M3/M4S3 STATISTICAL THEORY II LIMITS FOR REAL FUNCTIONS

Definition : Limits

Let f be a real-valued function of real argument x.

• Limit as $x \longrightarrow \infty$:

 $f(x) \longrightarrow a \quad \text{as} \quad x \longrightarrow \infty$

or

$$\lim_{x \to \infty} f(x) = a$$

if, for all $\varepsilon > 0$, $\exists M = M(\varepsilon)$ such that $|f(x) - a| < \varepsilon, \forall x > M$

• Limit as $x \longrightarrow x_0^{\pm}$:

$$f(x) \longrightarrow a \quad \text{as} \quad x \longrightarrow x_0^{\pm}$$

or

$$\lim_{x \longrightarrow x_0^{\pm}} f(x) = a$$

if, for all $\varepsilon > 0$, $\exists \delta$ such that $|f(x) - a| < \varepsilon$, $\forall x_0 < x < x_0 + \delta$ (or, respectively $x_0 - \delta < x < x_0$).

• Limit as $x \longrightarrow x_0$:

$$\lim_{x \longrightarrow x_0} f(x) = a$$

 $f(x) \longrightarrow a$ as $x \longrightarrow x_0$

if

or

$$\lim_{x \longrightarrow x_0^+} f(x) = \lim_{x \longrightarrow x_0^-} f(x) = a.$$

Definition : Order Notation

Let $x \longrightarrow x_0$. Then write

$$\begin{aligned} f(x) \sim g(x) & \text{if} & \frac{f(x)}{g(x)} \longrightarrow 1 \quad \text{as} \quad x \longrightarrow x_0 \\ f(x) = o(g(x)) & \text{if} & \frac{f(x)}{g(x)} \longrightarrow 0 \quad \text{as} \quad x \longrightarrow x_0 \\ f(x) = O(g(x)) & \text{if} & \frac{f(x)}{g(x)} \longrightarrow b \quad \text{as} \quad x \longrightarrow x_0 \end{aligned}$$

Definition : Continuity

Function f(x) is continuous at x_0 if

$$\lim_{x \longrightarrow x_0^+} f(x) = \lim_{x \longrightarrow x_0^-} f(x) = f(x_0)$$

and all limits exist.

For real-valued functions f and g of $x \in \mathbb{R}$,

$$f(x) \land g(x) = \min\{f(x), g(x)\} \qquad \qquad f(x) \lor g(x) = \max\{f(x), g(x)\}\$$

Definition : Positive and Negative Part functions

For real-valued functions f of $x \in \mathbb{R}$,

$$f^{+}(x) = f(x) \lor 0 = \max\{f(x), 0\} \qquad f^{-}(x) = -f(x) \lor 0 = \max\{-f(x), 0\}$$

so that $f^+(x) \ge 0$ and $f^-(x) \ge 0$ for all x, and

$$f(x) = f^{+}(x) - f^{-}(x) \qquad |f(x)| = f^{+}(x) + f^{-}(x)$$

EXTREMUM LIMITS FOR SEQUENCES

Definition : Supremum and Infimum

A set of real values S is **bounded above (bounded below)** if there exists a real number a (b) such that, for all $x \in S$, $x \leq a$ ($x \geq b$). The quantity a (b) is an **upper bound (lower bound)**. A real value a_L (b_U) is a **least upper bound (greatest lower bound)** if it is an upper bound (a lower bound) of S, and no other upper (lower) bound is smaller (larger) than a_L (b_U). We write

 $a_L = \sup S$ $b_U = \inf S$

for the a_L , the **supremum**, and b_U , the **infimum** of S.

If S comprises a sequence of elements $\{x_n\}$, then we can write

$$a_L = \sup_{x_n \in S} x_n \equiv \sup_n x_n$$
 $b_U = \inf_{x_n \in S} x_n \equiv \inf_n x_n.$

A sequence that is both bounded above and bounded below is termed **bounded**.

NOTE : Any bounded, monotone real sequence is **convergent**.

Definition : Limit Superior and Limit Inferior

Suppose that $\{x_n\}$ is a bounded real sequence. Define sequences $\{y_k\}$ and $\{z_k\}$ by

$$y_k = \inf_{n \ge k} x_n$$
 $z_k = \sup_{n \ge k} x_n$

Then $\{y_k\}$ is a bounded non-decreasing sequence and $\{z_k\}$ is a bounded non-increasing sequence, and

$$\lim_{k \to \infty} y_k = \sup_k y_k \quad \text{and} \quad \lim_{k \to \infty} z_k = \inf_k z_k$$

We define the **limit superior** (or **upper** limit, or lim sup) and the **limit inferior** (or **lower** limit, or lim inf) by

$$\limsup x_n = \lim_{k \to \infty} \sup_{n \ge k} x_n = \inf_k \sup_{n \ge k} x_n = \lim_k x_n$$
$$\liminf x_n = \lim_{k \to \infty} \inf_{n \ge k} x_n = \sup_k \inf_{n \ge k} x_n = \lim_k x_n$$

Then we have $\underline{\lim} x_n \leq \overline{\lim} x_n$ and $\lim x_n = x$ if and only if $\underline{\lim} x_n = x = \overline{\lim} x_n$.