CONVERGENCE IN DISTRIBUTION: WORKED EXAMPLES

EXAMPLE 1: Continuous random variable X with range $\mathbb{X} \equiv (0, n]$ for n > 0 and cdf

$$F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n \qquad 0 < x \le n$$

and zero otherwise. Then as $n \to \infty$, $\mathbb{X} \equiv (0, \infty)$, and for all x > 0

$$F_{X_n}(x) \to 1 - e^{-x}$$
 : $F_{X_n}(x) \to F_X(x) = 1 - e^{-x}$

and hence

$$X_n \xrightarrow{d} X$$
 where $X \sim Exponential(1)$

EXAMPLE 2: Continuous random variable X with range $\mathbb{X} \equiv (0, \infty)$ and cdf

$$F_{X_n}(x) = \left(1 - \frac{1}{1 + nx}\right)^n \qquad 0 < x < \infty$$

and zero otherwise. Then as $n \to \infty$, for all x > 0

$$F_{X_n}(x) \to e^{-1/x}$$
 :. $F_{X_n}(x) \to F_X(x) = e^{-1/x}$

EXAMPLE 3: Continuous random variable X with range $\mathbb{X} \equiv [0,1]$ and cdf

$$F_{X_n}(x) = x - \frac{\sin(2n\pi x)}{2n\pi} \qquad 0 \le x \le 1$$

and zero otherwise. Then as $n \to \infty$, and for all $0 \le x \le 1$

$$F_{X_n}(x) \to x$$
 : $F_{X_n}(x) \to F_X(x) = x$

and hence

$$X_n \xrightarrow{d} X$$
 where $X \sim Uniform(0,1)$

 $F(x)=x-\sin(2^*n^*pi^*x)/(2^*n^*pi)$ as n -> 10

Note: for the pdf

$$f_{X_n}(x) = 1 - \cos(2n\pi x)$$
 $0 \le x \le 1$

and there is no limit as $n \to \infty$.

EXAMPLE 4: Continuous random variable X with range $\mathbb{X} \equiv [0,1]$ and cdf

$$F_{X_n}(x) = 1 - (1 - x)^n$$
 $0 \le x \le 1$

and zero otherwise. Then as $n \to \infty$, and for $x \in \mathbb{R}$

$$F_{X_n}(x) \to \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$
.

This limiting form is **not** continuous at x = 0, as x = 0 is not a point of continuity, and the ordinary definition of convergence in distribution cannot be applied. However, it is clear that for $\epsilon > 0$,

$$P[|X| < \epsilon] = 1 - (1 - \epsilon)^n \to 1 \text{ as } n \to \infty$$

so it is still correct to say

$$X_n \stackrel{d}{\to} X$$
 where $P[X=0]=1$

so the limiting distribution is **degenerate at** x = 0.

EXAMPLE 5: Continuous random variable X with range $\mathbb{X} \equiv (0, \infty)$ and cdf

$$F_{X_n}(x) = \left(\frac{x}{1+x}\right)^n \qquad x > 0$$

and zero otherwise. Then as $n \to \infty$, and for $x \ge 0$

$$F_{X_n}(x) \to 0$$

Thus there is no limiting distribution.

Now let $V_n = X_n/n$. Then $\mathbb{V} \equiv (0, \infty)$ and the cdf of V_n is

$$F_{V_n}(v) = P[V_n \le v] = P[X_n/n \le v] = P[X_n \le nv] = F_{X_n}(nv) = \left(\frac{nv}{1+nv}\right)^n \qquad v > 0$$

and as $n \to \infty$, for all v > 0

$$F_{V_n}(v) \rightarrow e^{-1/v}$$
 : $F_{V_n}(v) \rightarrow F_V(v) = e^{-1/v}$

and the limiting distribution of V_n does exist.

EXAMPLE 6: Continuous random variable X with range $\mathbb{X} \equiv (0, \infty)$ and cdf

$$F_{X_n}(x) = \frac{\exp(nx)}{1 + \exp(nx)}$$
 $x \in \mathbb{R}$

and zero otherwise. Then as $n \to \infty$

$$F_{X_n}(x) \to \begin{cases} 0 & x < 0 \\ \frac{1}{2} & x = 0 \\ 1 & x > 0 \end{cases} \quad x \in \mathbb{R}$$

This limiting form is **not** a cdf, as it is not right continuous at x = 0. However, as x = 0 is not a point of continuity, and the ordinary definition of convergence in distribution cannot be applied. However, it is clear that for $\epsilon > 0$,

$$P[|X| < \epsilon] = \frac{\exp(n\epsilon)}{1 + \exp(n\epsilon)} - \frac{\exp(-n\epsilon)}{1 + \exp(-n\epsilon)} \to 1 \text{ as } n \to \infty$$

so it is still correct to say

$$X_n \xrightarrow{d} X$$
 where $P[X = 0] = 1$

and the limiting distribution is **degenerate** at x = 0.

