M3/M4S3 STATISTICAL THEORY II LAWS OF LARGE NUMBERS

Theorem 1.9 Behaviour of the Sample Mean.

Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$, be independent, identically distributed (i.i.d.) random variables in \mathbb{R}^{k}. Let

$$
\overline{\boldsymbol{X}}_{n}=\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{X}_{j} .
$$

(a) The Weak Law If $E[|\boldsymbol{X}|]<\infty$, then

$$
\overline{\boldsymbol{X}}_{n} \xrightarrow{p} \boldsymbol{\mu}=E[\boldsymbol{X}]
$$

(b) If $E\left[|\boldsymbol{X}|^{2}\right]<\infty$, then

$$
\overline{\boldsymbol{X}}_{n} \xrightarrow{r=2} \boldsymbol{\mu}=E[\boldsymbol{X}]
$$

also written

$$
\overline{\boldsymbol{X}}_{n} \xrightarrow{q . m .} \boldsymbol{\mu}=E[\boldsymbol{X}]
$$

where $q . m$. stands for "quadratic mean".
(c) The Strong Law

$$
\overline{\boldsymbol{X}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\mu} \quad \Longleftrightarrow \quad E[|\boldsymbol{X}|]<\infty \text { and } E[\boldsymbol{X}]=\boldsymbol{\mu}
$$

Proof. (a) Proof uses characteristic functions (cfs): let the cf of \boldsymbol{X} be $C_{\boldsymbol{X}}(\boldsymbol{t})$. Then, by elementary generating function results for sums of i.i.d. variables,

$$
C_{\overline{\boldsymbol{X}}_{n}}(\boldsymbol{t})=\left\{C_{\boldsymbol{X}}(\boldsymbol{t} / n)\right\}^{n}
$$

and by the Mean-Value Theorem with $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0}$,

$$
\begin{aligned}
C_{\overline{\boldsymbol{X}}_{n}}(\boldsymbol{t}) & =\left\{C_{\boldsymbol{X}}(\mathbf{0})+\left[\int_{0}^{1} \dot{C}_{\overline{\boldsymbol{X}}_{n}}(u \boldsymbol{t} / n) d u\right] \frac{\boldsymbol{t}}{n}\right\}^{n} \\
& =\left\{1+\left[\int_{0}^{1} \dot{C}_{\bar{X}_{n}}(u \boldsymbol{t} / n) d u\right] \frac{\boldsymbol{t}}{n}\right\}^{n} .
\end{aligned}
$$

But, as $n \longrightarrow \infty, u \boldsymbol{t} / n \longrightarrow \mathbf{0}$, so

$$
\dot{C}_{\overline{\boldsymbol{X}}_{n}}(u \boldsymbol{t} / n) \longrightarrow \dot{C}_{\overline{\boldsymbol{X}}_{n}}(\mathbf{0})=i \boldsymbol{\mu}^{\top} .
$$

Thus,

$$
C_{\overline{\boldsymbol{X}}_{n}}(\boldsymbol{t}) \longrightarrow\left\{1+\frac{i \boldsymbol{\mu}^{\top} \boldsymbol{t}}{n}\right\}^{n} \longrightarrow \exp \left\{i \boldsymbol{\mu}^{\top} \boldsymbol{t}\right\}=\exp \left\{i \boldsymbol{t}^{\top} \boldsymbol{\mu}\right\}
$$

as $n \longrightarrow \infty$. But this is just the cf of a random variable that is degenerate at $\boldsymbol{\mu}$, so the result follows.
(b) We have

$$
\begin{array}{rlr}
E\left[\left|\overline{\boldsymbol{X}}_{\boldsymbol{n}}-\boldsymbol{\mu}\right|^{2}\right] & =E\left[\left(\overline{\boldsymbol{X}}_{\boldsymbol{n}}-\boldsymbol{\mu}\right)^{\top}\left(\overline{\boldsymbol{X}}_{\boldsymbol{n}}-\boldsymbol{\mu}\right)\right]=\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{l=1}^{n} E\left[\left(\boldsymbol{X}_{j}-\boldsymbol{\mu}\right)^{\top}\left(\boldsymbol{X}_{l}-\boldsymbol{\mu}\right)\right] \\
& =\frac{1}{n^{2}} \sum_{j=1}^{n} E\left[\left(\boldsymbol{X}_{j}-\boldsymbol{\mu}\right)^{\top}\left(\boldsymbol{X}_{j}-\boldsymbol{\mu}\right)\right] \quad \text { by independence } \\
& =\frac{1}{n} E\left[(\boldsymbol{X}-\boldsymbol{\mu})^{\top}(\boldsymbol{X}-\boldsymbol{\mu})\right] \quad \text { as all terms in sum are identical constants } \\
& \longrightarrow 0 &
\end{array}
$$

as $n \longrightarrow \infty$. Thus $\overline{\boldsymbol{X}}_{\boldsymbol{n}} \xrightarrow{r=2} \boldsymbol{\mu}$.
(c) Omitted.

