## M2S1 - EXERCISES 5

## Miscellaneous distributional results

- 1. The joint pdf  $f_{X,Y}$  of positive random variables X and Y is specified as  $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$ , where  $X|Y = y \sim Exponential(y)$  and  $Y \sim Gamma(\alpha, \beta)$ . Identify the marginal distribution of X.
- 2. The Bivariate Normal Distribution: Suppose that  $X_1$  and  $X_2$  are i.i.d Normal(0,1) random variables. Let random variables  $Y_1$  and  $Y_2$  be defined by

$$Y_1 = \mu_1 + \sigma_1 \sqrt{1 - \rho^2} X_1 + \sigma_1 \rho X_2$$

$$Y_2 = \mu_2 + \sigma_2 X_2$$
or equivalently
$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \sigma_1 \sqrt{1 - \rho^2} & \sigma_1 \rho \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

for positive constants  $\sigma_1$  and  $\sigma_2$ , and  $|\rho| < 1$ . Find the joint pdf of  $(Y_1, Y_2)$ .

Show that, marginally for  $i = 1, 2, Y_i \sim Normal(\mu_i, \sigma_i^2)$ , and that conditionally

$$Y_1|Y_2 = y_2 \sim Normal\left(\mu_1 + \frac{\rho\sigma_1}{\sigma_2}(y_2 - \mu_2), \sigma_1^2(1 - \rho^2)\right)$$
  
 $Y_2|Y_1 = y_1 \sim Normal\left(\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(y_1 - \mu_1), \sigma_2^2(1 - \rho^2)\right)$ 

Find the correlation of  $Y_1$  and  $Y_2$ .

## The Central Limit Theorem

- 3. Using the Central Limit Theorem, construct a Normal approximation to probability distribution of a random variable X having a
  - (i) Binomial distribution,  $X \sim Binomial(n, \theta)$
  - (ii) Poisson distribution,  $X \sim Poisson(\lambda)$
- (iii) Negative Binomial distribution,  $X \sim NegBinomial(n, \theta)$
- (iv) Gamma distribution,  $X \sim Gamma(\alpha, \beta)$

## Limiting distributions

In the following questions, use the following results from earlier in the course; if  $X_1, ... X_n$  are a collection of independent and identically distributed random variables taking values on  $\mathbb{X}$  with mass function/pdf  $f_X$  and cdf  $F_X$ , let  $Y_n$  and  $Z_n$  correspond to the maximum and minimum order statistics derived from  $X_1, ... X_n$ , that is

$$Y_n = \max\{X_1, ..., X_n\}$$
  $Z_n = \min\{X_1, ..., X_n\}$ .

Then the cdfs of  $Y_n$  and  $Z_n$  are given by

$$F_{Y_n}(y) = \{F_X(y)\}^n$$
  $F_{Z_n}(z) = 1 - \{1 - F_X(z)\}^n$ .

4. Suppose  $X_1, ..., X_n \sim Uniform(0,1)$ , that is

$$F_X(x) = x$$
  $0 \le x \le 1$ 

Find the cdfs of  $Y_n$  and  $Z_n$ , and the limiting distributions as  $n \longrightarrow \infty$ .

5. Suppose  $X_1, ..., X_n \sim Exp(\lambda)$ , that is

$$F_X(x) = 1 - e^{-\lambda x} \qquad x > 0$$

Find the cdfs of  $Y_n$  and  $Z_n$ , and the limiting distributions as  $n \longrightarrow \infty$ .

6. Suppose  $X_1, ..., X_n$  have cdf

$$F_X(x) = 1 - \frac{1}{x} \qquad x \ge 1$$

Find the cdfs of  $Z_n$  and  $U_n = Z_n^n$ , and the limiting distributions of  $Z_n$  and  $U_n$  as  $n \longrightarrow \infty$ .

7. Suppose  $X_1, ..., X_n$  have cdf

$$F_X(x) = \frac{1}{1 + e^{-x}}$$
  $x \in \mathbb{R}$ 

Find the cdfs of  $Y_n$  and  $U_n = Y_n - \log n$  and the limiting distributions of  $Y_n$  and  $U_n$  as  $n \longrightarrow \infty$ .

8. Suppose  $X_1, ..., X_n$  have cdf

$$F_X(x) = 1 - \frac{1}{1 + \lambda x} \qquad x > 0$$

Find the cdfs of  $Y_n$  and  $Z_n$ , and the limiting distributions as  $n \longrightarrow \infty$ . Find also the cdfs of

$$U_n = Y_n/n$$
  $V_n = nZ_n$ 

and the limiting distributions of  $U_n$  and  $V_n$  as  $n \longrightarrow \infty$ .

- 9. Suppose  $X_1, ..., X_n \sim Exp(\lambda)$ . Find the cdf of  $U_n = \lambda Y_n \log n$ , and the limiting distribution of  $U_n$  as  $n \longrightarrow \infty$ .
- 10. Suppose  $X_1, ..., X_n \sim Bernoulli(\theta)$ . Write down the mgf of  $X_i$ , the mgfs of

$$S_n = \sum_{i=1}^n X_i$$
 and  $M_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{S_n}{n}$ 

. Find the limiting form of the mgf of  $M_n$ , and hence identify the limiting distribution of  $M_n$  as  $n \longrightarrow \infty$ .

11. Suppose  $X_1, ..., X_n \sim Poisson(\lambda)$ . Let  $M_n = \frac{1}{n} \sum_{i=1}^n X_i$ . Show that

$$M_n \stackrel{p}{\longrightarrow} \lambda$$

as  $n \longrightarrow \infty$ . If random variable  $T_n$  is defined by  $T_n = e^{-M_n}$ , show that

$$T_n \stackrel{p}{\longrightarrow} e^{-\lambda}$$

Using the central limit theorem, find the approximate probability distribution of  $T_n$  as  $n \longrightarrow \infty$ .