SAMPLING DISTRIBUTION FOR NORMAL SAMPLES
PROOF NOT EXAMINABLE

Theorem: If Xi,..., X, is a random sample from a normal distribution, say X; ~ N(u,c?), then

(a) X is independent of {X; — X,i=1,...,n}
(b) X and s? are independent random variables
(c) The random variable
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has a chi-squared distribution with n — 1 degrees of freedom.

Proof: (a) The joint pdf Xj, ..., X, is the multivariate normal density
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where ¥ = 021, and I, is the n x n identity matrix. Consider the multivariate transformation to
Yi,...,Y, where
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Y, =X, -X,i=2...n

X; =Yi+Yy, i=2,..n

Thus, in vector terms Y = AX, or equivalently X = A=Y, where A is the n x n matrix with (i,7)th
element
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that is, we have a linear transformation, and the Jacobian of the transformation does not depend on
any y. Note that
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where T = — sz Note also that the joint pdf of Xj,..., X}, is, in scalar form
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The Jacobian of the transformation is n, so the joint density of Y7, ..., Y}, is given by direct substitution
into (1)
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Hence
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and therefore Y is independent of Y3, ...,Y,. Hence X is independent of the random variables terms
{YVi=X,—X,i=2,..,n}. Finally, X is also independent of X; — X as
n
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(b) s? is a function only of {X;— X, i=1,..,n}. As X is independent of these variables, X and 2
are also independent.

(¢)The random variables that appear as sums of squares terms that joint pdf are
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or Vi = Vo + V3, say. Now, X; ~ N(u,0?), so therefore
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as the X;s are independent, and the sum of n independent Ga(1/2,1/2) variables has a Ga(n/2,1/2)
distribution. Similarly, as X ~ N(u,02/n), V3 ~ x? By part (b), V5 and V3 are independent, and so
the mgfs of V1, Vo and V3 are related by

_ MV1 (t)
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As Vi and V3 are Gamma random variables, My, and My, are given by
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My, (t) = My, (t) My, (t) == My, (?)
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which is also the mgf of a Gamma random variable, and hence
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