M3/M4S3 STATISTICAL THEORY II THE BOREL-CANTELLI LEMMA

Definition : Limsup and liminf events

Let $\left\{E_{n}\right\}$ be a sequence of events in sample space Ω. Then

$$
E^{(S)}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}
$$

is the limsup event of the infinite sequence; event $E^{(S)}$ occurs if and only if

- for all $n \geq 1$, there exists an $m \geq n$ such that E_{m} occurs.
- infinitely many of the E_{n} occur.

Similarly, let

$$
E^{(I)}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} E_{m}
$$

is the liminf event of the infinite sequence; event $E^{(I)}$ occurs if and only if

- there exists $n \geq 1$, such that for all $m \geq n, E_{m}$ occurs.
- only finitely many of the E_{n} do not occur.

Theorem 1.8 The Borel-Cantelli Lemma

Let $\left\{E_{n}\right\}$ be a sequence of events in sample space Ω. Then
(a) If

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty
$$

then

$$
P\left(E^{(S)}\right)=0
$$

that is,

$$
P\left[E_{n} \text { occurs infinitely often }\right]=0 .
$$

(b) If

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)=\infty
$$

and the events $\left\{E_{n}\right\}$ are independent, then

$$
P\left(E^{(S)}\right)=1
$$

that is,

$$
P\left[E_{n} \text { occurs infinitely often }\right]=1 .
$$

Proof. (i) Note first that

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(E_{n}\right)<\infty \Longrightarrow \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathrm{P}\left(E_{m}\right)=0
$$

because if the sum on the left-hand side is finite, then the tail-sums on the right-hand side tend to zero as $n \rightarrow \infty$. But for every $n \geq 1$,

$$
\begin{equation*}
E^{(S)}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m} \subseteq \bigcup_{m=n}^{\infty} E_{m} \tag{1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathrm{P}\left(E^{(S)}\right) \leq \mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right) \leq \sum_{m=n}^{\infty} \mathrm{P}\left(E_{m}\right) . \tag{2}
\end{equation*}
$$

Thus, taking limits as $n \longrightarrow \infty$, we have that

$$
\mathrm{P}\left(E^{(S)}\right) \leq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathrm{P}\left(E_{m}\right)=0
$$

(ii) Consider $N \geq n$, and the union of events

$$
E_{n, N}=\bigcup_{m=n}^{N} E_{m} .
$$

$E_{n, N}$ corresponds to the collection of sample outcomes that are in at least one of the collections corresponding to events E_{n}, \ldots, E_{N}. Therefore, $E_{n, N}^{\prime}$ is the collection of sample outcomes in Ω that are not in any of the collections corresponding to events E_{n}, \ldots, E_{N}, and hence

$$
\begin{equation*}
E_{n, N}^{\prime}=\bigcap_{m=n}^{N} E_{m}^{\prime} \tag{3}
\end{equation*}
$$

Now,

$$
E_{n, N} \subseteq \bigcup_{m=n}^{\infty} E_{m} \quad \Longrightarrow \quad \mathrm{P}\left(E_{n, N}\right) \leq \mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right)
$$

and hence, by assumption and independence,

$$
\begin{aligned}
1-\mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right) & \leq 1-\mathrm{P}\left(\bigcup_{m=n}^{N} E_{m}\right)=1-\mathrm{P}\left(E_{n, N}\right)=\mathrm{P}\left(E_{n, N}^{\prime}\right)=\mathrm{P}\left(\bigcap_{m=n}^{N} E_{m}^{\prime}\right)=\prod_{m=n}^{N} \mathrm{P}\left(E_{m}^{\prime}\right) \\
& =\prod_{m=n}^{N}\left(1-\mathrm{P}\left(E_{m}\right)\right) \leq \exp \left\{-\sum_{m=n}^{N} \mathrm{P}\left(E_{m}\right)\right\}
\end{aligned}
$$

as $1-x \leq \exp \{-x\}$ for $0<x<1$. Now, taking the limit of both sides as $N \rightarrow \infty$, for fixed n,

$$
1-\mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right) \leq \lim _{N \rightarrow \infty} \exp \left\{-\sum_{m=n}^{N} \mathrm{P}\left(E_{m}\right)\right\}=0
$$

as, by assumption $\sum_{n=1}^{\infty} \mathrm{P}\left(E_{n}\right)=\infty$. Thus, for each n, we have that

$$
\mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right)=1
$$

and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcup_{m=n}^{\infty} E_{m}\right)=1 . \tag{4}
\end{equation*}
$$

But the sequence of events $\left\{A_{n}\right\}$ defined for $n \geq 1$ by

$$
A_{n}=\bigcup_{m=n}^{\infty} E_{m}
$$

is monotone non-increasing, and hence, by continuity,

$$
\begin{equation*}
\mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right) \tag{5}
\end{equation*}
$$

From (4), we have that the right hand side of equation (5) is equal to 1 , and, by definition,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m} . \tag{6}
\end{equation*}
$$

Hence, combining (4), (5) and (6) we have finally that

$$
\mathrm{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}\right)=1 \quad \Longrightarrow \quad \mathrm{P}\left(E^{(S)}\right)=1
$$

Interpretation and Implications

The Borel-Cantelli result is concerned with the calculation of the probability of the limsup event $E^{(S)}$ occurring for general infinite sequences of events $\left\{E_{n}\right\}$. From previous discussion, we have seen that $E^{(S)}$ corresponds to the collection of sample outcomes in Ω that are in infinitely many of the E_{n} collections. Alternately, $E^{(S)}$ occurs if and only if infinitely many $\left\{E_{n}\right\}$ occur. The Borel-Cantelli result tells us conditions under which $\mathrm{P}\left(E^{(S)}\right)=0$ or 1 .
EXAMPLE : Consider the event E defined by
" E occurs" $=$ "run of 100^{100} Heads occurs in an infinite sequence of independent coin tosses"
We wish to calculate $\mathrm{P}(E)$, and proceed as follows; consider the infinite sequence of events $\left\{E_{n}\right\}$ defined by

$$
" E_{n} \text { occurs" }=\text { "run of } 100^{100} \text { Heads occurs in the } n \text {th block of } 100^{100} \text { coin tosses" }
$$

Then $\left\{E_{n}\right\}$ are independent events, and

$$
\mathrm{P}\left(E_{n}\right)=\frac{1}{2^{100^{100}}}>0 \Longrightarrow \sum_{n=1}^{\infty} \mathrm{P}\left(E_{n}\right)=\infty,
$$

and hence by part (b) of the Borel-Cantelli result,

$$
\mathrm{P}\left(E^{(S)}\right)=\mathrm{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}\right)=1
$$

so that the probability that infinitely many of the $\left\{E_{n}\right\}$ occur is 1 . But, crucially,

$$
E^{(S)} \subseteq E \Longrightarrow \mathrm{P}(E)=1
$$

Therefore the probability that E occurs, that is that a run of 100^{100} Heads occurs in an infinite sequence of independent coin tosses, is 1 .

