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M3S3/S4 STATISTICAL THEORY II

ASYMPTOTIC BEHAVIOUR OF THE MLE

ASSUMPTIONS: Consider a probability model defined on probability space (X ,B, P ). Suppose that
P is indexed by parameter θ ∈ Θ ⊆ Rd, and that the corresponding distribution function is FX|θ, with
density (with respect to measure ν) denoted fX|θ. Suppose that the true value of θ is θ0.

A0. Identifiability

fX|θ1
(x|θ1) = fX|θ2

(x|θ2) ∀ x ∈ X ≡ {x : fX|θ(x|θ) > 0} ⇐⇒ θ1 = θ2

A1. The support of fX|θ, X, does not depend on θ.

A2. Random variables X1, . . . , Xn are i.i.d. from Pθ0 with distribution function FX|θ0
.

A3. Θ contains an open neighbourhood, Θ0 ⊂ Rd, of θ0 on which

(i) l(θ; x) = log fX|θ(x|θ) is twice continuously differentiable with respect to θ, a.e. with
respect to ν on X.

(ii) Third derivatives of l(θ; x) exist and are absolutely bounded, that is
∣∣∣...l jkl (θ; x)

∣∣∣ ≤ Mjkl(x) θ ∈ Θ0

for all j, k, l, for some function Mjkl(x) where

...
l jkl (θ; x) =

∂3l(θ; x)
∂θj∂θk∂θl

and
EfX|θ0

[Mjkl(x)] < ∞

A4. Let

l̇j(θ) =
∂l(θ; x)

∂θj
l̈jk(θ; x) =

∂2l(θ; x)
∂θj∂θk

be components of the first partial derivative vector and second partial derivative matrix respectively.
Then

(i) EfX|θ0

[
l̇j(θ0; X)

]
= 0 for j = 1, . . . , d.

(ii) EfX|θ0

[
(l̇j(θ0; X))2

]
< ∞ for j = 1, . . . , d.

(iii) The d× d matrix I(θ0) with (j, k)th entry

EfX|θ0

[
−l̈jk(θ0; X)

]

is positive definitive.

One approach to finding the MLE based on data x = (x1, . . . , xn) is to solve the system of likelihood
equations

l̇n(θ) = 0 (LE)

that is, a system of d equations based on the first partial derivative vector l̇n.
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Theorem 2.1 Asymptotic Behaviour of Solutions to the Likelihood Equations

Suppose that conditions A0 to A4 hold. Define (d× 1) vector Zn by

Zn =
1√
n

n∑

i=1

l̇(θ0;Xi)

and the (d× 1) vector l̃(θ0;X) by
l̃(θ0; X) = I(θ0)−1l̇(θ0;X)

so that

I(θ0)−1Zn =
1√
n

n∑

i=1

l̃(θ0; Xi).

Then

(i) EXISTENCE AND CONSISTENCY: As n −→∞, with probability converging to 1, there
exist solutions θ̃n of the likelihood equations (LE) such that

θ̃n
p−→ θ0.

(ii) ASYMPTOTIC NORMALITY: As n −→∞,

√
n(θ̃n − θ0) = I(θ0)−1Zn + op(1)1 L−→ I(θ0)−1Z

def
= D ∼ N(0, I(θ0)−1)

Proof.

(i) Existence And Consistency: Let δ > 0, and Qδ be such that

Qδ = {θ ∈ Θ : ‖θ − θ0‖ ≤ δ}.
Then, by a third order Taylor expansion around θ0,

1
n

(ln(θ)− ln(θ0)) =
1
n

(θ − θ0)Tl̇n(θ0) (1)

−1
2
(θ − θ0)T

(
− 1

n
l̈n(θ0)

)
(θ − θ0) (2)

+
1
6

1
n

d∑

j=1

d∑

k=1

d∑

l=1

(θj − θj0)(θk − θk0)(θl − θl0)

{
n∑

i=1

γjkl(Xi)Mjkl(Xi)

}
(3)

= S1 + S2 + S3

say, where by assumption A3(ii), 0 ≤ |γjkl(x)| < 1. Now, by assumption A3(ii), it follows that the
first derivatives are also bounded at θ0, so

S1
p−→ 0 (4)

as the term in equation (1) is a constant over n. Secondly, by assumption A4 and the Weak Law of
Large Numbers (WLLN)

− 1
n

l̈n(θ0) L−→ I(θ0)

and hence

S2 = −1
2
(θ − θ0)T

(
1
n

l̈n(θ0)
)

(θ − θ0)
p−→ −1

2
(θ − θ0)TI(θ0)(θ − θ0)
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Now, by properties of quadratic forms based on positive definite symmetric matrices, it can be
shown that

(θ − θ0)TI(θ0)(θ − θ0) ≥ λd‖θ − θ0‖2

where λd is the smallest eigenvalue of I(θ0). Then for θ ∈ Qδ

(θ − θ0)TI(θ0)(θ − θ0) ≥ λdδ
2. (5)

Finally, using the WLLN on the term in equation (3),

S3
p−→ 1

6

d∑

j=1

d∑

k=1

d∑

l=1

(θj − θj0)(θk − θk0)(θl − θl0)

{
n∑

i=1

E[γjkl(Xi)Mjkl(Xi)]

}
(6)

By equation (4), for any given ε, δ > 0, the convergence in probability result ensures that for n large
enough, with probability greater than 1− ε, for all θ ∈ Θ,

‖S1‖ < dδ3 (7)

S2 < −λdδ
2/4 (8)

‖S3‖ ≤ 1
6
(dδ)3

d∑

j=1

d∑

k=1

d∑

l=1

mjkl (9)

where mjkl = E[Mjkl(X)]. Hence, combining results (7), (8) and (9),

sup
θ∈Qδ

(S1 + S2 + S3) ≤ sup
θ∈Qδ

‖S1 + S3‖+ sup
θ∈Qδ

S2

< dδ3 + Mδ3 − λd

4
δ2

= (d + M)δ3 − λd

4
δ2 (10)

where

M =
1
6
d3

d∑

j=1

d∑

k=1

d∑

l=1

mjkl

Thus, if δ < λd/4(M + d), the right hand side of equation (10) is negative, so

sup
θ∈Qδ

(S1 + S2 + S3) < 0.

Thus, for n large enough, with probability at least 1− ε

1
n

(ln(θ)− ln(θ0)) < 0

or, equivalently,

P [ ln(θ) < ln(θ0) for all θ ∈ Qδ ] −→ 1 as n −→∞,

that is, l has a local maximum inside Qδ. Therefore, as the likelihood equations (LE) are satisfied at
local maxima, it follows that (with probability converging to 1 as n −→∞) there exists a solution,
θ̃n(δ), within Qδ, for any 0 < δ < λd/4(M + d). As this holds for arbitrarily small δ, it follows that

lim
n−→∞P [ ‖θ̃n(δ)− θ0‖ < δ ] = 1 ∴ θ̃n(δ)

p−→ θ0.



4

(ii) Consider the set Gn

Gn =
{

θ̃n : l̇n(θ̃n) = 0 and ‖θ̃n − θ0‖ < ε
}

then Pθ0(Gn) −→ 1 as n −→∞. On this set, using a first order Taylor expansion of l̇n about θ0,

0 =
1√
n

l̇n(θ̃n) =
1√
n

l̇n(θ0)−√n(θ̃n − θ0)T
(
− 1

n
l̈n(θ?

n)
)

(11)

for some θ?
n such that

‖θ?
n − θ0‖ ≤ ‖θ̃n − θ0‖. (12)

From assumption A4(i) and (iii),

Zn =
1√
n

l̇n(θ0) =
1√
n

n∑

i=1

l̇(θ0;Xi)
L−→ N(0, I(θ0)).

Now, by equation (12),

− 1
n

l̈n(θ?
n) = − 1

n
l̈n(θ0) + op(1)1

as θ̃n(δ)
p−→ θ0, after considering another Taylor expansion of l̈ about θ0, and the boundedness of

the third derivatives in assumption A3(ii). Thus, with high probability, the inverse matrix

(
− 1

n
l̈n(θ?

n)
)−1

exists and, by the continuous mapping result
(
− 1

n
l̈n(θ?

n)
)−1

p−→ I(θ0)−1.

Hence, rearranging equation (11), we have that

√
n(θ̃n − θ0) = I(θ0)−1Zn + op(1)1 L−→ I(θ0)−1Z ∼ N

(
0, I(θ0)−1

)

¥

Corollary : Delta Method
Suppose that φ = g(θ) where g is differentiable at θ0. Then φ̃n = g(θ̃n) satisfies

√
n(φ̃n − φ0) L−→ N(0, ġ(θ0)TI(θ0)−1ġ(θ0))


