M3S3/M4S3 - EXERCISES 4

BAYESIAN CALCULATIONS

1. In the identity for scalar x

$$
A(x-a)^{2}+B(x-b)^{2}=C(x-c)^{2}+d
$$

find the constants c, C and d in terms of quantities A, B, a, b. Hence show that in the standard Bayesian calculation for data $X_{1}, \ldots X_{n}$ iid from model with likelihood/prior components

$$
\begin{aligned}
f_{X \mid \mu}(X \mid \mu) & \equiv N(\mu, 1) \\
p_{\mu}(\mu) & \equiv N\left(\theta, \tau^{2}\right)
\end{aligned}
$$

with $\left(\theta, \tau^{2}\right)$ as fixed constants (known as hyperparameters), the posterior distribution for μ given x_{1}, \ldots, x_{n} is also Normal.

Find a similar identity when \boldsymbol{x} is a $d \times 1$ vector; that is, find an expression equating to

$$
(\boldsymbol{x}-\boldsymbol{a})^{\top} A(\boldsymbol{x}-\boldsymbol{a})+(\boldsymbol{x}-\boldsymbol{b})^{\top} B(\boldsymbol{x}-\boldsymbol{b})
$$

where \boldsymbol{a} and \boldsymbol{b} are $d \times 1$ vectors and A and B are $d \times d$ matrices.
2. Suppose that n i.i.d. random variables, with probability model $f_{X \mid \boldsymbol{\theta}}$ in parameters $\boldsymbol{\theta}$, are partitioned into two blocks $\underset{\sim}{X}=\left(\underset{\sim}{X}, \underset{\sim_{2}}{X}\right)^{\top}$, where $\underset{\sim}{X}$ and $\underset{\sim}{X}$ are $n_{1} \times 1$ and $n_{2} \times 1$ vectors respectively. Show that the posterior distribution for $\boldsymbol{\theta}$ has the representation

$$
p_{\boldsymbol{\theta} \mid \underset{\sim}{X}}(\boldsymbol{\theta} \mid x)=\frac{L_{n_{2}}(\boldsymbol{\theta}) p_{\boldsymbol{\theta} \mid X_{1}}\left(\boldsymbol{\theta} \mid x_{1}\right)}{\int L_{n_{2}}(\boldsymbol{\theta}) p_{\boldsymbol{\theta} \mid \mathbb{X}_{1}}\left(\boldsymbol{\theta} \mid x_{1}\right) d \boldsymbol{\theta}}
$$

where $L_{n_{2}}(\boldsymbol{\theta})$ is the likelihood for data $\underset{\sim}{X}$ alone, and $p_{\boldsymbol{\theta} \mid{\underset{\sim}{x}}_{1}^{X}}\left(\boldsymbol{\theta} \mid{\underset{\sim}{x}}_{1}\right)$ is the posterior distribution for $\boldsymbol{\theta}$ in light of data $\underset{\sim}{X}=\underset{\sim}{x}$ alone.
3. Find the posterior predictive density, $f_{{\underset{\sim}{X}}^{\star} \mid \underset{\sim}{X}}$ for potential future data ${\underset{\sim}{X}}^{\star}$ (a vector of n^{\star} values) given $\underset{\sim}{X}=\underset{\sim}{x}$ using the definition

$$
f_{\underset{\sim}{X^{\star}} \mid \underset{\sim}{X}}\left(x^{\star} \mid \underset{\sim}{x}\right)=\int f_{{\underset{X}{X}}^{\star} \mid \boldsymbol{\theta}}\left(x^{\star} \mid \boldsymbol{\theta}\right) p_{\boldsymbol{\theta} \mid \underset{\sim}{X}}(\boldsymbol{\theta} \mid \underset{\sim}{x}) d \boldsymbol{\theta}=\int\left\{\prod_{i=1}^{n^{\star}} f_{X \mid \boldsymbol{\theta}}\left(x_{i}^{\star} \mid \boldsymbol{\theta}\right)\right\} p_{\boldsymbol{\theta} \mid \underset{\sim}{X}}(\boldsymbol{\theta} \mid x) d \boldsymbol{\theta}
$$

and $p_{\boldsymbol{\theta} \mid \underset{\sim}{X}}(\boldsymbol{\theta} \mid \underset{\sim}{x})$ is the usual posterior distribution, if the model is specified as follows:
(i)

$$
\begin{aligned}
\text { Likelihood } & : \quad X_{i} \mid \lambda \sim \operatorname{Poisson}(\lambda) \\
\text { Prior } & : \lambda \sim \operatorname{Gamma}(\alpha, \beta)
\end{aligned}
$$

(ii) The model specifies

$$
\begin{aligned}
\text { Likelihood } & : X_{i} \mid \theta \sim \operatorname{Binomial}(K, \theta) \\
\text { Prior } & : \theta \sim \operatorname{Beta}(\alpha, \beta)
\end{aligned}
$$

for fixed non-negative integer K.
4. The exponential family of distributions includes probability models with mass/density function of the form

$$
f_{\boldsymbol{X} \mid \boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{\theta})=\exp \left\{\boldsymbol{t}(\boldsymbol{x})^{\top} \boldsymbol{a}(\boldsymbol{\theta})+c(\boldsymbol{\theta})+d(\boldsymbol{x})\right\}
$$

where $\boldsymbol{t}(\boldsymbol{x})$ is a vector function of the datum \boldsymbol{x}.
Find the form of an appropriate conjugate prior distribution for $\boldsymbol{\theta}$, and the resulting posterior distribution.
5. Suppose that X_{1}, \ldots, X_{n} are iid random variables having a Normal distribution, that is, $X_{i} \sim N(\mu, \phi)$, so that $\operatorname{Var}\left[X_{i}\right]=\phi$, for $i=1, \ldots, n$.

Assuming a conjugate prior specification for (μ, ϕ) with decomposition

$$
p_{\mu, \phi}(\mu, \phi)=p_{\phi}(\phi) p_{\mu \mid \phi}(\mu \mid \phi)
$$

find the marginal posterior density for μ.
6. Jeffreys' Prior for a parameter vector $\boldsymbol{\theta}$ in a probability model is defined by

$$
p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \propto|I(\boldsymbol{\theta})|^{1 / 2}
$$

where I is the Fisher information for $\boldsymbol{\theta}$.
(i) Find Jeffreys' Prior for parameter $\boldsymbol{\phi}=\boldsymbol{\phi}(\boldsymbol{\theta})$ that is a reparameterization of $\boldsymbol{\theta}$.
(ii) Find Jeffreys' Prior if the assumed probability model is $N\left(\mu, \sigma^{2}\right)$.

