, by assumption A4 and the Weak Law of
Large Numbers (WLLN)

—E(00) = 1(00)

and hence

5= (0~ 0)" (jjnwo)) (6~ 60) L+ —L(0— 80)T1(80)(8 - 0)



Now, by properties of quadratic forms based on positive definite symmetric matrices, it can be
shown that
(6 — 60)"1(80)(8 — B0) > Aall6 — 60>

where Ay is the smallest eigenvalue of I(6g). Then for 8 € Qs
(6 —60)"1(80)(0 — 0g) > \go>. (5)

Finally, using the WLLN on the term in equation (3),

P

d d
—

d
> DD (85— 050) Bk — O1o) (61 — bio) {ZE’Y]M Jkl(X)]} (6)

j=1k=1 1=1

=

By equation (4), for any given €, > 0, the convergence in probability result ensures that for n large
enough, with probability greater than 1 — ¢, for all 8 € ©,

1S < dé&® (7)

Sy < —)\d(52/4 (8)

d d
ISl < (@) >SS maw (9)

j=1 k=1 I=1
where mjp = E[Mj1,(X)]. Hence, combining results (7), (8) and (9),

sup (S1+ S2+S3) < sup ||S1+ Ss3|| + sup S

0cQs 0cQs 0cQs
< d&®+ M — %52
3 Ad 2
= (d+ M)o —Z(S (10)

where
d d d
LS Y
j=1k=11=1
Thus, if 6 < A\g/4(M + d), the right hand side of equation (10) is negative, so

cmr—*

sup (S1 +S2 4+ 53) <0
0cQs

Thus, for n large enough, with probability at least 1 — e

—(1,(0) = 1,(09)) <0

n

or, equivalently,
Pll,(0) <1,(0p) forall @ c Qs ] — 1 as n — 00,

that is, [ has a local maximum inside Q5. Therefore, as the likelihood equations (LE) are satisfied at
local maxima, it follows that (with probability converging to 1 as n — o0) there exists a solution,
0,,(9), within Qs, for any 0 < § < A\g/4(M + d). As this holds for arbitrarily small §, it follows that

lim P[||0,(6) — 0ol <6]=1 .. 6,(5) - 6.



(ii) Consider the set G,
G = {én :1,(6,) = 0 and [|0,, — 8| < e}

then Pg,(Gr) — 1 as n — oo. On this set, using a first order Taylor expansion of l,, about 6o,

1. - 1. ) AT
0= b (6,) = =(B0) — V(B — 00)" (1167 (1)
for some @ such that }
167, — Ool| < [0 — Bo|. (12)
From assumption A4(i) and (iii),
Z, = i, (60) 1§n:i(0 X;) -5 N(0, 1(60))
n \/ﬁ n 0 \/ﬁ P 0, 3 9 0

Now, by equation (12),
1. 1.
~20(85) = —in(60) + 0p(1)1

as én((S) 2, 6o, after considering another Taylor expansion of I about 89, and the boundedness of
the third derivatives in assumption A3(ii). Thus, with high probability, the inverse matrix

1. -1
exists and, by the continuous mapping result
1 -1
.. » B
(~2inon) 160"
Hence, rearranging equation (11), we have that

V(B — 60) = 1(80) ' Z,, + 0p(1)1 = 1(80) ' Z ~ N (0,1(60) ")

Corollary : Delta Method . 3
Suppose that ¢ = g(0) where g is differentiable at 8g. Then ¢,, = g(0,,) satisfies

Vi(dn — do) == N(0,§(60)T1(80) ' g(60))



