M3S3/M4S3 (SOLUTIONS)

STATISTICAL THEORY II

1. (a) (i) Let Ω be a set, and \mathcal{F} be a set of subsets of Ω such that
. $\Omega \in \mathcal{F}$

- $F \in \mathcal{F} \Longrightarrow F^{\prime} \in \mathcal{F}$ (closed under complementation)
- If $\left\{F_{n}\right\}$ is a countable collection of elements of \mathcal{F}, then $\bigcup_{n} F_{n} \in \mathcal{F}$ (closed under countable union)
so that \mathcal{F} is a sigma-algebra. A non-negative (set) function v acting on \mathcal{F} is a measure if it has the following property: for any countable collection of elements of $\mathcal{F},\left\{F_{n}\right\}$, we have

$$
v\left(\bigcup_{n} F_{n}\right) \leq \sum_{n} v\left(F_{n}\right)
$$

with equality if $\left\{F_{n}\right\}$ are disjoint sets. Then

- the pair (Ω, \mathcal{F}) is a measurable space
- the triple (Ω, \mathcal{F}, v) is a measure space

Finally, if $v(\Omega)=1$, then v is a probability measure, (Ω, \mathcal{F}, v) is a probability space.
4 MARKS
(ii) Let (Ω, \mathcal{F}, v) denote the measure space. If ψ is a simple function then it takes the following form: for $\omega \in \Omega$

$$
\psi(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega)
$$

where k is a non-negative integer, a_{1}, \ldots, a_{k} are constants, and A_{1}, \ldots, A_{k} are (measurable) disjoint subsets of Ω, that is, they are elements \mathcal{F}.

The Lebesgue-Stieltjes integral of ψ with respect to v is denoted and defined by

$$
\int \psi d v=\sum_{i=1}^{k} a_{i} v\left(A_{i}\right)
$$

Finally let \mathcal{S}_{f} denote the set of simple functions defined by

$$
\mathcal{S}_{f}=\{\psi: 0 \leq \psi(\omega) \leq f(\omega) \text { for all } \omega \in \Omega\}
$$

Then

$$
\int f d v=\sup _{\psi \in \mathcal{S}_{f}} \int \psi d v
$$

(b) The Wald theorem proves the strong consistency of the MLE, whereas the Cramer theorem proves the asymptotic normality of the MLE (or indeed any sequence of consistent solutions to the likelihood equation), that is, if θ_{0} is the true value of the parameter θ in the probability model $f_{X}(x ; \theta)$, then

$$
\widetilde{\theta}_{n} \xrightarrow{\text { a.s. }} \theta_{0} \quad \text { gives } \quad \sqrt{n}\left(\widetilde{\theta}_{n}-\theta_{0}\right) \xrightarrow{\mathcal{L}} Z \sim N\left(0,\left[I\left(\theta_{0}\right)\right]^{-1}\right)
$$

For the Wald Theorem, regularity conditions (for the cases seen by the students) include the compactness of the parameter space Θ, the (upper-semi) continuity of the density in θ for all x, the boundedness of the function

$$
U(x, \theta)=\log f_{X}(x ; \theta)-\log f_{X}\left(x ; \theta_{0}\right)
$$

the uniform measurability of the density with respect to x on an open neighbourhood of any $\theta \in \Theta$, and the identifiability of the density with respect to θ. For the Cramer theorem, we need the Θ to be an open subset of \mathbb{R}, existence and boundedness of second partial derivatives (third derivatives for weakly consistent solutions), the positive-definiteness of the expectation of the matrix Ψ of second partial derivatives, and identifiability.
(c) 2005 University of London
(c) (i) We have

$$
L(\theta, \eta)=\eta^{2} \theta \exp \{-[\eta x+\theta \eta y]\} \quad x, y>0
$$

so that

$$
l(\theta, \eta)=\log L(\theta, \eta)=2 \log \eta+\log \theta-(\eta x+\theta \eta y)
$$

and

$$
\begin{array}{lr}
\frac{\partial l}{\partial \eta}=\frac{2}{\eta}-x-\theta y & \frac{\partial l}{\partial \theta}=\frac{1}{\theta}-\eta y \\
\frac{\partial^{2} l}{\partial \eta^{2}}=-\frac{2}{\eta^{2}} & \frac{\partial^{2} l}{\partial \theta^{2}}=-\frac{1}{\theta^{2}} \\
& \frac{\partial^{2} l}{\partial \eta \partial \theta}=-y
\end{array}
$$

yielding the observed and Fisher information

$$
\mathcal{I}(\theta, \eta)=\left[\begin{array}{cc}
\frac{2}{\eta^{2}} & y \\
y & \frac{1}{\theta^{2}}
\end{array}\right] \quad I(\theta, \eta)=\left[\begin{array}{cc}
\frac{2}{\eta^{2}} & \frac{1}{\eta \theta} \\
\frac{1}{\eta \theta} & \frac{1}{\theta^{2}}
\end{array}\right]
$$

as $E[Y]=1 /(\eta \theta)$.
(ii) The parameters are not orthogonal as the off-diagonal element of $I(\theta, \eta)$ is non-zero.
2. (a) (i) $\left\{X_{n}\right\}$ converges almost surely to a limiting random variable X if

$$
P\left[\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right]=1
$$

that is, the set of ω for which $X_{n}(\omega) \rightarrow X(\omega)$ has P-measure one. Equivalently,

$$
X_{n} \xrightarrow{\text { a.s. }} X \quad \Longleftrightarrow \quad P\left[\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\varepsilon\right]=1
$$

for all $\varepsilon>0$.

(ii) THEOREM

Let $\left\{A_{k}\right\}$ be a sequence of events in sample space Ω. If

$$
A^{(S)}=\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j}
$$

is the limsup event of the infinite sequence; $A^{(S)}$ occurs if any only if infinitely many of the $A_{j} s$ occur, or the $A_{j} s$ occur infinitely often (i.o.)
(I) If $\sum_{k=1}^{\infty} P\left(A_{k}\right)<\infty$, then $P\left(A^{(S)}\right)=P\left(A_{j}\right.$ occurs i.o. $)=0$,
(II) If the events $\left\{A_{k}\right\}$ are independent, and $\sum_{k=1}^{\infty} P\left(A_{k}\right)=\infty$, then $P\left(A^{(S)}\right)=1$.

PROOF (I) Note first that

$$
\sum_{k=1}^{\infty} P\left(A_{k}\right)<\infty \Longrightarrow \lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} P\left(A_{j}\right)=0
$$

because if the sum on the left-hand side is bounded above, then the sum on the right-hand side tends to zero as $k \rightarrow \infty$. Now, for every $k \geq 1$,

$$
A^{(S)}=\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j} \subseteq \bigcup_{j=k}^{\infty} A_{j}
$$

and therefore, as $k \longrightarrow \infty$

$$
P\left(A^{(S)}\right) \leq P\left(\bigcup_{j=k}^{\infty} A_{j}\right) \leq \sum_{j=k}^{\infty} P\left(A_{j}\right) \rightarrow 0
$$

(II) Consider $K \geq k$, and the union of events

$$
A=\bigcup_{j=k}^{K} A_{j} .
$$

Then

$$
A^{\prime}=\bigcap_{j=k}^{K} A_{j}^{\prime} \subseteq \bigcup_{j=k}^{\infty} A_{j}^{\prime}
$$

Now

$$
P(A)=P\left(\bigcup_{j=k}^{K} A_{j}\right) \leq P\left(\bigcup_{j=k}^{\infty} A_{j}\right)
$$

Therefore

$$
\begin{aligned}
1-P\left(\bigcup_{j=k}^{\infty} A_{j}\right) & \leq 1-P\left(\bigcup_{j=k}^{K} A_{j}\right)=1-P(A)=P\left(A^{\prime}\right)=P\left(\bigcap_{j=k}^{K} A_{j}^{\prime}\right) \\
& =\prod_{j=k}^{K} P\left(A_{j}^{\prime}\right) \quad \text { by independence } \\
& =\prod_{j=k}^{K}\left(1-P\left(A_{j}\right)\right) \leq \exp \left\{-\sum_{j=k}^{K} P\left(A_{j}\right)\right\}
\end{aligned}
$$

as $1-x \leq \exp \{-x\}$ for $0<x<1$. Now, taking the limit of both sides as $K \rightarrow \infty$, for fixed k,

$$
1-P\left(\bigcup_{j=k}^{\infty} A_{j}\right) \leq \lim _{K \rightarrow \infty} \exp \left\{-\sum_{j=k}^{K} P\left(A_{j}\right)\right\}=\exp \left\{-\sum_{j=k}^{\infty} P\left(A_{j}\right)\right\}=0
$$

as, by assumption $\sum_{k=1}^{\infty} P\left(A_{k}\right)=\infty$. Thus, for each k, we have that

$$
P\left(\bigcup_{j=k}^{\infty} A_{j}\right)=1 \quad \therefore \quad \lim _{k \rightarrow \infty} P\left(\bigcup_{j=k}^{\infty} A_{j}\right)=1 .
$$

By continuity of probability measure

$$
\lim _{k \rightarrow \infty} P\left(A_{k}\right)=P\left(\lim _{k \rightarrow \infty} A_{k}\right)=P\left(\bigcap_{k=1}^{\infty} A_{k}\right)=P\left(\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j}\right)=P\left(A^{(S)}\right)
$$

Hence $P\left(A^{(S)}\right)=1$.
This result is related to almost sure convergence; if we let

$$
A_{j}(\varepsilon) \equiv\left\{\omega:\left|X_{j}(\omega)-X(\omega)\right|<\varepsilon\right\}
$$

then if A_{j} occurs i.o. we have a.s. convergence of $\left\{X_{n}\right\}$ to X.
(b) (i) Let A_{n} be the event $\left(X_{n} \neq 0\right)$. Then $P\left(A_{n}\right)=1 / n$, and hence

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

The events A_{1}, A_{2}, \ldots are independent, so by the BC Lemma part (II),

$$
P\left(A_{n} \text { occurs i.o }\right)=1,
$$

so X_{n} does not converge a.s. to $0 . X_{n}$ only takes values in $\{0,1\}$, and $P\left[X_{n}=0\right]>0$ for any finite n, so X_{n} does not converge to 1 a.s. either. Hence X_{n} does not converge a.s. to any real value.
(ii) We have

$$
E\left[\left|X_{n}\right|\right]=E\left[I_{\left[0, n^{-1}\right)}\left(U_{n}\right)\right]=P\left[U_{n} \leq n^{-1}\right]=\frac{1}{n}
$$

so

$$
X_{n} \xrightarrow{r=1} X_{B}
$$

where $P\left[X_{B}=0\right]=1$, and we have convergence in $r^{t h}$ mean to zero for $r=1$.
3. (a) THEOREM Let $F_{n}(x)$ denote the empirical distribution function (edf) derived from an i.i.d. sample X_{1}, \ldots, X_{n} from a distribution with $\operatorname{cdf} F_{X}$, that is,

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i}, \infty\right)}(x) \quad x \in \mathbb{R}
$$

Then the edf converges almost surely to the true cdf, uniformly in x, that is

$$
P\left[\sup _{x}\left|F_{n}(x)-F_{X}(x)\right| \rightarrow 0\right]=1
$$

PROOF. First note that

$$
F_{n}(x) \xrightarrow{\text { a.s. }} F_{X}(x)
$$

pointwise for $x \in \mathbb{R}$, by the Strong Law of Large numbers, by definition of F_{n} as the sample mean of a collection of iid (indicator) random variables. Now let $\varepsilon>0$ be specified, and choose $k>1 / \varepsilon$, and numbers

$$
-\infty=x_{0}<x_{1} \leq x_{2} \leq \ldots \leq x_{k-1}<x_{k}=\infty
$$

such that

$$
P\left[X<x_{j}\right]=F_{X}\left(x_{j}^{-}\right) \leq \frac{j}{k} \leq F_{X}\left(x_{j}\right)=P\left[X \leq x_{j}\right]
$$

for $j=1,2, \ldots, k-1$. Note that if $x_{j-1}<x_{j}$ then $F_{X}\left(x_{j}^{-}\right)-F_{X}\left(x_{j-1}\right) \leq \frac{1}{k}<\varepsilon$. By the Strong Law, as $n \rightarrow \infty$,

$$
F_{n}\left(x_{j}\right) \xrightarrow{\text { a.s. }} F_{X}\left(x_{j}\right) \quad \text { and } \quad F_{n}\left(x_{j}^{-}\right) \xrightarrow{\text { a.s. }} F_{X}\left(x_{j}^{-}\right)
$$

for each j. Thus, also by the Strong Law, as $n \rightarrow \infty$,

$$
\begin{equation*}
\triangle_{n}=\max _{j}\left\{\left|F_{n}\left(x_{j}\right)-F_{X}\left(x_{j}\right)\right|,\left|F_{n}\left(x_{j}^{-}\right)-F_{X}\left(x_{j}^{-}\right)\right|\right\} \xrightarrow{\text { a.s. }} 0 . \tag{A3.1}
\end{equation*}
$$

Let $x \in \mathbb{R}$, and find j such that $x_{j-1} \leq x<x_{j}$. Then, as

$$
x<x_{j} \Longrightarrow F_{n}(x) \leq F_{n}\left(x_{j}^{-}\right) \quad \text { and } \quad F_{X}(x) \leq F_{X}\left(x_{j}^{-}\right)
$$

by definition of the regular grid defined by the $x_{j} s$,

$$
\begin{aligned}
F_{n}(x)-F_{X}(x) & \leq F_{n}\left(x_{j}^{-}\right)-F_{X}\left(x_{j-1}\right) \\
& \leq F_{n}\left(x_{j}^{-}\right)-F_{X}\left(x_{j}^{-}\right)+\varepsilon
\end{aligned}
$$

and also

$$
\begin{aligned}
F_{n}(x)-F_{X}(x) & \geq F_{n}\left(x_{j-1}\right)-F_{X}\left(x_{j}^{-}\right) \\
& \geq F_{n}\left(x_{j-1}\right)-F_{X}\left(x_{j-1}\right)-\varepsilon
\end{aligned}
$$

Hence, for any such x,

$$
\left|F_{n}(x)-F_{X}(x)\right| \leq \triangle_{n}+\varepsilon
$$

and the RHS converges almost surely to ε, by (A3.1). This result holds uniformly in x, so we have

$$
\sup _{x}\left|F_{n}(x)-F_{X}(x)\right| \xrightarrow{\text { a.s. }} \varepsilon
$$

and hence the result follows, as the choice of $\varepsilon>0$ is arbitrary.
(b) For any p

$$
p=\frac{e^{x_{p}}}{1+e^{x_{p}}} \Longrightarrow x_{p}=\log \left(\frac{p}{1-p}\right)
$$

and, here,

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
$$

so

$$
f_{X}\left(x_{p}\right)=\frac{p /(1-p)}{(1+p /(1-p))^{2}}=p(1-p)
$$

Now, from the Central Limit Theorem result for the sample quantiles, as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\binom{X_{\left(k_{1}\right)}}{X_{\left(k_{2}\right)}}-\binom{x_{p_{1}}}{x_{p_{2}}}\right) \rightarrow Z \sim N(0, \Sigma)
$$

where

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cc}
\frac{p_{1}\left(1-p_{1}\right)}{f_{X}\left(x_{p_{1}}\right)^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{p_{2}}\right)} \\
\frac{p_{1}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{1}}\right) f_{X}\left(x_{\left.p_{2}\right)}\right.} & \frac{p_{2}\left(1-p_{2}\right)}{f_{X}\left(x_{p_{2}}\right)^{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{p_{1}\left(1-p_{1}\right)}{\left(p_{1}\left(1-p_{1}\right)\right)^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{p_{1}\left(1-p_{1}\right) p_{2}\left(1-p_{2}\right)} \\
\frac{p_{1}\left(1-p_{2}\right)}{p_{1}\left(1-p_{1}\right) p_{2}\left(1-p_{2}\right)} & \frac{p_{2}\left(1-p_{2}\right)}{\left(p_{2}\left(1-p_{2}\right)\right)^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{p_{1}\left(1-p_{1}\right)} & \frac{1}{\left(1-p_{1}\right) p_{2}} \\
\frac{1}{\left(1-p_{1}\right) p_{2}} & \frac{1}{p_{2}\left(1-p_{2}\right)}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\binom{X_{\left(k_{1}\right)}}{X_{\left(k_{2}\right)}} \sim A N\left(\binom{x_{p_{1}}}{x_{p_{2}}}, \frac{1}{n} \Sigma\right) .
$$

4. (a) The Kullback-Liebler (KL) divergence between two probability measures that have densities f_{0} and f_{1} with respect to measure v is defined as

$$
K\left(f_{0}, f_{1}\right)=\int f_{0}(x) \log \frac{f_{0}(x)}{f_{1}(x)} d v(x)=E_{f_{0}}\left[\log \frac{f_{0}(x)}{f_{1}(x)}\right]
$$

2 MARKS
(b) Using Jensen's Inequality on the convex function $-\log x$

$$
\begin{aligned}
-K\left(f_{0}, f_{1}\right) & =E_{f_{0}}\left[-\log \frac{f_{0}(x)}{f_{1}(x)}\right]=E_{f_{0}}\left[\log \frac{f_{1}(x)}{f_{0}(x)}\right] \\
& \leq \log E_{f_{0}}\left[\frac{f_{1}(x)}{f_{0}(x)}\right]=\log \left\{\int \frac{f_{1}(x)}{f_{0}(x)} f_{0}(x) d v(x)\right\} \\
& \leq \log \left\{\int_{S_{0}} f_{1}(x) d v(x)\right\} \leq \log 1=0
\end{aligned}
$$

where S_{0} is the support of f_{0}, with equality if $\int_{S_{0}} f_{1}(x) d v(x)=1$. Hence $K\left(f_{0}, f_{1}\right) \geq 0$.
(c) We have, for $\theta \in \Theta$

$$
T_{n}=\frac{1}{n} \log \frac{L_{n}\left(\theta_{0}\right)}{L_{n}(\theta)}=\frac{1}{n} \sum_{i=1}^{n} \log \frac{f_{X}\left(X_{i} ; \theta_{0}\right)}{f_{X}\left(X_{i} ; \theta\right)}
$$

and thus by the Strong Law of Large numbers

$$
T_{n} \xrightarrow{a . s} E_{f_{0}}\left[\log \frac{f_{X}\left(X_{i} ; \theta_{0}\right)}{f_{X}\left(X_{i} ; \theta\right)}\right]=K\left(f_{\theta_{0}}, f_{\theta}\right)
$$

and by the previous result $K\left(f_{\theta_{0}}, f_{\theta}\right)=0 \Longleftrightarrow \theta=\theta_{0}$
(d) (i)

$$
\begin{aligned}
K\left(f_{0}, f_{1}\right) & =\int_{0}^{\infty} f_{0}(x) \log \frac{f_{0}(x)}{f_{1}(x)} d x=\int_{0}^{\infty}\left\{\lambda_{0} e^{-\lambda_{0} x} \times\left[\log \frac{\lambda_{0}}{\lambda_{1}}+\left(\lambda_{1}-\lambda_{0}\right) x\right]\right\} d x \\
& =\log \frac{\lambda_{0}}{\lambda_{1}}+\left(\lambda_{1}-\lambda_{0}\right) E_{f_{0}}[X]=\log \frac{\lambda_{0}}{\lambda_{1}}+\frac{\left(\lambda_{1}-\lambda_{0}\right)}{\lambda_{0}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
K\left(f_{0}, f_{1}\right) & =\int_{0}^{\infty} f_{0}(x) \log \frac{f_{0}(x)}{f_{1}(x)} d x \\
& =\int_{0}^{\infty}\left\{\frac{1}{\Gamma\left(\alpha_{0}\right)} x^{\alpha_{0}-1} e^{-x} \times\left[\log \frac{\Gamma\left(\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right)}+\left(\alpha_{1}-\alpha_{0}\right) \log x\right]\right\} d x \\
& =\log \frac{\Gamma\left(\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right)}+\left(\alpha_{1}-\alpha_{0}\right) E_{f_{0}}[\log X] \\
& =\log \frac{\Gamma\left(\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right)}+\left(\alpha_{1}-\alpha_{0}\right) \operatorname{Di} \Gamma\left(\alpha_{0}\right)
\end{aligned}
$$

5. (a) THEOREM (Following the notation and proof of Bernardo and Smith (1994))

If X_{1}, X_{2}, \ldots is an infinitely exchangeable sequence of $0-1$ variables with probability measure P, then there exists a distribution function Q such that the joint mass function of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has the form

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\int_{0}^{1}\left\{\prod_{i=1}^{n} \theta^{X_{i}}(1-\theta)^{1-X_{i}}\right\} d Q(\theta)
$$

where

$$
Q(\theta)=\lim _{n \rightarrow \infty} P\left[\frac{Y_{n}}{n} \leq \theta\right]
$$

and $Y_{n}=\sum_{i=1}^{n} X_{i}$, and $\theta=\lim _{n \rightarrow \infty} Y_{n} / n$ is the (strong-law) limiting relative frequency of 1 s .
PROOF By exchangeability, for $0 \leq y_{n} \leq n$

$$
\begin{equation*}
P\left[Y_{n}=y_{n}\right]=\binom{n}{y_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\binom{n}{y_{n}} p\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right) \tag{A5.0}
\end{equation*}
$$

where $X_{i}=x_{i}$ and $y_{n}=\sum_{i=1}^{n} x_{i}$, and $\pi()$ is any permutation of the indices. For finite N, let $N \geq n \geq y_{n} \geq 0$. Then, by exchangeability

$$
\begin{equation*}
P\left[Y_{n}=y_{n}\right]=\sum P\left[Y_{n}=y_{n} \mid Y_{N}=y_{N}\right] P\left[Y_{N}=y_{N}\right] \tag{A5.1}
\end{equation*}
$$

where the summation extends over $\left(y_{n}, \ldots, N-\left(n-y_{n}\right)\right)$. Now the conditional probability $P\left[Y_{n}=y_{n} \mid Y_{N}=y_{N}\right]$ is a hypergeometric mass function

$$
P\left[Y_{n}=y_{n} \mid Y_{N}=y_{N}\right]=\frac{\binom{y_{N}}{y_{n}}\binom{N-y_{N}}{n-y_{n}}}{\binom{N}{n}} \quad 0 \leq y_{n} \leq n .
$$

Rewriting the binomial coefficients, we have

$$
\begin{equation*}
P\left[Y_{n}=y_{n}\right]=\binom{n}{y_{n}} \sum \frac{\left(y_{N}\right)_{y_{n}}\left(N-y_{N}\right)_{n-y_{n}}}{(N)_{n}} P\left[Y_{N}=y_{N}\right] \tag{A5.2}
\end{equation*}
$$

where $(x)_{r}=x(x-1)(x-2) \ldots(x-r+1)$.

Define function $Q_{N}(\theta)$ on \mathbb{R} as the step function which is zero for $\theta<0$, and has steps of size $P\left[Y_{N}=y_{N}\right]$ at $\theta=y_{N} / N$ for $y_{N}=0,1,2, \ldots, N$. Hence, utilizing the Lebesgue-Stieltjes notation, we can re-write

$$
\begin{equation*}
P\left[Y_{n}=y_{n}\right]=\binom{n}{y_{n}} \int_{0}^{1} \frac{(\theta N)_{y_{n}}((1-\theta) N)_{n-y_{n}}}{(N)_{n}} d Q_{N}(\theta) \tag{A5.3}
\end{equation*}
$$

This result holds for any finite N, but in (A5.1) we need to consider $N \rightarrow \infty$. In the limit,

$$
\frac{(\theta N)_{y_{n}}((1-\theta) N)_{n-y_{n}}}{(N)_{n}} \rightarrow \theta^{y_{n}}(1-\theta)^{n-y_{n}}=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

as $(x)_{r} \rightarrow x^{r}$ if $x \rightarrow \infty$ with r fixed. Also, by the Helly Theorem $\left\{Q_{N}(\theta)\right\}$ has a convergent subsequence $\left\{Q_{N_{j}}(\theta)\right\}$ such that, for a distribution function Q,

$$
\lim _{j \rightarrow \infty} Q_{N_{j}}(\theta)=Q(\theta)
$$

Thus the result follows comparing (A5.0) and the limiting form of (A5.3) the result follows.
(b) For $1 \leq m \leq n$

$$
\begin{aligned}
p\left(X_{m+1}, X_{2}, \ldots, X_{n} \mid X_{1}, X_{2}, \ldots, X_{m}\right) & =\frac{p\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{p\left(X_{1}, X_{2}, \ldots, X_{m}\right)} \\
& =\int_{0}^{1}\left\{\prod_{i=m+1}^{n} \theta^{X_{i}}(1-\theta)^{1-X_{i}}\right\} d Q\left(\theta \mid X_{1}, \ldots, X_{m}\right)
\end{aligned}
$$

where, if

$$
Q(\theta)=\int_{0}^{\theta} d Q(t)
$$

we have

$$
d Q\left(\theta \mid X_{1}, \ldots, X_{m}\right)=\frac{\prod_{i=1}^{m} \theta^{X_{i}}(1-\theta)^{1-X_{i}} d Q(\theta)}{\int_{0}^{1} \prod_{i=1}^{m} \theta^{X_{i}}(1-\theta)^{1-X_{i}} d Q(\theta)}
$$

as the updated "prior" measure. Hence, if $Y_{n-m}=\sum_{i=m+1}^{n} X_{i}$, we have from (A5.4)

$$
p\left(Y_{n-m} \mid X_{1}, \ldots, X_{m}\right)=\int_{0}^{1}\binom{n-m}{y_{n-m}} \theta^{Y_{n-m}}(1-\theta)^{(n-m)-Y_{n-m}} d Q\left(\theta \mid X_{1}, \ldots, X_{m}\right)
$$

which identifies $Q\left(\theta \mid X_{1}, \ldots, X_{m}\right)$ as the limiting posterior predictive distribution, as from (A5.4) and the representation theorem itself

$$
\lim _{n \rightarrow \infty}\left[\frac{Y_{n-m}}{n-m}\right]=Q\left(\theta \mid X_{1}, \ldots, X_{m}\right)
$$

