M3S3/M4S3 - EXERCISES 4

BAYESIAN CALCULATIONS

1. In the identity for scalar x

$$A(x-a)^{2} + B(x-b)^{2} = C(x-c)^{2} + d$$

find the constants c, C and d in terms of quantities A, B, a, b. Hence show that in the standard Bayesian calculation for data X_1, \ldots, X_n iid from model with likelihood/prior components

$$f_{X|\mu}(X|\mu) \equiv N(\mu, 1)$$

 $p_{\mu}(\mu) \equiv N(\theta, \tau^2)$

with (θ, τ^2) as fixed constants (known as *hyperparameters*), the posterior distribution for μ given x_1, \ldots, x_n is also Normal.

Find a similar identity when \boldsymbol{x} is a $d \times 1$ vector; that is, find an expression equating to

$$(\boldsymbol{x}-\boldsymbol{a})^{\mathsf{T}}A(\boldsymbol{x}-\boldsymbol{a})+(\boldsymbol{x}-\boldsymbol{b})^{\mathsf{T}}B(\boldsymbol{x}-\boldsymbol{b})$$

where \boldsymbol{a} and \boldsymbol{b} are $d \times 1$ vectors and A and B are $d \times d$ matrices.

2. Suppose that n i.i.d. random variables, with probability model $f_{X|\theta}$ in parameters θ , are partitioned into two blocks $\underline{X} = (\underline{X}_1, \underline{X}_2)^{\mathsf{T}}$, where \underline{X}_1 and \underline{X}_2 are $n_1 \times 1$ and $n_2 \times 1$ vectors respectively. Show that the posterior distribution for θ has the representation

$$p_{\boldsymbol{\theta}|\underline{X}}(\boldsymbol{\theta}|\underline{x}) = \frac{L_{n_2}(\boldsymbol{\theta})p_{\boldsymbol{\theta}|\underline{X}_1}(\boldsymbol{\theta}|\underline{x}_1)}{\int L_{n_2}(\boldsymbol{\theta})p_{\boldsymbol{\theta}|\underline{X}_1}(\boldsymbol{\theta}|\underline{x}_1) \ d\boldsymbol{\theta}}$$

where $L_{n_2}(\theta)$ is the likelihood for data X_2 alone, and $p_{\theta|X_1}(\theta|x_1)$ is the posterior distribution for θ in light of data $X_2 = x_2$ alone.

3. Find the **posterior predictive** density, $f_{\underline{X}^*|\underline{X}}$ for potential future data \underline{X}^* (a vector of n^* values) given $\underline{X} = \underline{x}$ using the definition

$$f_{\underline{X}^{\star}|\underline{X}}(\underline{x}^{\star}|\underline{x}) = \int f_{\underline{X}^{\star}|\boldsymbol{\theta}}(\underline{x}^{\star}|\boldsymbol{\theta}) p_{\boldsymbol{\theta}|\underline{X}}(\boldsymbol{\theta}|\underline{x}) \ d\boldsymbol{\theta} = \int \left\{ \prod_{i=1}^{n^{\star}} f_{X|\boldsymbol{\theta}}(x_{i}^{\star}|\boldsymbol{\theta}) \right\} p_{\boldsymbol{\theta}|\underline{X}}(\boldsymbol{\theta}|\underline{x}) \ d\boldsymbol{\theta}$$

and $p_{\theta|X}(\theta|x)$ is the usual posterior distribution, if the model is specified as follows:

(i)

Likelihood :
$$X_i | \lambda \sim Poisson(\lambda)$$

Prior : $\lambda \sim Gamma(\alpha, \beta)$

(ii) The model specifies

Likelihood :
$$X_i | \theta \sim Binomial(K, \theta)$$

Prior : $\theta \sim Beta(\alpha, \beta)$

for fixed non-negative integer K.

4. The *exponential family* of distributions includes probability models with mass/density function of the form

$$f_{\boldsymbol{X}|\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{\theta}) = \exp\left\{\boldsymbol{t}(\boldsymbol{x})^{\mathsf{T}}\boldsymbol{a}(\boldsymbol{\theta}) + c(\boldsymbol{\theta}) + d(\boldsymbol{x})\right\}$$

where t(x) is a vector function of the datum x.

Find the form of an appropriate conjugate prior distribution for θ , and the resulting posterior distribution.

5. Suppose that X_1, \ldots, X_n are iid random variables having a Normal distribution, that is, $X_i \sim N(\mu, \phi)$, so that $Var[X_i] = \phi$, for $i = 1, \ldots, n$.

Assuming a conjugate prior specification for (μ, ϕ) with decomposition

$$p_{\mu,\phi}(\mu,\phi) = p_{\phi}(\phi)p_{\mu|\phi}(\mu|\phi)$$

find the marginal posterior density for μ .

6. Jeffreys' Prior for a parameter vector $\boldsymbol{\theta}$ in a probability model is defined by

$$p_{\theta}(\theta) \propto |I(\theta)|^{1/2}$$

where I is the Fisher information for $\boldsymbol{\theta}$.

- (i) Find Jeffreys' Prior for parameter $\phi = \phi(\theta)$ that is a reparameterization of θ .
- (ii) Find Jeffreys' Prior if the assumed probability model is $N(\mu, \sigma^2)$.