M3S3/M4S3
 ASSESSED COURSEWORK 1
 Deadline: Friday 24th February Please hand in during Lecture/to Room 523

1. Suppose that X_{1}, \ldots, X_{n} are an i.i.d. sample from a Normal distribution with expectation μ and variance σ^{2}. Find the asymptotic distribution of
(i) the sample median, $X_{(k)}$, that is the $p=0.5$ sample quantile, so that $k=\lceil n p\rceil$ with $p=0.5$.
[5 MARKS]
(ii) the sample interquartile range, $R_{I Q}$, defined by

$$
R_{I Q}=X_{\left(k_{2}\right)}-X_{\left(k_{1}\right)}
$$

with $k_{1}=\left\lceil n p_{1}\right\rceil$ and $k_{2}=\left\lceil n p_{2}\right\rceil$ with $p_{1}=0.25$ and $p_{2}=0.75$, that is, the difference between the 0.75 sample quantile and the 0.25 sample quantile.
[10 MARKS]
Use the following results; if $\Phi($.$) is the standard normal cdf, then$

$$
\Phi(-0.674)=0.25 \quad \Phi(0.674)=0.75 .
$$

Recall that the standard normal density takes the form

$$
f_{X}(x)=\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-x^{2} / 2\right\} \quad x \in \mathbb{R}
$$

and that if $Z=\left(Z_{1}, Z_{2}\right)^{\top}$ has a bivariate normal distribution

$$
Z \sim N(\boldsymbol{\mu}, \Sigma) \quad \text { with } \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

then

$$
Z_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \quad \text { and } \quad \boldsymbol{a}^{\top} Z \sim N\left(\boldsymbol{a}^{\top} \boldsymbol{\mu}, \boldsymbol{a}^{\boldsymbol{\top}} \Sigma \boldsymbol{a}\right)
$$

for vector \boldsymbol{a}, a (2×1) constant vector.
2. The (squared) ${ }^{1}$ Hellinger distance, d_{H}, between two univariate densities f_{1} and f_{2} (defined with respect to Lebesgue measure) can be written

$$
\begin{equation*}
d_{H}\left(f_{1}, f_{2}\right)=\int_{-\infty}^{\infty}\left(\sqrt{f_{1}(x)}-\sqrt{f_{2}(x)}\right)^{2} d x \tag{1}
\end{equation*}
$$

Find an upper bound for $d_{H}\left(f_{1}, f_{2}\right)$ that holds for arbitrary f_{1}, f_{2}.
[5 MARKS]
Note: as usual, $\sqrt{ }$. indicates positive square root.

[^0]
[^0]: ${ }^{1}$ some texts refer to (1) as the squared Hellinger distance, and use the notation $d_{H}^{2}\left(f_{1}, f_{2}\right)$.

