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2.5 TRANSFORMATIONS OF RANDOM VARIABLES
2.5.1 GENERAL TRANSFORMATIONS

Consider a discrete/continuous random variable X with range X and probability distribution de-
scribed by mass/pdf fx, or cdf Fx. Suppose g is a real-valued function whose domain includes X,
and suppose that

g: X—Y

Ty

Then Y = g(X) is also a random variable as Y is a function from € to R. For A C R, the event
[Y € A] is an event in terms of the transformed variable Y. If fy is the mass/density function for
Y, then

Z fr(y) Y discrete
yeA

PlY € A] =
/ fr(y)dy Y continuous
J A

We wish to derive the probability distribution of random variable Y'; in order to do this, we first
consider the inverse transformation g~! from Y to X defined for set A CY (and for y € Y) by

g (A) ={reX:g(x) € A} g ' (y) ={zeX:g(x) =y}

that is, g~ !(A) is the set of points in X that map into A4, and g~'(y) is the set of points in X that
map to y, under transformation g. By construction, we have

PlY € A]= P[X € g 1(4)]
and hence [Y € A] and [X € g7'(A)] are equivalent events.

Consider first the cdf of Y, Fy, evaluated at a point y € R. We have

Z fx(x) X discrete
Fy(y) = PIV < y) = Plg(X) <y] = { “™
/ fx(z)dxr X continuous
Ay

where Ay, = {x € X: g(x) <y}. This result gives the “first principles” approach to computing
the distribution of the new variable: the approach can be summarized as follows:

e consider the range Y of the new variable
e consider the cdf Fy(y); step through the arguments as follows
Fy(y) =PY <yl = Plg(X) <yl = PIX € A
Note that it is usually a good idea to start with the cdf, not the pmf or pdf.
Often, the set is A, is easy to identify for a given y, that is,
Fy(y) = Plg(X) <y] = Plr; < X < a3

where 1 and x2 depend on y and ¢ or g—!. The main objective is therefore to identify the set Ay.
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Transformation: Y=sin(X)

cos(X)

Y=

X (radians)

Figure 2.3: Computation of A, for ¥ = sin X

Example 2.5.1 Suppose that X is a continuous random variable with range X = (0, 27) whose
pdf fx is constant

1

=% O<ax<2m

fx(z)
and zero otherwise. This pdf has corresponding continuous cdf
T
Fx(x)=— 0<z<2m
Consider transformed random variable
Y =sinX

Then the range of Y, Y is [—1, 1], but the transformation is not 1-1. However, from first
principles, we have

Fy(y) =P[Y <y]=P[sinX <y]

Now, by inspection of Figure 2.3,we can easily identify the required set A, : it is the union of two
disjoint intervals

Ay = [0,21] U [x9, 2] = [O,Sin_ly] U[r— sin~ly, 2|
so that

Fy(y)=P[sinX <y]=P[X < 1]+ P[X > a9
={P[X <)} +{1 - P[X < o]}

1 1 1 1
= {%Sinly}-l—{l—%(w—sin1y)}:§+%sinly
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Transformation: T=tan(X)

tan(X)

T=

X (radians)

Figure 2.4: Computation of A; for T' = tan X

and hence, by differentiation

Example 2.5.2 Consider transformed random variable
T =tan X

Then the range of Y, T is R, but the transformation is not 1-1. However, from first principles, we
have, for ¢t > 0

Fr(t)=P[T <] = Pltan X < 1]

Figure 2.4 helps identify the required set A;: in this case, it is the union of three disjoint intervals

Ay =10,21] U 1, 22] U [%,2#} = [0,tan ' #] U [m, 7 + tan ' ¢] U |:377T,27T:|

(note, for values of ¢ < 0, the union will be of only two intervals, but the calculation proceeds
identically) so that

3
Fy(y):P[tanng]:P[Xga:l}+P[a;1gXSxQHPHTngQW]
1. 1 . 1 3wy 1 1.,
={%tan t}—l—%{ﬂ'—s—tan t—ﬁ}+%{2w—7}=§+;tan t

and hence, by differentiation
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2.5.2 1-1 TRANSFORMATIONS

The mapping ¢g(X) is a function of X from X which is 1-1 and onto Y if,
(i) for each = € X, there exists one and only one y such that y = g(z), and
(ii) for each y € Y, there exists an « € X such that g(x) = y.

The following theorem gives the distribution for random variable Y = ¢g(X) when g is 1-1.

THEOREM
Let X be a random variable with mass/density function fx and support X. Let g be a 1-1 function
from X onto Y with inverse g~!. Then Y = g(X) is a random variable with support Y and

Discrete Case : The mass function of random variable Y is given by

@) =fx(g "Wy eY ={ylfr(y) >0}

.where 2z is the unique solution of y = g(x) (so that x = g~ 1(y)).

Continuous Case : The pdf of random variable Y is given by

@) = fx(g ') '% {90}, veY={lfrl >0}

where y = g(x), provided that the derivative

d 4
i {9 (t)}
is continuous and non-zero on Y.

PROOF
Discrete case: by direct calculation,

frly)=PlY =y]=Plg(X) =y = P[X =g '(y)] = fx()

where # = g~ !(y), and hence fy(y) > 0 <= fx(x) > 0.

Continuous case: function ¢ is either (I) a monotonic increasing, or (II) a monotonic decreasing
function.

Case (I): If g is increasing, then for x € X and y € Y, we have that
g(x) <y<=w<g '(y).

Therefore, for y € Y,

Fy(y) = PlY <y]=Plg(X) <y| = PIX < g '(y)] = Fx(9 (1))
and, by differentiation, because ¢ is monotonic increasing,

) = I ) {7 O}, = I~ 0) [ ™ )
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Case (II): If g is decreasing, then for € X and y € Y we have
g(z) Sy =297 (y)
Therefore, for y € Y,
Fy(y) = P[Y <y] = Plg(X) <y]=P[X > g7 (y)] =1~ Fx(9'())

SO

as % {g_l(t)} < 0.

Friy) = —fx(g‘l(y))% {97 W)} = fx(g™ W) %{g_l(t)}t:y

Definition 2.5.1 Suppose transformation g : X — Y is 1-1, and is defined by g(x) = y for
x € X. Then the Jacobian of the transformation, denoted J(y), is given by

) =S ),

that is, the first derivative of g~! evaluated at y = g(x). Note that the inverse transformation

g ':Y — X has Jacobian 1/J(x).
Note : This is precisely the same term that appears as a change of variable term in an integration.

Note : To compute the expectation of Y = g(X), we now have two alternative methods of
computation; we either compute the expectation of g(z) with respect to the distribution of X, or
compute the distribution of Y, and then its expectation. It is straightforward to demonstrate
that the two methods are equivalent, that is

Epy [9(X)] = Ep,. [Y]

This result is sometimes known as the Law of the Unconscious Statistician.

IMPORTANT NOTE: Note that the apparently appealing “plug-in” approach that sets
@) = fx (97'(v))

will almost always fail as the Jacobian term must be included. For example, if Y = e

so that X =logY, then merely setting

fy(y) = fx(logy)

X

is insufficienct, you must have

fr(y) = fx(logy) x 5
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2.6 GENERATING FUNCTIONS

2.6.1 MOMENT GENERATING FUNCTIONS

Definition 2.6.1 For random variable X with mass/density function fx, the
moment generating function, or mgf, of X, Mx, is defined by

Mx(t) = Epy[e"]
if this expectation exists for all values of t € (—h, h) for some h > 0, that is,

DISCRETE CASE Mx(t) =) e fx(x)

zeX

CONTINUOUS CASE  Mx(t) = [,y e fx(z)dx

Note : It can be shown that if X; and X5 are random variables taking values on X with
mass/density functions fx, and fx,, and mgfs Mx, and Mx, respectively, then

le(Jj) = fXQ(.CL’),.CL’ € X <~ ]V[Xl(t) = MXQ(t),t € (—h,h)

Hence there is a 1-1 correspondence between generating functions and distributions: this provides
a key technique for identification of probability distributions

2.6.2 KEY PROPERTIES OF MGFS

(i) If X is a discrete random variable, the rth derivative of Mx evaluated at t, M )(g ) (t), is given by

{ZeszfX )} :ZxretzfX(x)

zeX zeX

MY () =

and hence

MP(0) =Y o fx(@) = By [X7]
rxeX

If X is a continuous random variable, the rth derivative of Mx is given by

r d . ST . r x
MO0 = G [ et = [ e s

and hence

M7 (0) = / exx’“ fx(@)de = By [X]
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(ii) If X is a discrete random variable, then

Mx(®) = 3" fx(@)

zeX
= Z{Z(ﬁy}fm)
zeX (r=0
- 1+zi—ﬁ{zxrfx<x>}:1+2§Efx[xw
r=1 " lzeX r=1""

(identical result holds for the continuous case).
(iii) From the general result for expectations of functions of random variables

Ep Y] = By, [e!@X+D)] — Ny () = By [et@X+0)] = By [e¥X] = M My (at).
Therefore, if

Y = aX + b, My (t) = "' Mx (at)

THEOREM
Let X1, ..., X} be independent random variables with mgfs Mx,, ..., Mx, respectively. Then if
random variable Y is defined by Y = X7 + ... + X},

k
My (t) = ]| Mx, (¢)
i=1

PROOF
Using the general result for expectations of functions of independent random variables,

My (t) = Ey, [e"] = Epy,

.....

k k
X}, [et(X1+‘..+Xk)} = HEin {etXi} = HMXi (t)
i=1 i=1
Special Case : If X1, ..., X} are identically distributed, then Mx,(t) = Mx(t), say, for all i, so

k
My (t) = [ Mx (1) = {Mx(8)}*
i=1
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2.6.3 OTHER GENERATING FUNCTIONS

Definition 2.6.2 For random variable X, with mass/density function fx, the
factorial moment or probability generating function, fmgf or pgf , of X, Gx, is defined by

Gx(t) = Ep [t¥] = By, [e* 8" = Mx (log?)
if this expectation exists for all values of t € (1 — h, 1+ h) for some h > 0.

Properties :
(i) Using similar techniques to those used for the mgf, it can be shown that
d’l"

GY() = o AGx(8)}emy = By [X(X = 1)n(X =7+ 1)1 7]

— GV =E; [X(X—1)..(X —r+1)]

where E¢, [X(X —1)...(X —r 4+ 1)] is the rth factorial moment.

(ii) For discrete random variables, it can be shown by using a Taylor series expansion of Gx that,
forr=1,2,...,

G (0)

r!

= P[X =]

Definition 2.6.3 For random variable X with mass/density function fx, the
cumulant generating function of X, Ky, is defined by

Kx(t) = log []\/fx(t)]

for t € (—h, h) for some h > 0.

Definition 2.6.4 The characteristic function, or cf, of X, Cx, is defined by

Cx(t) = By, [e™¥]

if this expectation exists for t € R. By definition

Cx(t) = /.€X e fy (z)dw = / [costx + isintz] fx (z)dz

zeX

:/ costxfx(a:)dx+i/ sintx fx (x)dx
JzeX

JrxeX

= Ey, [costX] +iEy, [sintX]



