M3S3/M4S3 - EXERCISES 3

EFFICIENT ESTIMATION AND TESTING

1. Suppose that Σ is a variance-covariance matrix for k dimensional random variable $\boldsymbol{X}=\left(X_{1}, \ldots, X_{k}\right)^{\top}$.
(a) Show that Σ is positive definite.

Hint: let \boldsymbol{a} be an arbitrary real k-vector. You must show that $a^{\top} \Sigma a>0$. Proceed by computing the variance of the scalar random variable Y formed as the linear combination

$$
Y=\sum_{i=1}^{k} a_{i} X_{i}=\boldsymbol{a}^{\top} \boldsymbol{X}
$$

(b) Suppose that Σ is written as a blocked matrix

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

Find the inverse matrix $\Pi=\Sigma^{-1}$ in the form of a blocked matrix

$$
\Pi=\left[\begin{array}{ll}
\Pi_{11} & \Pi_{12} \\
\Pi_{21} & \Pi_{22}
\end{array}\right]
$$

by noting that $\Sigma \Pi=\mathbf{1}_{k}$, performing the matrix multiplication, and solving the resulting four matrix equations.

Note: you must obey the rules of matrix multiplication, and remember that, here, only square matrices have inverses.
2. Let $I(\boldsymbol{\theta})$ be the Fisher Information for a two-parameter probability density distribution, $f_{X \mid \boldsymbol{\theta}}(x \mid \boldsymbol{\theta})$ where $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)^{\mathrm{T}}$. Denote $I(\boldsymbol{\theta})$ and $I(\boldsymbol{\theta})^{-1}$ by

$$
I(\boldsymbol{\theta})=\left[\begin{array}{ll}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right] \quad I(\boldsymbol{\theta})^{-1}=\left[\begin{array}{cc}
I^{11} & I^{12} \\
I^{21} & I^{22}
\end{array}\right] .
$$

where $I_{i j}, I^{i j}, i, j=1,2$ are scalar quantities. Under what conditions does the inequality $\left(I_{11}\right)^{-1}<I^{11}$ hold, if $I(\boldsymbol{\theta})$ is presumed to be positive definite ?
3. Suppose that probability model $f_{X \mid \boldsymbol{\theta}}(x \mid \boldsymbol{\theta})$ is dependent on vector parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right)^{\top}$. By using the second-order Taylor approximation to the log-likelihood around the MLE, $\widehat{\boldsymbol{\theta}}_{n}$,

$$
\boldsymbol{l}_{n}(\boldsymbol{\theta})=\boldsymbol{l}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)+\dot{\boldsymbol{i}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)^{\top} \ddot{\boldsymbol{l}}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{n}\right)
$$

construct a quadratic approximation to the log-likelihood near to $\widehat{\boldsymbol{\theta}}_{n}$. Here $\boldsymbol{i}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$ is a row vector. Derive the quadratic approximation in the following one parameter models
(a) $X \sim \operatorname{Poisson}(\lambda)$
(b) $X \sim N\left(0, \sigma^{2}\right)$.
4. The Wald and Rao/Score test statistics derived from a sample of size n, W_{n} and R_{n}, for testing

$$
\begin{aligned}
& H_{0}: \quad \boldsymbol{\theta}=\boldsymbol{\theta}_{0} \\
& H_{1}:
\end{aligned}
$$

when the \log density $\log f_{X \mid \boldsymbol{\theta}}$ admits a finite second derivative with respect to $\boldsymbol{\theta}$ are given by

$$
\begin{equation*}
W_{n}=n\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right)^{T} \widehat{I}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)\left(\widetilde{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right) \tag{1}
\end{equation*}
$$

where $\widetilde{\boldsymbol{\theta}}_{n}$ is a solution to the likelihood equations,

$$
\widehat{I}_{n}\left(\widetilde{\boldsymbol{\theta}}_{n}\right)=\left\{\begin{array}{l}
I\left(\widetilde{\boldsymbol{\theta}}_{n}\right) \\
\frac{1}{n} \sum_{i=1}^{n} S\left(X_{i}, \widetilde{\boldsymbol{\theta}}_{n}\right) S\left(X_{i}, \widetilde{\boldsymbol{\theta}}_{n}\right)^{T} \\
-\frac{1}{n} \sum_{i=1}^{n} \Psi\left(\widetilde{\boldsymbol{\theta}}_{n}, X_{i}\right)
\end{array}\right.
$$

where is an estimator (with corresponding estimate) of the Fisher Information I derived from the sample,

$$
S(X ; \boldsymbol{\theta})=\left[\begin{array}{c}
\frac{\partial \log f_{X \mid \boldsymbol{\theta}}(X \mid \boldsymbol{\theta})}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial \log f_{X \mid \boldsymbol{\theta}}(X \mid \boldsymbol{\theta})}{\partial \theta_{d}}
\end{array}\right]=\boldsymbol{i}(\boldsymbol{\theta}, X)^{\top} \quad \Psi(\boldsymbol{\theta}, X)=\left[\frac{\partial^{2} \log f_{X \mid \boldsymbol{\theta}}(X \mid \boldsymbol{\theta})}{\partial \theta_{j} \partial \theta_{l}}\right]_{j l}=\ddot{\boldsymbol{i}}(\boldsymbol{\theta} ; X)
$$

are $d \times 1$ and $d \times d$ quantities respectively, and

$$
\begin{equation*}
R_{n}=Z_{n}^{T}\left[I\left(\boldsymbol{\theta}_{0}\right)\right]^{-1} Z_{n} \quad \text { where } \quad Z_{n} \equiv Z_{n}\left(\boldsymbol{\theta}_{0}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} S\left(X_{i}, \boldsymbol{\theta}_{0}\right) \tag{2}
\end{equation*}
$$

(a) Show that, in the one parameter case, the statistics can be expressed as

$$
W_{n}=-\left(\widetilde{\theta}_{n}-\theta_{0}\right)^{2} \ddot{l}_{n}\left(\widetilde{\theta}_{n}\right) \quad R_{n}=-\left\{i_{n}\left(\theta_{0}\right)\right\}^{2}\left\{\ddot{l}_{n}\left(\theta_{0}\right)\right\}^{-1}
$$

(b) Derive the forms of the Wald, Rao/Score and Likelihood Ratio statistics for testing

$$
\begin{aligned}
& H_{0}: \quad \lambda=\lambda_{0} \\
& H_{1}: \quad \lambda \neq \lambda_{0}
\end{aligned}
$$

if the data follow a Poisson distribution with parameter $\lambda>0$.
(c) Derive the form of the Wald statistic when the data are presumed normally distributed with parameters $N\left(\mu, \sigma^{2}\right)$ in a test of

$$
\begin{aligned}
& H_{0}: \quad \mu=0 \\
& H_{1} \quad: \quad \mu \neq 0
\end{aligned}
$$

(i) when σ^{2} is unspecified under the null and the alternative; the MLE for σ^{2} under the null is

$$
S_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}
$$

whereas under the alternative, the joint MLE is $\left(\bar{X}, S^{2}\right)$ where

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

(ii) when $H_{0}:(\mu, \sigma)=\boldsymbol{\theta}_{0}=\left(0, \sigma_{0}^{2}\right)$ and $H_{1}:(\mu, \sigma) \neq \boldsymbol{\theta}_{0}$.

