M3/M4S3 STATISTICAL THEORY II LIMITS FOR REAL FUNCTIONS

Definition : Limits

Let f be a real-valued function of real argument x.

- Limit as $x \longrightarrow \infty$:

$$
f(x) \longrightarrow a \quad \text { as } \quad x \longrightarrow \infty
$$

or

$$
\lim _{x \longrightarrow \infty} f(x)=a
$$

if, for all $\varepsilon>0, \exists M=M(\varepsilon)$ such that $|f(x)-a|<\varepsilon, \forall x>M$

- Limit as $x \longrightarrow x_{0}^{ \pm}$:

$$
f(x) \longrightarrow a \quad \text { as } \quad x \longrightarrow x_{0}^{ \pm}
$$

or

$$
\lim _{x \longrightarrow x_{0}^{ \pm}} f(x)=a
$$

if, for all $\varepsilon>0, \exists \delta$ such that $|f(x)-a|<\varepsilon, \forall x_{0}<x<x_{0}+\delta$ (or, respectively $x_{0}-\delta<x<x_{0}$).

- Limit as $x \longrightarrow x_{0}$:

$$
f(x) \longrightarrow a \quad \text { as } \quad x \longrightarrow x_{0}
$$

or

$$
\lim _{x \longrightarrow x_{0}} f(x)=a
$$

if

$$
\lim _{x \longrightarrow x_{0}^{+}} f(x)=\lim _{x \longrightarrow x_{0}^{-}} f(x)=a
$$

Definition : Order Notation

Let $x \longrightarrow x_{0}$. Then write

$$
\begin{array}{ccc}
f(x) \sim g(x) & \text { if } & \frac{f(x)}{g(x)} \longrightarrow 1 \quad \text { as } \quad x \longrightarrow x_{0} \\
f(x)=o(g(x)) & \text { if } & \frac{f(x)}{g(x)} \longrightarrow 0 \quad \text { as } \quad x \longrightarrow x_{0} \\
f(x)=O(g(x)) & \text { if } & \frac{f(x)}{g(x)} \longrightarrow b \quad \text { as } \quad x \longrightarrow x_{0}
\end{array}
$$

Definition : Continuity

Function $f(x)$ is continuous at x_{0} if

$$
\lim _{x \longrightarrow x_{0}^{+}} f(x)=\lim _{x \longrightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)
$$

and all limits exist.

Definition : Maximum and Minimum functions

For real-valued functions f and g of $x \in \mathbb{R}$,

$$
f(x) \wedge g(x)=\min \{f(x), g(x)\} \quad f(x) \vee g(x)=\max \{f(x), g(x)\}
$$

Definition : Positive and Negative Part functions

For real-valued functions f of $x \in \mathbb{R}$,

$$
f^{+}(x)=f(x) \vee 0=\max \{f(x), 0\} \quad f^{-}(x)=-f(x) \vee 0=\max \{-f(x), 0\}
$$

so that $f^{+}(x) \geq 0$ and $f^{-}(x) \geq 0$ for all x, and

$$
f(x)=f^{+}(x)-f^{-}(x) \quad|f(x)|=f^{+}(x)+f^{-}(x)
$$

EXTREMUM LIMITS FOR SEQUENCES

Definition : Supremum and Infimum

A set of real values S is bounded above (bounded below) if there exists a real number $a(b)$ such that, for all $x \in S, x \leq a(x \geq b)$. The quantity $a(b)$ is an upper bound (lower bound). A real value $a_{L}\left(b_{U}\right)$ is a least upper bound (greatest lower bound) if it is an upper bound (a lower bound) of S, and no other upper (lower) bound is smaller (larger) than $a_{L}\left(b_{U}\right)$. We write

$$
a_{L}=\sup S \quad b_{U}=\inf S
$$

for the a_{L}, the supremum, and b_{U}, the infimum of S.
If S comprises a sequence of elements $\left\{x_{n}\right\}$, then we can write

$$
a_{L}=\sup _{x_{n} \in S} x_{n} \equiv \sup _{n} x_{n} \quad b_{U}=\inf _{x_{n} \in S} x_{n} \equiv \inf _{n} x_{n}
$$

A sequence that is both bounded above and bounded below is termed bounded.
NOTE : Any bounded, monotone real sequence is convergent.

Definition : Limit Superior and Limit Inferior

Suppose that $\left\{x_{n}\right\}$ is a bounded real sequence. Define sequences $\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ by

$$
y_{k}=\inf _{n \geq k} x_{n} \quad z_{k}=\sup _{n \geq k} x_{n}
$$

Then $\left\{y_{k}\right\}$ is a bounded non-decreasing sequence and $\left\{z_{k}\right\}$ is a bounded non-increasing sequence, and

$$
\lim _{k \rightarrow \infty} y_{k}=\sup _{k} y_{k} \quad \text { and } \quad \lim _{k \rightarrow \infty} z_{k}=\inf _{k} z_{k}
$$

We define the limit superior (or upper limit, or limsup) and the limit inferior (or lower limit, or liminf) by

$$
\begin{aligned}
\limsup x_{n} & =\lim _{k \rightarrow \infty} \sup _{n \geq k} x_{n}=\inf _{k} \sup _{n \geq k} x_{n}=\overline{\lim } x_{n} \\
\liminf x_{n} & =\lim _{k \rightarrow \infty} \inf _{n \geq k} x_{n}=\sup _{k} \inf _{n \geq k} x_{n}=\underline{\lim } x_{n}
\end{aligned}
$$

Then we have $\underline{\lim } x_{n} \leq \overline{\lim } x_{n}$ and $\lim x_{n}=x$ if and only if $\underline{\lim } x_{n}=x=\overline{\lim } x_{n}$.

