M2S1 - ASSESSED COURSEWORK 2 SOLUTIONS

- (a) For the random variables given:
 - (i) Given R = r with 0 < r < 1, we require that,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y|R}(x,y|r) dx \ dy = 1 \qquad \therefore \qquad \int_{y=-r}^{y=r} \left\{ \int_{x=-\sqrt{r^2-y^2}}^{x=\sqrt{r^2-y^2}} \ k(r) x^2 y^2 \ dx \right\} dy = 1.$$

Now

$$\int_{-r}^{r} \left\{ \int_{-\sqrt{r^2 - y^2}}^{\sqrt{r^2 - y^2}} k(r) x^2 y^2 \, dx \right\} dy = k(r) \int_{-r}^{r} y^2 \left\{ \int_{-\sqrt{r^2 - y^2}}^{\sqrt{r^2 - y^2}} x^2 \, dx \right\} dy$$

$$= k(r) \int_{-r}^{r} y^2 \left[\frac{1}{3} x^3 \right]_{-\sqrt{r^2 - y^2}}^{\sqrt{r^2 - y^2}} dy$$

$$= \frac{2k(r)}{3} \int_{-r}^{r} y^2 (r^2 - y^2)^{3/2} \, dy$$

Making the substitution $y = r \cos t$ in this integral, we obtain

$$\int_{-r}^{r} y^{2} (r^{2} - y^{2})^{3/2} dy = \int_{0}^{\pi} r^{2} \cos^{2} t (r^{2} - r^{2} \cos^{2} t)^{3/2} r \sin t dt = r^{6} \int_{0}^{\pi} \cos^{2} t \sin^{4} t dt$$

$$= r^{6} \left[\cos t \frac{\sin^{5} t}{5} \right]_{0}^{\pi} + \frac{1}{5} r^{6} \int_{0}^{\pi} \sin^{6} t dt.$$

$$= 0 + \frac{1}{5} r^{6} I(6),$$

say, where

$$I(k) = \int_0^\pi \sin^k t \ dt.$$

Now, integrating by parts, we obtain a recursion for I(k);

$$\begin{split} I(k) &= \int_0^\pi \sin^k t \; dt = \int_0^\pi \sin^2 t \; \sin^{k-2} t \; dt \\ &= \int_0^\pi \sin^{k-2} t \; dt - \int_0^\pi \cos^2 t \; \sin^{k-2} t \; dt \\ &= \int_0^\pi \sin^{k-2} t \; dt - \int_0^\pi \cos^2 t \; \sin^{k-2} t \; dt \\ &= I(k-2) - \left[\cos t \frac{\sin^{k-1} t}{k-1} \right]_0^\pi - \frac{1}{k-1} \int_0^\pi \sin^k t \; dt \\ &= I(k-2) - 0 - \frac{1}{k-1} I(k) \end{split}$$

so that

$$I(k) = \left(\frac{k-1}{k}\right)I(k-2) \tag{1}$$

and hence

$$I(6) = \left(\frac{5}{6}\right)I(4) = \left(\frac{5}{6}\right)\left(\frac{3}{4}\right)I(2) = \left(\frac{5}{6}\right)\left(\frac{3}{4}\right)\left(\frac{1}{2}\right)I(0) = \frac{15}{48}I(0).$$

But $I(0) = \pi$ by direct evaluation, so therefore $I(6) = 15\pi/48 = 5\pi/16$. Hence, from above

$$\int_{-r}^{r} y^{2} (r^{2} - y^{2})^{3/2} dy = \frac{1}{5} r^{6} I(6) = \frac{\pi r^{6}}{16}$$

and thus, for 0 < r < 1,

$$k(r) = \frac{3}{2} \frac{16}{\pi r^6} = \frac{24}{\pi r^6}.$$

Derivation of the recursion formula in equation (1) is not necessary for full marks, but can be quoted as a standard result. Using a cos substitution is also OK, you just get a similar recursion, and may give the answer more quickly. Please give some marks for correctly formulating the problem, even if the script does not complete the integration.

[6 MARKS]

(ii) The full joint pdf is therefore

$$f_{R,X,Y}(r,x,y) = f_{X,Y|R}(x,y|r)f_R(r) = \frac{24x^2y^2}{\pi r^6} 4r^3 = \frac{96x^2y^2}{\pi r^3}$$

on the region defined by

$$-r < x < r, -r < y < r, 0 < x^2 + y^2 < r^2, 0 < r < 1,$$

and zero otherwise. To get the joint marginal for X and Y, we integrate out R from the full joint pdf, that is

$$f_{X,Y}(x,y) = \int_{-\infty}^{\infty} f_{R,X,Y}(r,x,y) dr = \int_{\sqrt{x^2 + y^2}}^{1} \frac{96x^2y^2}{\pi r^3} dr = \frac{96x^2y^2}{\pi} \left[-\frac{1}{2r^2} \right]_{\sqrt{x^2 + y^2}}^{1}$$
$$= \frac{48x^2y^2}{\pi} \left[\frac{1}{x^2 + y^2} - 1 \right]$$
$$= \frac{48x^2y^2(1 - x^2 - y^2)}{\pi(x^2 + y^2)}.$$

on the region defined by

$$0 < x < 1, \ 0 < y < 1, \ 0 < x^2 + y^2 < 1$$

and zero otherwise. [4 MARKS]

- (b) Using the joint pdf given:
 - (i) From first principles, for fixed $y_1 > 0$

$$F_{Y_1}(y_1) = P[Y_1 \le y_1] = P[X_1/X_2 \le y_1] = P[X_1 \le y_1X_2].$$

Hence

$$F_{Y_1}(y_1) = \int_0^\infty \int_{x_1/y_1}^\infty \lambda_1 \lambda_2 \exp\{-(\lambda_1 x_1 + \lambda_2 x_2)\} dx_2 dx_1$$

$$= \int_0^\infty \lambda_1 e^{-\lambda_1 x_1} \left\{ \int_{x_1/y_1}^\infty \lambda_2 e^{-\lambda_2 x_2} dx_2 \right\} dx_1$$

$$= \int_0^\infty \lambda_1 e^{-\lambda_1 x_1} e^{-\lambda_2 x_1/y_1} dx_1 = \int_0^\infty \lambda_1 e^{-(\lambda_1 + \lambda_2/y_1)x_1} dx_1$$

$$= \frac{\lambda_1}{(\lambda_1 + \lambda_2/y_1)}$$

[3 MARKS]

(ii)

$$P[Y_1 < Y_2] = P[X_1/X_2 < X_1X_2] = P[X_2^2 > 1] = P[X_2 > 1]$$

as X_2 is strictly positive. Hence

$$P[Y_1 < Y_2] = 1 - F_{X_2}(1) = \exp\{-\lambda_2\}.$$

[2 MARKS]

(iii) For the covariance, from first principles

$$Cov_{f_{X_2,Y_2}}[X_2,Y_2] = E_{f_{X_2,Y_2}}[X_2 Y_2] - E_{f_{X_2}}[X_2]E_{f_{Y_2}}[Y_2]$$

By direct calculation

$$E_{f_{X_2}}[X_2] = 1/\lambda_2$$

and by definition

$$E_{f_{Y_2}}[Y_2] \equiv \int_0^\infty \int_0^\infty x_1 x_2 f_{X_1, X_2}(x_1, x_2) \ dx_1 \ dx_2 \equiv E_{f_{X_1}}[X_1] E_{f_{X_2}}[X_2] = \frac{1}{\lambda_1 \lambda_2}.$$

Finally,

$$\begin{split} E_{f_{X_2,Y_2}}[X_2 \, Y_2] &= \int_0^\infty \int_0^\infty x_2 y_2 f_{X_2,Y_2}(x_2,y_2) \, \, dx_2 \, \, dy_2 \\ &\equiv \int_0^\infty \int_0^\infty x_1 x_2^2 f_{X_1,X_2}(x_1,x_2) \, \, dx_1 \, \, dx_2 \\ &= E_{f_{X_1}}[X_1] E_{f_{X_2}}[X_2^2] = \frac{1}{\lambda_1} \frac{2}{\lambda_2^2}. \end{split}$$

Hence

$$Cov_{f_{X_2,Y_2}}[X_2,Y_2] = \frac{2}{\lambda_1\lambda_2^2} - \frac{1}{\lambda_2}\frac{1}{\lambda_1\lambda_2} = \frac{1}{\lambda_1\lambda_2^2}$$

/5 MARKS/

Note: for the r^{th} moment for X_1 or X_2 ; proceed as follows

$$\begin{split} E_{f_X}[X^r] &= \int_0^\infty x^r \lambda e^{-\lambda x} \; dx = \left[-x^r e^{-\lambda x} \right]_0^\infty + \int_0^\infty r x^{r-1} e^{-\lambda x} \; dx &= r \int_0^\infty x^{r-1} e^{-\lambda x} \; dx \\ &= \frac{r}{\lambda} E_{f_X}[X^{r-1}] \\ &= \frac{r(r-1)}{\lambda^2} E_{f_X}[X^{r-2}] \\ &\vdots \\ &= \frac{r!}{\lambda^r} E_{f_X}[X^0] \\ &= \frac{r!}{\lambda^r}. \end{split}$$