M3S3/M4S3 ASSESSED COURSEWORK 1

Deadline: Friday 24th February Please hand in during Lecture/to Room 523

1. Suppose that X_1, \ldots, X_n are an i.i.d. sample from a Normal distribution with expectation μ and variance σ^2 . Find the asymptotic distribution of

(i) the sample median, $X_{(k)}$, that is the p = 0.5 sample quantile, so that $k = \lceil np \rceil$ with p = 0.5.

[5 MARKS]

(ii) the sample interquartile range, R_{IQ} , defined by

$$R_{IQ} = X_{(k_2)} - X_{(k_1)}$$

with $k_1 = \lceil np_1 \rceil$ and $k_2 = \lceil np_2 \rceil$ with $p_1 = 0.25$ and $p_2 = 0.75$, that is, the difference between the 0.75 sample quantile and the 0.25 sample quantile.

[10 MARKS]

Use the following results; if $\Phi(.)$ is the standard normal cdf, then

$$\Phi(-0.674) = 0.25 \qquad \Phi(0.674) = 0.75$$

Recall that the standard normal density takes the form

$$f_X(x) = \left(\frac{1}{2\pi}\right)^{1/2} \exp\{-x^2/2\} \qquad x \in \mathbb{R},$$

and that if $Z = (Z_1, Z_2)^{\mathsf{T}}$ has a bivariate normal distribution

$$Z \sim N(\boldsymbol{\mu}, \Sigma)$$
 with $\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$

then

$$Z_1 \sim N(\mu_1, \sigma_1^2)$$
 and $\boldsymbol{a}^{\mathsf{T}} Z \sim N(\boldsymbol{a}^{\mathsf{T}} \boldsymbol{\mu}, \boldsymbol{a}^{\mathsf{T}} \Sigma \boldsymbol{a})$

for vector \boldsymbol{a} , a (2×1) constant vector.

2. The (squared)¹ Hellinger distance, d_H , between two univariate densities f_1 and f_2 (defined with respect to Lebesgue measure) can be written

$$d_H(f_1, f_2) = \int_{-\infty}^{\infty} \left(\sqrt{f_1(x)} - \sqrt{f_2(x)}\right)^2 dx.$$
 (1)

Find an upper bound for $d_H(f_1, f_2)$ that holds for arbitrary f_1, f_2 .

[5 MARKS]

Note: as usual, $\sqrt{.}$ indicates **positive** square root.

¹some texts refer to (1) as the squared Hellinger distance, and use the notation $d_H^2(f_1, f_2)$.