M3S3/M4S3 - EXERCISES 3

EFFICIENT ESTIMATION AND TESTING

- 1. Suppose that Σ is a variance-covariance matrix for k dimensional random variable $\mathbf{X} = (X_1, \ldots, X_k)^{\mathsf{T}}$.
 - (a) Show that Σ is positive definite.

Hint: let **a** be an arbitrary real k-vector. You must show that $a^{\mathsf{T}}\Sigma a > 0$. Proceed by computing the variance of the scalar random variable Y formed as the linear combination

$$Y = \sum_{i=1}^{k} a_i X_i = \boldsymbol{a}^{\mathsf{T}} \boldsymbol{X}.$$

(b) Suppose that Σ is written as a blocked matrix

$$\Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right]$$

Find the inverse matrix $\Pi = \Sigma^{-1}$ in the form of a blocked matrix

$$\Pi = \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{21} & \Pi_{22} \end{bmatrix}$$

by noting that $\Sigma \Pi = \mathbf{1}_k$, performing the matrix multiplication, and solving the resulting four matrix equations.

Note: you must obey the rules of matrix multiplication, and remember that, here, only square matrices have inverses.

2. Let $I(\boldsymbol{\theta})$ be the Fisher Information for a two-parameter probability density distribution, $f_{X|\boldsymbol{\theta}}(x|\boldsymbol{\theta})$ where $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\mathsf{T}}$. Denote $I(\boldsymbol{\theta})$ and $I(\boldsymbol{\theta})^{-1}$ by

$$I(\boldsymbol{\theta}) = \begin{bmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{bmatrix} \qquad I(\boldsymbol{\theta})^{-1} = \begin{bmatrix} I^{11} & I^{12} \\ I^{21} & I^{22} \end{bmatrix}.$$

where I_{ij} , I^{ij} , i, j = 1, 2 are scalar quantities. Under what conditions does the inequality $(I_{11})^{-1} < I^{11}$ hold, if $I(\theta)$ is presumed to be positive definite ?

3. Suppose that probability model $f_{X|\theta}(x|\theta)$ is dependent on vector parameter $\theta = (\theta_1, \ldots, \theta_d)^{\mathsf{T}}$. By using the second-order Taylor approximation to the log-likelihood around the MLE, $\hat{\theta}_n$,

$$\boldsymbol{l}_n(\boldsymbol{\theta}) = \boldsymbol{l}_n(\widehat{\boldsymbol{\theta}}_n) + \dot{\boldsymbol{l}}_n(\widehat{\boldsymbol{\theta}}_n)(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_n) + \frac{1}{2}(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_n)^{\mathsf{T}}\ddot{\boldsymbol{l}}_n(\widehat{\boldsymbol{\theta}}_n)(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_n)$$

construct a quadratic approximation to the log-likelihood near to $\hat{\theta}_n$. Here $\dot{l}_n(\hat{\theta}_n)$ is a row vector. Derive the quadratic approximation in the following one parameter models

- (a) $X \sim Poisson(\lambda)$
- (b) $X \sim N(0, \sigma^2)$.

4. The Wald and Rao/Score test statistics derived from a sample of size n, W_n and R_n , for testing

$$H_0 : \boldsymbol{\theta} = \boldsymbol{\theta}_0$$
$$H_1 : \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$$

when the log density $\log f_{X|\theta}$ admits a finite second derivative with respect to θ are given by

$$W_n = n(\widetilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0)^T \widehat{I}_n(\widetilde{\boldsymbol{\theta}}_n)(\widetilde{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0)$$
(1)

where $\widetilde{\boldsymbol{\theta}}_n$ is a solution to the likelihood equations,

$$\widehat{I}_{n}(\widetilde{\boldsymbol{\theta}}_{n}) = \begin{cases} I(\widetilde{\boldsymbol{\theta}}_{n}) \\ \frac{1}{n} \sum_{i=1}^{n} S(X_{i}, \widetilde{\boldsymbol{\theta}}_{n}) S(X_{i}, \widetilde{\boldsymbol{\theta}}_{n})^{T} \\ -\frac{1}{n} \sum_{i=1}^{n} \Psi(\widetilde{\boldsymbol{\theta}}_{n}, X_{i}) \end{cases}$$

where is an estimator (with corresponding estimate) of the Fisher Information I derived from the sample,

$$S(X;\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial \log f_{X|\boldsymbol{\theta}}(X|\boldsymbol{\theta})}{\partial \theta_1} \\ \vdots \\ \frac{\partial \log f_{X|\boldsymbol{\theta}}(X|\boldsymbol{\theta})}{\partial \theta_d} \end{bmatrix} = \boldsymbol{\dot{l}}(\boldsymbol{\theta}, X)^{\mathsf{T}} \qquad \Psi(\boldsymbol{\theta}, X) = \begin{bmatrix} \frac{\partial^2 \log f_{X|\boldsymbol{\theta}}(X|\boldsymbol{\theta})}{\partial \theta_j \partial \theta_l} \end{bmatrix}_{jl} = \boldsymbol{\ddot{l}}(\boldsymbol{\theta}; X)$$

are $d \times 1$ and $d \times d$ quantities respectively, and

$$R_n = Z_n^T \left[I\left(\boldsymbol{\theta}_0\right) \right]^{-1} Z_n \qquad \text{where} \qquad Z_n \equiv Z_n\left(\boldsymbol{\theta}_0\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^n S\left(X_i, \boldsymbol{\theta}_0\right) \tag{2}$$

(a) Show that, in the one parameter case, the statistics can be expressed as

$$W_n = -(\widetilde{\theta}_n - \theta_0)^2 \ddot{l}_n(\widetilde{\theta}_n) \qquad \qquad R_n = -\left\{\dot{l}_n\left(\theta_0\right)\right\}^2 \left\{\ddot{l}_n\left(\theta_0\right)\right\}^{-1}$$

(b) Derive the forms of the Wald, Rao/Score and Likelihood Ratio statistics for testing

$$H_0 : \lambda = \lambda_0$$

$$H_1 : \lambda \neq \lambda_0$$

if the data follow a Poisson distribution with parameter $\lambda > 0$.

(c) Derive the form of the Wald statistic when the data are presumed normally distributed with parameters $N(\mu, \sigma^2)$ in a test of

$$H_0 : \mu = 0$$

$$H_1 : \mu \neq 0$$

(i) when σ^2 is **unspecified** under the null and the alternative; the MLE for σ^2 under the null is

$$S_0^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

whereas under the alternative, the joint MLE is (\overline{X}, S^2) where

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2.$

(ii) when $H_0: (\mu, \sigma) = \boldsymbol{\theta}_0 = (0, \sigma_0^2)$ and $H_1: (\mu, \sigma) \neq \boldsymbol{\theta}_0$.