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SAMPLING DISTRIBUTION FOR NORMAL SAMPLES

PROOF NOT EXAMINABLE

Theorem: If X1, ...,Xn is a random sample from a normal distribution, say Xi ∼ N(µ, σ2), then

(a) X̄ is independent of
{
Xi − X̄, i = 1, ..., n

}

(b) X̄ and s2 are independent random variables
(c) The random variable

(n− 1)s2

σ2
=

1

σ2

n∑

i=1

(
Xi − X̄

)2

has a chi-squared distribution with n− 1 degrees of freedom.

Proof: (a) The joint pdf X1, ...,Xn is the multivariate normal density

fX1,...,Xk(x1, ..., xk) =

(
1

2π

)n/2 1

|Σ|1/2
exp

{
−

1

2
(x− µ)TΣ−1(x− µ)

}

where Σ = σ2In, and In is the n × n identity matrix. Consider the multivariate transformation to
Y1, ..., Yn where

Y1 = X̄

Yi = Xi − X̄, i = 2, ..., n





⇐⇒






X1 = Y1 −
n∑

i=2
Yi

Xi = Yi + Y1, i = 2, ..., n

Thus, in vector terms Y = AX, or equivalently X = A−1Y, where A is the n × n matrix with (i, j)th
element

[A]ij =






1−
1

n
i = j and i �= 1,

1

n
i = 1

−
1

n
otherwise

that is, we have a linear transformation, and the Jacobian of the transformation does not depend on
any y. Note that

n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x+ x− µ)2 =
n∑

i=1

(xi − x)
2 + n (x− µ)2

where x =
1

n

n∑

i=1

xi. Note also that the joint pdf of X1, ...,Xn is, in scalar form

fX1,..,Xn(x1, .., xn) =

(
1

2πσ2

)n/2
exp

{

−
1

2σ2

n∑

i=1

(xi − µ)2
}

=

(
1

2πσ2

)n/2
exp

{

−
1

2σ2

[
n∑

i=1

(xi − x)2 + n (x̄− µ)2
]}

.

Now

x1 − x = −
n∑

i=2

(xi − x) = −
n∑

i=2

yi
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and so
n∑

i=1

(xi − x)
2 = (x1 − x)

2 +
n∑

i=2

(xi − x)
2 =

(

−
n∑

i=2

yi

)2
+

n∑

i=2

y2i

The Jacobian of the transformation is n, so the joint density of Y1, ..., Yn is given by direct substitution
into (1)

fY1,..,Yn(y1, .., yn) = n

(
1

2πσ2

)n/2
exp




−
1

2σ2




(

−
n∑

i=2

yi

)2
+

n∑

i=2

y2i + n (y1 − µ)2










= n

(
1

2πσ2

)n/2
exp




−
1

2σ2




(

−
n∑

i=2

yi

)2
+

n∑

i=2

y2i








× exp

{
−
n

2σ2
(y1 − µ)2

}

Hence

fY1,..,Yn(y1, .., yn) = fY2,..,Yn(y2, .., yn)fY1(y1)

and therefore Y1 is independent of Y2, ..., Yn. Hence X̄ is independent of the random variables terms{
Yi = Xi − X̄, i = 2, ..., n

}
. Finally, X̄ is also independent of X1 − X̄ as

X1 − X̄ = −
n∑

i=2

(
Xi − X̄

)

(b) s2 is a function only of
{
Xi − X̄, i = 1, ..., n

}
. As X̄ is independent of these variables, X̄ and s2

are also independent.

(c)The random variables that appear as sums of squares terms that joint pdf are
n∑

i=1
(Xi − µ)2

σ2
=

n∑

i=1

(
Xi − X̄

)2

σ2
+
n
(
X̄ − µ

)2

σ2

or V1 = V2 + V3, say. Now, Xi ∼ N(µ, σ2), so therefore

(Xi − µ)2

σ2
∼ N(0, 1) =⇒

(Xi − µ)2

σ2
∼ χ21 ≡ Ga

(
1

2
,
1

2

)
=⇒

n∑

i=1
(Xi − µ)2

σ2
= V1 ∼ χ

2
n

as the Xis are independent, and the sum of n independent Ga(1/2, 1/2) variables has a Ga(n/2, 1/2)
distribution. Similarly, as X̄ ∼ N(µ, σ2/n), V3 ∼ χ

2
1 By part (b), V2 and V3 are independent, and so

the mgfs of V1, V2 and V3 are related by

MV1(t) = MV2(t)MV3(t) =⇒MV2(t) =
MV1(t)

MV3(t)

As V1 and V3 are Gamma random variables, MV1 and MV3 are given by

MV1(t) =

(
1/2

1/2− t

)n/2
,MV3(t) =

(
1/2

1/2− t

)1/2
=⇒MV2(t) =

(
1/2

1/2− t

)(n−1)/2

which is also the mgf of a Gamma random variable, and hence

V2 =
(n− 1)s2

σ2
∼ χ2n−1


