CHAPTER 5
PROBABILITY RESULTS & LIMIT THEOREMS

5.1 BOUNDS ON PROBABILITIES BASED ON MOMENTS

Theorem 5.1.1 If X is a random variable, and h is a non-negative real function, then for any
c>0,

P[h(X) =] gw

Proof. (continuous case) : Suppose that X has density function fx which is positive for x € X.
Let A={x € X: h(z) >c} CX. Then, as h(x) > c on A,

By (X)) = [ h@)fx()ds = [ bl fx@dn+ [ b fx(oyds
J |

A/

Y

X
/h(m)fx(x)dx > / ofx(2)de = cP[X € A] = cP[h(X) > d
A A

Special Case : The Markov Property : h(xz) = |z|" for r > 0, so

B [1XT]

C

PIX|"zd <

Theorem 5.1.2 THE CHEBYCHEYV INEQUALITY
Suppose that X is a random variable with expectation p and variance 0. Then for any k > 0,

1

PIIX = pl > ko] < =

Proof. Put h(z) = (x — p)? and ¢ = k?0? in the previous theorem.

Corollary For € > 0,

0.2 2

(o
PllX—plze<s5 and  PlX-puf<dz21--—

65



66 CHAPTER 5. PROBABILITY RESULTS & LIMIT THEOREMS

5.1.1 A BOUND ON EXPECTED VALUES*

d2
Definition 5.1.1 A function g is convex if, for all x, el {9(0)},_, =9"(x) >0

Theorem 5.1.3 JENSEN’S INEQUALITY

Suppose that X is a random variable, and function g is convex. Then
Eyy [9(X)] > g(EfX [X1)

Proof. A Taylor expansion of g(x) around x = p gives

o(x) = 9(4) + (2 = g/ () + 5 (2 — 19" (w0)

for some xq such that x < xg < p. Thus, taking expectations,

Ep [9(X)] = g(p) + Er, [(X — )] g (1) + %Efx (X —1)?] ¢ (z0) = g(p) = g(Eyy [X])

as Ef, [(X —p)] =0, and Eg, [(X - N)Q] 79”(330) = 0.

5.2 CONVERGENCE FOR PROBABILITY MODELS
5.2.1 THE CENTRAL LIMIT THEOREM

Theorem 5.2.1 Suppose X1, ..., Xy, are i.i.d. random variables with mgf Mx , with
Ep|Xil=p  Varg[Xi] =0

both finite. Let the random variable Z, be defined by

n
ZXi —np
_i=1

Zn ==
no?

and let Z,, have mgf My . Then, as n — o0,

2
My (t) — exp {E}
irrespective of the form of Mx.

Proof. First, let Y; = (X; — ) /o for i = 1,...,n. Then Y7, ...,Y,, are i.i.d. with mgf My say, and
by the elementary properties of expectation, Ey, [Y;] = 0,Vary, [Y;] = 1 for each ¢. Using the
power series expansion result for mgfs, we have that

t3 2

t
3!EfY[Y3] +o=1+ =+ Ep [V +.

, t?
My (t) =1+ tEp [Y] + 5 By [V + o

Now, the random variable Z,, can be rewritten

2= (B)
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and thus, again by a standard mgf result, as Y7, ..., Y}, are independent, we have that
M (t)—f[ wy (VN e B P g v '
Zn _2,:1 Y vn)f o on | en32 v
Taking logs, and using the expansion log(1 + s) = s — s2/2 4 s3/3 — ... we have that

2 48 1/ 2
< +——=F}, [V +> — = < + ——=F}, [V +> 4o

log My (£) =n | [ — v
0g Mz, (t) =n |\ 50+ 557 2\ 2n " 6n32

Thus, as n — o0, only the very first term is non-zero, and

t? t?
log Mz (t) — 5l so that My (t) — exp {E }

INTERPRETATION: Sums of independent and identical distributions have a limiting distri-
bution that is Normal, irrespective of the distribution of the variables.

5.2.2 CONVERGENCE IN DISTRIBUTION

Definition 5.2.1 Consider a sequence of random variables X7, Xo, ... and a corresponding
sequence of cdfs, Fx,, Fx,, ... so that for n = 1,2,.. Fx, (z) =P[X,, < z]. Suppose that there
exists a cdf, Fx, such that for all z at which Fx is continuous,

lim F¥,(z) = Fx(x).

n—-aeo

Then X1, ..., X;, converges in distribution to random variable X with cdf Fx, denoted
X, -4 X
and Fx is the limiting distribution.

Convergence of a sequence of mgfs also indicates convergence in distribution, that is, if for all ¢ at
which Mx (t) is defined, if as n — oo, we have

Mx,(t) — Mx(t)

then X,, BN X

Definition 5.2.2 The sequence of random variables X7, ..., X, converges in distribution to
constant c if the limiting distribution of X1, ..., X,, is degenerate at c, that is,

X, -5 X
and P[X = ¢] =1, so that

0 z<ec
FX(m):{ 1 z>c
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Interpretation: A special case of convergence in distribution occurs when the limiting distribution
is discrete, with the probability mass function only being non-zero at a single value, that is, if the
limiting random variable is X, then

and zero otherwise, or in other words
PX=d=1
When the limiting form of the cdf is not continuous, as in the degenerate case above, we use a
different interpretation of convergence in distribution.
Definition 5.2.3 The sequence of random variables X1, ..., X,, converges in distribution to ¢
if and only if, for all € > 0,
lim P[|X,—c <¢=1
n——-=aeo

that is, convergence in distribution to a constant ¢ occurs if and only if the probability becomes
increasingly concentrated around ¢ as n — oo.

5.2.3 CONVERGENCE IN PROBABILITY
Definition 5.2.4 CONVERGENCE IN PROBABILITY TO A CONSTANT

The sequence of random variables X7, ..., X, converges in probability to constant ¢, denoted
Xn L.oe
if
lim P [| X — ¢| < €] =1 or, equivalently lim P [ Xn —c|>€ =0
that is, if the limiting distribution of X1, ..., X, is degenerate at c.

Interpretation Convergence in probability to a constant is precisely equivalent to convergence in
distribution to a constant.

Theorem 5.2.2 (WEAK LAW OF LARGE NUMBERS)

Suppose that X1, ..., Xy is a sequence of i.i.d. random variables with expectation p and variance
%, LetY, be defined by

then, for all € > 0,

lim P[|Y, —p| <€ =1,

that is, Yy £, w, and thus the mean of X1, ..., X, converges in probability to p.
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Proof. Using the properties of expectation, it can be shown that Y,, has expectation p and
variance 02 /n, and hence by the Chebychev Inequality,

2

PHYn—Mze]SU—QHO as n — 0o
ne
for all e > 0. Hence
PllY,—pul<e—1 asn — 0o

and Y, £, I

Definition 5.2.5 (CONVERGENCE TO A RANDOM VARIABLE)

The sequence of random variables X7, ..., X,, converges in probability to random variable X,
denoted X, N X, if, for all € > 0,

lim P[|X, —X|<¢=1 or equivalently lim P[| X, —X|>€¢=0

Theorem 5.2.3 For sequence of random variables Xy, ..., Xy, if

X, X —=x,-LXx

so convergence in probability to a random variable implies convergence in distribution.

5.2.4 ALMOST SURE CONVERGENCE*

Definition 5.2.6 The sequence of random variables X7, ..., X, converges almost surely to
constant ¢, denoted

X, —c
if
P[ lim [X, —c| <e| =1
n— oo

Interpretation : Recall the fundamental definition of a random variable as a real-valued function
from sample space 2 to R . The sequence of random variables X1, ...X,, corresponds to a sequence
of functions defined on elements of ). Almost sure convergence requires that the sequence of real
numbers X, (w) converges to ¢ (as a real sequence) for all w € 2, as n — o0, except perhaps when
w is in a set having probability zero.
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Theorem 5.2.4 (STRONG LAW OF LARGE NUMBERS)

Suppose that X1, ..., X;, is a sequence of i.i.d. random variables with expectation p and (finite)
variance o%. Let Yy, be defined by

then, for all e > 0,
P[ lim |Y, — py <e} =1,
n—aoo
that is, Y, <2 1, and thus the mean of X1, ..., X, converges almost surely to yu.
Definition 5.2.7 The sequence of random variables X7, ..., X, converges almost surely to
random variable X, denoted X,, =2 X, if, for all € > 0,
P[ lim [X, - X|<¢| =1
n—-aoo
Interpretation: As above, recall that random variable is a real-valued function from sample
space €2 to R , almost sure convergence to random variable X requires that the sequence of real

numbers X, (w) converges to X (w) (as a real sequence) for all w € Q, as n — o0, except perhaps
when w is in a set having probability zero.

Theorem 5.2.5 For sequence of random variables X1, ..., X,
X, 25 X=X, L X=X,-LX

so almost sure convergence implies convergence in probability, which implies convergence in
distribution to random variable X .



