
GSA Short Course: Session 1 Regression

Regression Modelling And Least-Squares

The aim of regression modelling is to explain the observed variation in a response variable, Y , by
relating it to some collection of predictor variables, X1, X2, ..., XD. The variation is decomposed into
a systematic component, that is, a deterministic function of the predictor variables, and a random
component that is the result of measurement procedures (or unmeasurable variability). The simplest
model is the Normal Linear Model, where the systematic component is a function of the predictors
and some model parameters, β, and the random variation is assumed to be the result of additive
normally distributed random error terms. This model is explained in section 1.

1 The Normal Linear Model

We assume that the variables to be modelled are as follows; we will observe paired data, with
response data yi paired to predictor variables stored in vector form xi = (xi1, ..., xiD)T, and our aim is
to explain the variation in (y1, ..., yn). We achieve this by modelling the conditional distribution of
response variable Yi given the observed value of predictor variable Xi = xi. Specifically, we may write

Yi = β0 + β1x1 + ... + βDxiD + εi = β0 +
D∑

j=1

βjxij + εi (1)

where εi ∼ N(0, σ2) for i = 1, ...n are independent and identically distributed random error terms.
Note that this implies

Yi|Xi = xi ∼ N(β0 +
D∑

j=1

βjxij , σ
2) ∴ EfY |X [Yi|Xi = xi] = β0 +

D∑

j=1

βjxij . (2)

In vector notation, this model can be re-written Yi = xT
i β + εi, where xi = (1, xi1, xi2, ..., xiD)T, and

thus, for vector Y = (Y1, ..., Yn)T we have

Y = Xβ + ε

where X is a n× (D + 1) matrix called the design matrix

X =




1 x11 · · · x1D

1 x21 · · · x2D

1 x31 · · · x3D
...

...
...

...
1 xn1 · · · xnD




and to mimic (2)
Y ∼ Nn(Xβ, σ2In) (3)

where In is the n× n identity matrix, giving a joint pdf for Y given X of the form

fY (y; β, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Xβ)T(y −Xβ)

}
(4)

This joint probability model will form the basis of inference.

NOTE: we will also see that a model-free estimation procedure can be constructed on the basis of a
goodness of fit criterion.
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1.1 The Extended Linear Model

The formulation of the linear model above can be extended to allow for more general dependence
on the predictors. Suppose that g1, g2, ..., gK are K (potentially non-linear) functions of the D original
predictors, that is

gk(xi) = gk(xi1, ..., xiD)

is some scalar function, for example, we could have

• gk(xi1, ..., xiD) = gk(xi1) = xi1 (the identity function)

• gk(xi1, ..., xiD) = gk(xi1) = ak
√

xi1

• gk(xi1, ..., xiD) = gk(xi1) = ak log xi1

• gk(xi1, ..., xiD) = gk(xi1, xi2) = akxi1 + bkxi2

and so on. This reformulation does not effect our probabilistic definition of the model in (3); we can
simply redefine design matrix X as

X =




1 g1(x1) · · · gK(x1)
1 g1(x2) · · · gK(x2)
1 g1(x3) · · · gK(x3)
...

...
...

...
1 g1(xn) · · · gK(xn)




now an n × (K + 1) matrix. In the discussion below, we will regard the transformed variables
(g1(X), g2(X), ..., gK(X)) as the predictors and drop the dependence on the transformation functions.
Hence we have

• Y as a n× 1 column vector

• X as a n× (K + 1) matrix with ith row (1, g1(xi), ..., gK(xi))

• β as a (K + 1)× 1 column vector

1.2 Least Squares Estimation in the Linear Model

Equation (4) illustrates a way that parameter estimates can be obtained. For any parameter vector
β, the fitted value is Xβ, and thus the term in the exponent

S(β) = (y −Xβ)T(y −Xβ)

is a measure of goodness of fit; if S(β) is small, then y and the fitted values are closely located. It can
be shown (below) that the minimum value of S(β) is obtained when

XTXβ = XTy.

yielding the Ordinary Least Squares solution

β̃ = (XTX)−1XTy.

However, without further distributional assumptions, we cannot proceed to understand the uncertainty
in the estimation.
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1.3 Maximum Likelihood Estimation in the Linear Model

Maximum likelihood estimation for the normal linear model is straightforward. If θ = (β, σ2)
then the mle θ̂ is given by

θ̂ML = arg max
θ∈Θ

fY |β,σ2(y; β, σ2) = arg max
θ∈Θ

L(β, σ2; y, x)

where parameter space Θ ≡ RK×R+. Taking logs in (4) gives

log L(β, σ2; y, x) = −n

2
log σ2 − n

2
log 2π − 1

2σ2
(y −Xβ)T(y −Xβ) (5)

and considering the maximization for β indicates

arg max
β∈RK

log L(β, σ2; y, x) = arg min
β∈RK

(y −Xβ)T(y −Xβ)

and thus,

S(β) = (y −Xβ)T(y −Xβ)

= yTy − yTXβ − βTXTy + βTXTXβ

= yTy − 2yTXβ + βTXTXβ.

Using vector/matrix differentiation

d

dβ

{
yTXβ

}
= yTX

d

dβ

{
βTXTXβ

}
= 2XTXβ (6)

and so if β̂ is the solution of
dS(β)

dβ
= −yTX + XTXβ = 0

then it follows that β̂ satisfies
XTXβ̂ = XTy. (7)

If the matrix XTX is non-singular, then we have the ML estimates of β as

β̂ = (XTX)−1XTy (8)

and substituting back into (5) gives

σ̂2 =
1
n

(y −Xβ̂)T(y −Xβ̂) =
1
n

n∑

i=1

(yi − ŷi)2 (9)

where ŷi = xT
i β̂ is the fitted value, and yi − ŷi is the residual. Note that XTX is a symmetric

matrix. The expression (y −Xβ̂)T(y −Xβ̂) is termed the residual sum of squares (or RSS). A
common adjusted estimate is

σ̂2
ADJ =

1
n−K − 1

(y −Xβ̂)T(y −Xβ̂) (10)

the justification for this result depends on the sampling distribution of the estimator.
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If K = 1, with identity function g(t) = t

XTX =




n
n∑

i=1
xi

n∑
i=1

xi

n∑
i=1

x2
i


 (XTX)−1 =

1
n2S2

x




n∑
i=1

x2
i −

n∑
i=1

xi

−
n∑

i=1
xi n




where

S2
x =

1
n

n∑

i=1

x2
i − (x)2

and so

β̂ = (XTX)−1XTy =
1

n2S2
x




n∑
i=1

x2
i −

n∑
i=1

xi

−
n∑

i=1
xi n







n∑
i=1

yi

n∑
i=1

xiyi




=
1

n2S2
x




n∑
i=1

x2
i

n∑
i=1

yi −
n∑

i=1
xi

n∑
i=1

xiyi

n
n∑

i=1
xiyi −

n∑
i=1

xi

n∑
i=1

yi




For K > 1 calculations can proceed in this fashion, but generally the matrix form

β̂ = (XTX)−1XTy

is easier to work with.

NOTE: Most good computing packages (R, MATLAB) have pre-written functions that implement this
form of linear model in a straightforward fashion.

1.4 Fitted Values

Fitted values are readily obtained from this model. The fitted value ŷ is obtained as

ŷ = Xβ̂ = X(XTX)−1XTy

= Hy

and the measure of misfit is

S(β̂) = (y − ŷ)T(y − ŷ)

= (y −X(XTX)−1XTy)T(y −X(XTX)−1XTy)

= yT(In −X(XTX)−1XT)y
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1.5 Properties of the ML estimators

By elementary properties of random variables, the properties of ML estimator T = (XTX)−1XTY

EY |X,β,σ2 [T ] = EY |X,β,σ2

[
(XTX)−1XTY

]
= ((XTX)−1XT)EY |X,β,σ2 [Y ]

= ((XTX)−1XT)Xβ = (XTX)−1(XTX)β = β

so that T is unbiased for β, and

V arY |X,β,σ2 [T ] = V arY |X,β,σ2

[
(XTX)−1XTY

]

= ((XTX)−1XT)V arY |X,β,σ2 [Y ] ((XTX)−1XT)T

= ((XTX)−1XT)σ2In(X(XTX)−1)

= σ2(XTX)−1(XTX)(XTX)−1 = σ2(XTX)−1.

Note that, in fact, given β and σ2

Y ∼ Nn(Xβ, σ2In) =⇒ T = (XTX)−1XTY ∼ NK+1(β, σ2(XTX)−1). (11)

It also follows that

(y −Xβ)T(y −Xβ) = (y −Xβ̂)T(y −Xβ̂) + (β̂ − β)T(XTX)(β̂ − β)

or
S(β) = S(β̂) + (β̂ − β)T(XTX)(β̂ − β)

where
S(β) = (y −Xβ)T(y −Xβ) (1)

S(β̂) = (y −Xβ̂)T(y −Xβ̂) = (y − ŷ)T(y − ŷ) =
n∑

i=1

(yi − ŷi)2 (2)

(β̂ − β)T(XTX)(β̂ − β) = (Xβ −Xβ̂)T(Xβ −Xβ̂) (3)

are the (1) TOTAL , (2) RESIDUAL and (3) FITTED sum of squares (TSS, RSS and FSS).
Therefore, by normal distribution theory, it follows that

S(β)
σ2

∼ χ2
n

S(β̂)
σ2

∼ χ2
n−K−1 (12)

so that

s2 =
S(β̂)

(n−K − 1)
is an UNBIASED estimator of σ2

and the quantity
β̂ − β

s.e.(β̂)
=

β̂ − β

s
√

vii
∼ Student(n−K − 1).

It also follows that
S(β)− S(β̂)

σ2
=

(β̂ − β)T(XTX)(β̂ − β)
σ2

∼ χ2
K+1
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so that finally [
S(β)− S(β̂)

]
/(K + 1)

S(β̂)/(n−K − 1)
∼ Fisher(K + 1, n−K − 1)

It follows that in this case the ML estimator is the Minimum Variance Unbiased Estimator (MVUE)
and the Best Linear Unbiased Estimator (BLUE).

1.6 The Analysis of Variance

Analysis of variance or ANOVA is used to display the sources of variability in a collection of
data samples. The ANOVA F-test compares variability between samples with the variability within
samples. In the above analysis, we have that

S(β) = S(β̂) + (β̂ − β)T(XTX)(β̂ − β) or TSS = RSS + FSS.

Now, using the distributional results above, we can construct the following ANOVA Table to test the
hypothesis

H0 : β1 = ... = βK = 0

against the general alternative that H0 is not true.

Source of Variation D.F. Sum of squares Mean square F

FITTED K FSS FSS/K
FSS/K

RSS/(n−K − 1)

RESIDUAL n−K − 1 RSS RSS/(n−K − 1)

TOTAL n− 1 TSS

This test allows a comparison of the fits of the two competing models implied by the null and alternative
hypotheses. Under the null model, if H0 is true, then the model has Yi ∼ N(β0, σ

2
0) for i = 1, 2, ...n,

for some β0 and σ2
0 to be estimated. Under the alternative hypothesis, there are a total of K + 1

β parameters to be estimated using equation (8). The degrees of freedom column headed (D.F.)
details how many parameters are used to describe the amount of variation in the corresponding row of
the table; for example, for the FIT row, D.F. equals K as there are K parameters used to extend the
null model to the alternative model.
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