M2S1 - EXERCISES 5 ## Miscellaneous distributional results - 1. The joint pdf $f_{X,Y}$ of positive random variables X and Y is specified as $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$, where $X|Y = y \sim Exponential(y)$ and $Y \sim Gamma(\alpha, \beta)$. Identify the marginal distribution of X. - 2. The Bivariate Normal Distribution: Suppose that X_1 and X_2 are i.i.d Normal(0,1) random variables. Let random variables Y_1 and Y_2 be defined by $$Y_1 = \mu_1 + \sigma_1 \sqrt{1 - \rho^2} X_1 + \sigma_1 \rho X_2$$ $$Y_2 = \mu_2 + \sigma_2 X_2$$ or equivalently $$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \sigma_1 \sqrt{1 - \rho^2} & \sigma_1 \rho \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$ for positive constants σ_1 and σ_2 , and $|\rho| < 1$. Find the joint pdf of (Y_1, Y_2) . Show that, marginally for $i = 1, 2, Y_i \sim Normal(\mu_i, \sigma_i^2)$, and that conditionally $$Y_1|Y_2 = y_2 \sim Normal\left(\mu_1 + \frac{\rho\sigma_1}{\sigma_2}(y_2 - \mu_2), \sigma_1^2(1 - \rho^2)\right)$$ $Y_2|Y_1 = y_1 \sim Normal\left(\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(y_1 - \mu_1), \sigma_2^2(1 - \rho^2)\right)$ Find the correlation of Y_1 and Y_2 . ## The Central Limit Theorem - 3. Using the Central Limit Theorem, construct a Normal approximation to probability distribution of a random variable X having a - (i) Binomial distribution, $X \sim Binomial(n, \theta)$ - (ii) Poisson distribution, $X \sim Poisson(\lambda)$ - (iii) Negative Binomial distribution, $X \sim NegBinomial(n, \theta)$ - (iv) Gamma distribution, $X \sim Gamma(\alpha, \beta)$ ## Limiting distributions In the following questions, use the following results from earlier in the course; if $X_1, ... X_n$ are a collection of independent and identically distributed random variables taking values on \mathbb{X} with mass function/pdf f_X and cdf F_X , let Y_n and Z_n correspond to the maximum and minimum order statistics derived from $X_1, ... X_n$, that is $$Y_n = \max\{X_1, ..., X_n\}$$ $Z_n = \min\{X_1, ..., X_n\}$. Then the cdfs of Y_n and Z_n are given by $$F_{Y_n}(y) = \{F_X(y)\}^n$$ $F_{Z_n}(z) = 1 - \{1 - F_X(z)\}^n$. 4. Suppose $X_1, ..., X_n \sim Uniform(0,1)$, that is $$F_X(x) = x$$ $0 \le x \le 1$ Find the cdfs of Y_n and Z_n , and the limiting distributions as $n \longrightarrow \infty$. 5. Suppose $X_1, ..., X_n \sim Exp(\lambda)$, that is $$F_X(x) = 1 - e^{-\lambda x} \qquad x > 0$$ Find the cdfs of Y_n and Z_n , and the limiting distributions as $n \longrightarrow \infty$. 6. Suppose $X_1, ..., X_n$ have cdf $$F_X(x) = 1 - \frac{1}{x} \qquad x \ge 1$$ Find the cdfs of Z_n and $U_n = Z_n^n$, and the limiting distributions of Z_n and U_n as $n \longrightarrow \infty$. 7. Suppose $X_1, ..., X_n$ have cdf $$F_X(x) = \frac{1}{1 + e^{-x}}$$ $x \in \mathbb{R}$ Find the cdfs of Y_n and $U_n = Y_n - \log n$ and the limiting distributions of Y_n and U_n as $n \longrightarrow \infty$. 8. Suppose $X_1, ..., X_n$ have cdf $$F_X(x) = 1 - \frac{1}{1 + \lambda x} \qquad x > 0$$ Find the cdfs of Y_n and Z_n , and the limiting distributions as $n \longrightarrow \infty$. Find also the cdfs of $$U_n = Y_n/n$$ $V_n = nZ_n$ and the limiting distributions of U_n and V_n as $n \longrightarrow \infty$. - 9. Suppose $X_1, ..., X_n \sim Exp(\lambda)$. Find the cdf of $U_n = \lambda Y_n \log n$, and the limiting distribution of U_n as $n \longrightarrow \infty$. - 10. Suppose $X_1, ..., X_n \sim Bernoulli(\theta)$. Write down the mgf of X_i , the mgfs of $$S_n = \sum_{i=1}^n X_i$$ and $M_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{S_n}{n}$. Find the limiting form of the mgf of M_n , and hence identify the limiting distribution of M_n as $n \longrightarrow \infty$. 11. Suppose $X_1, ..., X_n \sim Poisson(\lambda)$. Let $M_n = \frac{1}{n} \sum_{i=1}^n X_i$. Show that $$M_n \stackrel{p}{\longrightarrow} \lambda$$ as $n \longrightarrow \infty$. If random variable T_n is defined by $T_n = e^{-M_n}$, show that $$T_n \stackrel{p}{\longrightarrow} e^{-\lambda}$$ Using the central limit theorem, find the approximate probability distribution of T_n as $n \longrightarrow \infty$.